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Abstract  

 
     The visual field map is produced by mapping the 
active voxels of the visual cortex to a circular region 
corresponding to the points of the circular image. 
Activation of the voxels is determined by matching the 
fMRI time series to a time series based on a complex 
visual stimulus consisting of rotating wedges and rings 
expanding from the center to the boundary of the disk.  
     Each scan (pre-surgical, post-surgical) produces a 
different set of points due to due to noise in the fMRI 
response to the visual target, hemodynamic variability 
and variability in the position of the head between 
scans and . A spatial-temporal non-homogeneous 
Poisson process is used to model the density of the 
active voxels.  The differential density of the voxels 
reflects the differences in density of the optical sensors 
in the retina from the center to the periphery.  Two 
types of changes may occur post-surgery: (1) thinning 
of the response or (2) actual “holes” in the visual 
response.  
     Using data obtained from healthy patients, surgery 
was simulated with full scans as well as known masks 
(18o to 90o wedges) as well as randomly thinned areas 
(180o and 360o), we examined the sensitivity and 
specificity of different spatial methods for identifying 
pre-post surgical changes: (1) nearest neighbor, (2) 
emptiness measures, (3) spatial intensity measures and 
(4) goodness of fit to an empirical model  
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1. The Visual Field Map Generates a Point Process 
 
The visual field diagram is formed by an inverse 
mapping of areas of the visual cortex to the retinotopic 
area stimulated by an array of visual targets.  The 
visual targets are a series of concentric circles that 
illuminated in sequence.  The corresponding blood 
flow in the visual cortex is imaged by BOLD fMRI.  
The Bold fMRI signal is correlated with the stimulus.  
In particular the time delay in the fMRI signal is used 
to identify which of the concentric circles is being 
illuminated as is shown in Figure 1.  Each color 
represents a region of the visual cortex (Figure 2)  that 
corresponds to a region of the retina activated by the 

visual target.  Blue is the area of the visual cortex that 
corresponds to the innermost circle. 
 

 
 
Figure 1.  Presentation of the targets over time leads to 
a mapping of the visual cortex. 
 

  
 
Figure 2. Functional Activation showing visual field 
eccentricity (distance from center of gaze) represented 
by different colors calculated from the delay of the 
fMRI signal. 
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The target also rotates as in Figure 3.  The combination 
of  the rotational segment and the concentric circle 
gives a location in the visual field for each of the 
voxels in the visual cortex.  Figures 1 through 3 are 
from DeYoe, 1996 and DeYoe, 1997. 
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Figure 3.  Location of the points in the visual fields. A 
point is present only if the correlation between the 
fMRI BOLD signal and the pattern is above a  
threshold that is kept constant for all scans in a study. 
 
Patients with epilepsy that cannot be controlled by 
medication, will have surgery to control the condition.  
Since the regions that are resected in surgery lie near  
to the regions of the brain that affect the visual 
subsystem, an important problem is the determination 
of what portion of the visual field was affected by the 
surgery. 
 
2. Simulated Effects of Surgery 
 
In order to quantitate this process, a statistical model 
for changes in the visual field is necessary.  In order to 
test this model, simulated changes in the visual field 
were constructed by masking part of the visual 
stimulus.   

To “simulate” the effect of surgery, 0, 18, 27, 36, 45 
and 90 degree wedges were used to mask part of the 
visual field when the data was collected from a subject.  
Figure 4 shows the different sizes of the masks and the 
corresponding effects on the points in the visual field.  
Figure 4 is from Maciejewski, 2005. 
 
The retina of the eye has a greater sensitivity in its 
center area corresponding to a greater density of rods 
and cones.  This is reflected in the greater density of 
activated points in the center of the visual field 
maps(Figure 5). 
 

 
 
Figure 5.  Points in the full (top) and 90o mask 
(bottom).  Note that each scan is a separate realizations 
of a stochastic process. 
 
Because of the winner take all algorithm that generates 
the FF map and noise inherent in fMRI scanning, the 
resulting map has random points in the area masked by 
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the wedge.  Each scan produces a similar, but random, 
set of points.   
 
Since potential damage to the visual field in clinical 
subjects could be global rather than local, we also used 
random thinning  applied to all the points of the 0 
degree wedge to simulate global damage.  The random 
thinning was applied to the entire visual field with a 
0.50 and a 0.75 proportion of all the points kept.  In 
addition, a 50% thinning of the left half of the visual 
field was also used. 
 
Figure 5 shows the effect of a 90 degree mask on the 
points of the visual field map for a single subject.  
Figure 6 shows the effect of  randomly thinning the 
points by 50%. 
 

 
Figure 8.  Simulated effect of a 50% thinning of all the 
points in the visual field. 
 
2.1  The Statistical Model 
 
The underlying statistical model is a non-homogeneous 
Poisson process.  While the general model is similar 
for each subject; namely, a higher spatial intensity in 
the center of the visual field,  the geometry of the 
visual field intensity differs from subject to subject. 
For example, the “blind spot” caused by the optic 
nerve has a different location for each subject.  In 
addition, the number of points observed for a given 
realization of the visual field ranges from 450 to 650 
points between subjects.  The number of points 
observed also depends on the choice of the threshold; 
the same minimum correlation threshold between the 
BOLD signal and the visual image is chosen for all the 
subjects.  
 
Because of the variability between subjects (Figure 7), 
we model the intensity for a given subject, 
 

    
( , ) for subject i

     where r is the radius and 

                is the angle from the horizontal

i rλ θ

θ

 

 

are the same across scans made during the same scan 
session for an individual subject.   In order to assess 
pre versus post, we also assume that without an 
intervention the underlying non-homogeneous Poisson 
process intensity does not change across sessions 
which may be days or weeks apart.   The variability 
between subjects with no mask displayed in Figure 6 
also shows the tendency for the pattern of points to be 
oval rather than completely circular.   Again because 
of the winner take all rule and the size of the voxel 
measured by fMRI which often contains vasculature 
draining into more than one region of the brain, the 
“blind spot” does not provide an obvious hole in most 
of the subjects point patterns. 

 
Figure 9.  Variability of the pattern of points among 4 
subjects. 
 

3. Analytic Methods 
 

3.1 Using Global Measures to Distinguish Patterns 
 
Typical spatial statistical methods for point processes 
(Diggle, 2001, Waller, 2003 and Schabenberger, 2004) 
are designed to (1) determine how observed spatial 
distributions compared with a null hypothesis of  
Complete Spatial Randomness (CSR) and (2) to look 
for clusters of points as in disease mapping.  Typically 
they assume a homogeneous Poisson spatial process 
with λ(s) = constant.   Since our process in non-
homogeneous, we started with methods that were not 
dependent on the exact form of the spatial intensity.  
The software package R with the libraries spatstat and 
splancs was used for most of the analyses in this paper. 
 
3.1.1 Nearest Neighbor Distances 
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The first approach was to use the distances to the 
nearest neighbor.  The c.d.f of the nearest neighbor 
distances for each point, F(d), was computed for each 
visual field map.  A Kolmologorov-Smirnov two-
sample test of the differences between the nearest 
neighbor distances from the complete map compared 
to the distributions of the nearest neighbor differences 
for the 45 degree mask, the 90 degree mask and the 
50% thinning was performed. 
 
     As can be seen from Figure 8, there is little 
difference in the nearest neighbor distances when a 
wedge is cut out of the mask.  Although the nearest 
neighbor map was somewhat sensitive to thinning, it 
was quite insensitive to sections cut out.  This method 
also doesn’t easily lead to identification of the location 
of the wedge.  

 
Figure 8.  The distribution of the nearest neighbor 
distances for (0) no mask,  (1) a 45 degree mask, (2) a 
90 degree mask and (50) a 50% random thinning of the 
unmasked  data. 
 
3.1.2 Empty Space Distances 
 
The second global method we explored was was the 
c.d.f of the distance from a random set of locations to 
the nearest point.  This is called the “empty space 
distribution”, K(d).   If there are holes or masks, 
random locations in the hole or masked area will 
produce an increased distance to the nearest point.   
This should be more sensitive to missing areas, since 
random locations in the masked region should have 
much larger nearest neighbor distances.    A 
Kolmologorov-Smirnov two-sample test of the 
differences between the nearest neighbor distances 

from the complete map compared to the distributions 
of the nearest neighbor differences for the 45 degree 
mask, the 90 degree mask and the 50% thinning. 
 

Figure 9.  The distribution of the nearest neighbor 
distances  for a random point for (0) no mask,  (1) a 45 
degree mask, (2) a 90 degree mask and (50) a 50% 
random thinning of the unmasked  data. 
 
 As can be seen from Figure 9, there is little difference 
in the empty space distances when a wedge is cut out 
of the mask.  Although the nearest neighbor map was 
somewhat sensitive to thinning, it was quite insensitive 
to sections cut out. This method is slightly better than 
the nearest neighbor method, but not much.  This 
method also doesn’t easily lead to identification of the 
location of the wedge.  
 
3.2 Local Spatial Pattern Methods 
 
The two most common methods for assessing changes 
(spatial-temporal) or differences (between patterns) are 
in terms of  (1) ratios of the intensity of the two 
patterns – assessed with Monte Carlo  sampling and (2) 
comparing an “expected” distribution of points based 
on  a baseline or in our case a complete pattern of 
points with an “observed” number.  Usually a chi-
square test statistic is used to quantify this comparison. 
 
3.2.1 Using Empirical Modeling of the First Order 
Intensity of the Process to Identify the Differences in 
Visual Field Diagrams 
 
λ(s) is the first order or mean of the spatial process.  A 
homogeneous Poisson Process has 
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                     λ(s) = λ   
 
Since the process for the visual field is non-
homogeneous, choosing an underlying model for the 
intensity, λ(s), is not easy.  NOTE that the intensity is 
not monotone away from the center because of visual 
features like the blind spot (the optic nerve in the 
retina).  Thus smoothing the pre-surgical observed data 
gives an empirical (person-specific) model to test 
against.  To eliminate some of these problems of the 
different structures between subjects, the estimated 
ratio of the intensities was used.  
 

 
 

 
Figure 10.  The effect of different smoothing 
parameters on the estimated spatial intensity. The 
bottom figure has a smaller window. 
 
The difficulty with smoothing is that there are many 
parameters to choose:  Window size, kernel type,  and 
grid on which the result is plotted and displayed all can 
give different results for the smoothed empirical 
density as well as the ratio of the empirical densities.   
 
However, Figures 11 and 12 show the best results for 
the intensity ratio with the full set of points and the 

masked set of points superimposed.  Recall that each 
scan is a different realization of the underlying spatial 
stochastic process. 
 
The results are VERY sensitive to bandwidth as well 
as moderately sensitive to alignment across scans and 
tend to overshoot near the center.  The kernel type is 
not very important.   

 
Figure 11.  Empirical ratio of the intensities with the 
complete set of points superimposed.   
 

 
Figure 12.  Empirical ratio of the intensities with the 
90 degree mask set of points superimposed.  The 
yellow-white  region identifies the area where the ratio 
is not uniformly near a constant (green).  
 
The main problem is the amount of tuning necessary to 
produce an intensity ratio that so clearly identifies the 
masked area.  An additional problem is that kernal 
smoothing a spatial figure with abrupt changes in the 
intensity, as in the “blind spot” has tendency to 
produce overshoot  of the estimated intensity. 
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Perhaps a 2D Haar wavelet smoother would be more 
successful at modeling the local variation without 
overshoot  than a kernal smoother.. 
 
This method successfully identified holes; for thinning 
it should produce a more or less constant ratio of 
intensities.  However the ratio will be offset from 1, 
the expected ratio in regions with no holes.   
 
We used the R library splancs for smoothing kernels 
and estimating ratios of smoothed kernels 
 
3.2.2 Using the Full Scan to Determine a Predicted 
Number of Pointes to Compare with the Observed 
Number of Points.  
 
This method partitions the visual field map into 
reproducible areas.  Although there are many potential 
ways to partition the visual field map, we invoke two 
constraints that lead to fewer choices.  The first is to be 
sure that for all subjects we have an expected number 
greater than or equal to five so that there will be no 
problem with the estimation of the expected value.  
The second is that the each partition should have about 
the same number of points.  This leads to a series of 
wedges or a series of unequally sized annuli that take 
into account the increased density towards the center 
of the visual field map (Figure 13). We then used a 
Pearson’s Chi-square test statistic to test whether there 
are any differences in the patterns among the sectors. 
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Figure 13. Partitioning of the visual field into wedges 
that will have similar numbers of points.   
 
The increased sized for the outer wedges corresponds 
to the decreased density of the points, as well as the 
corresponding decrease in visual acuity.  The number 
of sectors allows us to tune the sensitivity of the 
method by adjusting the number of points in a wedge.  
A method that is too sensitive will differentiate 
between identical scans from different sessions.  A 
method that is not sensitive enough will only 
differentiate very large holes.   
 
The additional advantage of more and smaller wedges 
is that the “blind spot” can easily be omitted if it is 

causing spurious significance without affecting the 
ability to detect the location of holes and thinning.   
 
The z-score for each sector can be used to locate the 
deviant sectors. Bigger annuli are needed as the points 
thin out. 
 
Partitioning the visual field into wedges or annuli was 
(1) very sensitive to big cutouts and less sensitive to 
small cutouts, (2) very sensitive to thinning and (3) 
very sensitive to differences between subjects.  We 
noticed that it needs careful alignment of the voxels of 
the visual cortex to be useful in tracking results of 
sessions that are collected over long periods of  time.  
We are still working on the sensitivity problem. The 
choice of nested annuli may be optimal if the region of 
vision loss tends to occur towards the outside of the 
visual field. 
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