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Graph Convolutional Networks for Model-Based
Learning in Nonlinear Inverse Problems

William Herzberg, Daniel B. Rowe , Andreas Hauptmann , Member, IEEE, and Sarah J. Hamilton

Abstract—The majority of model-based learned image recon-
struction methods in medical imaging have been limited to uniform
domains, such as pixelated images. If the underlying model is solved
on nonuniform meshes, arising from a finite element method typical
for nonlinear inverse problems, interpolation and embeddings are
needed. To overcome this, we present a flexible framework to
extend model-based learning directly to nonuniform meshes, by
interpreting the mesh as a graph and formulating our network ar-
chitectures using graph convolutional neural networks. This gives
rise to the proposed iterative Graph Convolutional Newton-type
Method (GCNM), which includes the forward model in the solution
of the inverse problem, while all updates are directly computed by
the network on the problem specific mesh. We present results for
Electrical Impedance Tomography, a severely ill-posed nonlinear
inverse problem that is frequently solved via optimization-based
methods, where the forward problem is solved by finite element
methods. Results for absolute EIT imaging are compared to stan-
dard iterative methods as well as a graph residual network. We
show that the GCNM has good generalizability to different domain
shapes and meshes, out of distribution data as well as experimental
data, from purely simulated training data and without transfer
training.

Index Terms—Finite element method, graph convolutional
networks, model-based deep learning, conductivity, electrical
impedance tomography.

I. INTRODUCTION

MANY tomographic image reconstruction tasks fit under
the umbrella of inverse problems as they seek to recover

an image x from indirect measurements y. Further, these are
typically ill-posed which means that finding a unique solution
in a stable manner ranges from difficult to impossible without the
use of prior knowledge about the problem. With the rise of deep
learning, classical reconstruction techniques have been paired
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with, or replaced by, learned methods that can increase stability
and promote uniqueness by enforcing strong data-driven priors.
Specifically, supervised learning is still the most common ap-
proach for medical image reconstruction tasks, where a data set
of known ground truth images and measurement input pairs are
used to train a network that is later used to compute predictions
from new inputs. When the forward operator T for the imaging
task is known, a set of training data can be simulated, which is
especially useful when a large number of experimental training
samples are not available.

Learned image reconstruction can be decomposed further into
three main categories [1], [2]. The first, and most common,
uses an analytically known inversion operator T † to obtain an
approximate reconstruction that can suffer from noise or other
artefacts such as distortions. Then, a neural network Λθ with
parameters θ can be applied, with the approximate solution as the
input, to improve this initial reconstruction and obtain a refined
version as, [3], [4],

x̂ = Λθ

(
T †y

)
.

The second category is commonly referred to as iterative model-
based techniques (or unrolled methods) because information
about the known forward model T is intertwined with learned
components in an iterative manner. At each such iterative step,
a neural network Λθk computes an updated reconstruction that
may use a combination of the current iterate, measurements, and
forward model, as inputs [5], [6]:

xk+1 = Λθk (xk, y, T ) .

A third category might use a neural network to compute the
image directly from the measurements [7]. This approach is far
less common in imaging tasks, due to training instabilities, the
need for large data, and limited generalization capabilities with
respect to changes in the measurement setup [8].

The majority of learned image reconstruction tasks use convo-
lutional neural networks (CNNs), which are especially favorable
for imaging applications due to their translational invariance and
capability to leverage local dependencies and structures. Ap-
plications in medical imaging have been limited to pixel/voxel
grids, but for many nonlinear inverse problems, the forward
model is solved using the finite element method (FEM) which
requires discretizing the domain onto special meshes. These
meshes often have triangular elements and are very irregular,
unlike the pixel grids needed for the application of a CNN. To
incorporate CNNs into imaging tasks where the image is initially
defined over such meshes, one needs to perform an interpolation
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step, or equivalent, to convert mesh data to pixel-grid data and
embed it into a rectangular domain. Consequently, it would
be more natural to perform the learned image reconstruction
directly on the domain and geometry defined by the FEM mesh.

Hence, we propose considering the data defined over a FEM
mesh as graph data so that graph convolutional networks (GCNs)
can be used as an alternative to the traditional CNN in a model-
based learned approach for solving nonlinear inverse problems.
In the simplest form, graph data is composed of nodes connected
by edges. In this work, non-directional, unweighted, homoge-
neous graphs are considered. GCNs were designed specifically
for graph data and are intended to leverage many of the same ben-
efits as traditional CNNs; shared weights, translational invari-
ance, and localization [9]. Here, we apply GCNs to FEM mesh
data in the context of learned image reconstruction, opening a
new avenue to work directly on the problem specific meshes.

The proposed method, dubbed the Graph Convolutional
Newton-type Method (GCNM), utilizes the model-based learn-
ing approach by incorporating GCNs into traditional itera-
tive methods for solving nonlinear inverse problems, namely
Newton-type methods, which use FEM meshes to solve the
forward problem. This enables us to leverage the advantages
offered by convolutional networks, while being able to operate
directly on the FEM meshes used in the forward problem. This
eliminates the need to convert between meshes and pixel grids,
and work more naturally on the underlying domain geometry.
Furthermore, using the forward model at each iteration reaps
many of the advantages seen in other model-based methods.

In this work we show that the GCNM has strong fitting abili-
ties, requires fewer iterations than classical optimization-based
methods, and can generalize well to new domain shapes, FEM
meshes, and noise patterns without the need for transfer training.
We will compare our approach to classical optimization based
methods, as well as a post-processing ResNet with graph convo-
lutional layers (GResNet), which will showcase the importance
of repeated incorporation of model information at each iteration.

In the following, we first motivate and introduce the novel
GCNM as well as the post-processing GResNet used for com-
parison. Next, Section III, reviews the mathematical problem
of electrical impedance tomography (EIT), a highly ill-posed
nonlinear inverse problem, which will serve as a challenging
case study for the proposed GCNM. Section IV describes the
examples considered, training data used, and evaluation metrics
that will be used to assess the results. Results for simulated and
experimental data are presented in Section V, and conclusions
are drawn in Section VI.

II. GRAPH CONVOLUTIONAL NEWTON-TYPE METHOD

The proposed Graph Convolutional Newton-type Method
(GCNM) is a new model-based image reconstruction technique
that operates on FEM meshes and builds on iterative second
order (Newton-type) methods but changes how the current iter-
ate xk and its update δxk are combined. Classic methods obtain
the next iterate as xk+1 = xk + δxk, where δxk is computed ac-
cording to a chosen optimization method such as Gauss-Newton
(GN) or Levenberg-Marquardt (LM). The GCNM, by contrast,
computes the next iterate using a trained network Λθk and the

adjacency matrix A, for the graph over which xk and δxk are
defined, via

xk+1 = Λθk ([xk, δxk] ,A) , (1)

where δx is the traditional update (e.g. GN, LM). The two
terms xk and δxk are concatenated and then used as input to
a graph convolutional (GCN) block. The output of the GCN
block provides the next iterate xk+1, see Fig. 1. In this work, the
structure of the blocksΛθk are the same at each iteration but each
block will have its own unique set of trainable parameters θk. In
this study we chose the LM updates for the GCNM to not enforce
strong data specific priors, and rather allow the networks to learn
the features from the training set. We note that the proposed
framework extends to other updates arising from GN methods
and one could include stronger priors, such as total variation
(TV), if desired.

As with other learned model-based methods [5], [6], [10]–[12]
there are two options for training the network: train the entire
system of kmax blocks end-to-end, or train each block sequen-
tially. In our case, an end-to-end training is not practical for two
main reasons. First, to update the network parameters we would
need to perform back-propagation through the updates δxk,
computed by evaluating the model equations of the underlying
problem given by a FEM solver, which is not practical. This
leads directly to the second problem, that evaluating the model
equations is time consuming and would lead to extensive training
times. Thus, we follow here the sequential approach of training
each block separately [10]. Given a training set of true xtrue,(i)

and current iterate xk,(i) pairs for i = 1, . . . ,M , this leads then
to a loss function requiring iterative-wise optimality

Loss(θk) =
1

M

M∑
i=1

(Λθk ([xk, δxk] ,A)(i) − xtrue,(i))
2. (2)

tMean squared error (2) was selected to remain consistent with
other similar studies such as [10], [12], [13] but an �1 loss
function would also be valid. A brief comparison study using
the cases described in Section IV-A showed that networks
trained using a mean absolute error loss function resulted in
reconstructions with comparable visual accuracy and metric
scores.

In order to consider a quantity x and update δx, defined on
a FEM mesh with M elements, as graph data, two pieces are
needed: a feature matrix and an adjacency matrix. The feature
matrix H ∈ RM×f has one row for each graph node and one
column for each feature defined over the nodes. The adjacency
matrixA ∈ RM×M is sparse and describes how the graph nodes
are connected. Only the entries Aij = 1 are nonzero where
graph nodes i and j are connected. Here, we consider each mesh
element as a graph node and two elements are connected if they
share at least one mesh node. Alternatively, if the solution is
defined at the FEM nodes, those would be the natural graph
nodes to use.

A. Graph Convolutions

Kipf and Welling [9] proposed a convolutional layer for neural
networks that operates on graph data and is analogous to the
convolutional layer used on pixel grid data, given input H(i) the
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Fig. 1. (Top Left) The first two iterations of the GCNM are shown. (Bottom Left) The GResNet which takes the first iteration of a classical Newton-type method
as input to the first block and a total of kmax blocks is shown. (Top Right) One block of a network is shown. The same block structure is used in both GCNM and
the GResNet. In GCNM, the input H(0) is the concatenation of xk and δxk and the output H(0) is xk+1. For the GResNet, H(0) is x1 for the first block and the
sum of the previous block’s input and output for the remaining blocks.

layer is defined as:

H(i+1) = g
(
D̃− 1

2 ÃD̃− 1
2H(i)W (i)

)
. (3)

Self loops, or connections from graph node i to itself, are
included in the adjacency matrix by Ã = A+ I and D̃− 1

2

denotes the inverse of the square root of each element from
D̃ = diag(

∑
j Ãij). The weight matrix W (i) ∈ Rf(i)×f(i+1)

contains the trainable parameters for the layer with number
of input f (i) and output f (i+1) features. Finally, g(·) denotes
the nonlinear activation function. If biases are desired, an extra
column of ones �1 ∈ RM is concatenated to the input feature
matrix and an extra row of trainable parameters bi ∈ Rf(i+1) is
concatenated to the weight matrix resulting in

H(i+1) = g
(
D̃− 1

2 ÃD̃− 1
2

[
H(i),�1

] [
W (i); b(i)T

])
. (4)

In (3) and (4), one can think of D̃− 1
2 ÃD̃− 1

2H(i) as an ag-
gregation of features within the neighborhood of each graph
node. Then, multiplication with W (i) computes a node’s output
features as linear combinations of its aggregated input features.
Stacking X of these layers increases a node’s receptive field
to all of its X neighborhood in the graph. Note that standard
2D convolutions learn linear combinations of neighbors’ feature
values for aggregating within a neighborhood while GCN layers
only use a specific weighted average (described by D̃− 1

2 ÃD̃− 1
2 )

for aggregating information that is not learned, but instead
defined by the mesh.

B. Network Structure

At each iteration of the GCNM, a GCN block with the
structure shown in Fig. 1 is used. The input graph uses the

M elements from the mesh as nodes in the graph with an
adjacency matrix also formed from the mesh. Each graph node
has f (0) = 2 initial features such that H(0) = [xk, δxk]. Then,
three graph convolutional layers with ReLU activation functions
expand the feature dimension to 250 features before a final graph
convolutional layer with linear activation is used to produce
the output of the block. The output is a graph with the same
adjacency matrix as the input, but with only one feature xk+1

defined over the nodes. Similar to [6], [10], each block’s network
structure was chosen to be small and quite simple as compared
to typically larger post-processing networks. Note, that in con-
trast to [6], [10], we do not use a residual update. The above
architecture has been found to work well for all test problems
considered here; more specialized architectures could be consid-
ered for a particular problem but this is outside the scope of this
current work.

One important aspect of the new GCNM is that it uses model
information iteratively. That means, the output from one block
xk+1 is used to compute the next update δxk+1, and then both
are used as input in the next block Λθk+1

. At each iteration, new
information from the forward problem is being introduced by
δxk and a new GCN block acts on the inputs. This can be a
strength when the original updates δxk+1 converge toward the
true solution. Alternatively, if the forward model is not accurate,
the GCN can compensate and correct for the wrong components
and extract useful information for the updates, acting as a learned
model correction [14], [15]. We will see this correcting nature
in the experiments (e.g. Fig. 5).

Finally, when regularization parameters are used in the com-
putation of the updates δxk that are used as input to the networks,
the parameters can be tuned to new test data after training.
This will be demonstrated in the following experiments where
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Fig. 2. Examples of “Truths” from the simulated training data.

Fig. 3. The final loss values (training and validation) of each block of the
GCNM and for the GResNet as a whole.

different noise distributions, parameter ranges, and experimental
data are considered.

III. CASE STUDY: ELECTRICAL IMPEDANCE TOMOGRAPHY

We chose Electrical Impedance Tomography (EIT) as a case
study for the proposed GCNM due to its nonlinear nature and
severe ill-posedness. EIT is an imaging modality that uses
electrodes attached to the surface of a domain to inject current
and measure the resulting electrical potential. The electrical
measurements are used to recover the conductivity distributionσ
inside the domain. The physical problem in EIT can be modeled
via the conductivity equation [16]

∇ · σ∇u = 0 in Ω ⊂ Rn, (5)

where u denotes the potential and 0 < σ < ∞. The recovery of
the internal conductivity from surface electrical measurements
is a severely ill-posed, nonlinear inverse problem which requires
carefully designed numerical solvers robust to noise and mod-
eling errors.

Most commonly, the reconstruction problem in EIT is for-
mulated in a variational setting and solved by iterative methods
that minimize the error between measured voltages V and sim-
ulated voltages U(σ) corresponding to a guess conductivity σ.
Additional regularization is needed due to the ill-posedness and
instability of the reconstruction problem; popular approaches in-
clude the Levenberg-Marquardt (LM) algorithm [17], Tikhonov
regularization [18], and Total Variation (TV) regularization [19].
These methods frequently suffer from high sensitivity to mod-
eling errors and, if not compensated for, are limited in practice
to time-difference EIT imaging which recovers the change in
conductivity Δσ relative to a reference data set/frame. The most

common applications of time-difference EIT focus on monitor-
ing heart and lung function of hospitalized patients. Absolute,
also called static, EIT imaging recovers the conductivity at the
time of measurement from a single frame V of EIT data. While
in time-difference imaging, some of the systematic modeling
errors can cancel out, in absolute imaging they do not and
hence require a correction [20], [21]. Developing fast robust
image reconstruction algorithms for absolute EIT imaging is
important for applications such as breast cancer imaging, stroke
classification, and nondestructive evaluation where a pre-injury
set of measurements is unavailable; see [22], [23] for a further
literature review of applications.

Alternatively, direct (non-iterative) reconstruction meth-
ods such as the D-bar method [24]–[27], and Calderón’s
method [16], [28] show promise for fast robust absolute and
time-difference EIT imaging. However, these methods often
suffer from blurred reconstructions as a result of a low-pass
filtering of the associated (non)linear Fourier data required by
the reconstruction algorithms, and offer limited applicability in
an iterative model-based learned reconstruction framework.

As with other computational imaging tasks, deep learning
has been leveraged in many ways to improve EIT reconstruction
quality while maintaining or reducing inference time. Several di-
rect approaches in the category of post-processing based learned
image reconstruction have been proposed, such as Deep D-bar
methods [13], [29] and the dominant-current approach [30]
where a CNN utilizing the popular U-net architecture [31] is
trained and used to improve an initial reconstruction in the
image space on a pixel grid. Alternatively, a neural network-
based supervised descent method (SDM) described in [12] falls
into the model-based category. The inputs are residuals in the
measurement space while the outputs are updates in the image
space defined over a FEM mesh. Another model-based approach
was presented in [32], where the authors propose a Quasi New-
ton method by learning updates of the Jacobians. The GCNM
presented in Section II also falls in the model-based category,
using GCNs with inputs and outputs in the image space defined
over the problem specific FEM meshes used in the optimization
method.

A. Solving the Forward Problem in EIT

Given a domainΩ ⊂ Rn, the EIT forward problem is to deter-
mine the electrical potential u at the boundary of the domain ∂Ω
when current is applied and the conductivity distribution of the
interior is known. The boundary conditions for the conductivity
(5) are given by the complete electrode model [33],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
e�
σ ∂u

∂n̂dS = I�, � = 1, 2, . . ., L,

σ ∂u
∂n̂

∣∣
∂Ω/∪e� = 0,

(u+ z�σ
∂u
∂n̂ )

∣∣
e�

= U�, � = 1, 2, . . ., L,
L∑

�=1

I� = 0,

L∑
�=1

U� = 0,

(6)
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Fig. 4. Case 1: Results for two samples of testing data consistent with, but not included in, the training data. The initialization, first two iterations of the GCNM,
and the GCNM reconstruction are compared to the reconstructions from GResNet, LM, and TV. Black and red colors represent going 20% over or under the color
bar range, respectively. Iteration numbers chosen by the stopping criterion are shown at the top right for each iterative method.

Fig. 5. Results for Cases 2-4: exploring a chest shaped domain, and incorrect
domain modeling.

where L is the number of electrodes and e� is the �th electrode;
z�, I�, and U�, are the contact impedance, current injected, and
electric potential on the �th electrode, respectively; and n̂ is the
outward unit vector normal to the boundary. Following [34],
[35], the forward problem (5) and (6) can be solved using FEM
to determine the voltages U(σ) on the electrodes for a given
conductivity σ. Here we consider the 2D (n = 2) case.

B. The Inverse Problem for EIT

Many iterative been proposed that begin as a minimization
problem with the objective function

F (σ) =
1

2
‖U(σ)− V ‖2 +R(σ), (7)

where V = (V
(1)
1 , . . . , V

(1)
L , . . . , V

(K)
1 , . . . , V

(K)
L )T in RKL

represents a vector of the measured volt-
ages on each of the L electrodes for K lin-
early independent current patterns and U(σ) =

(U
(1)
1 (σ), . . . , U

(1)
L (σ), . . . , U

(K)
1 (σ), . . . , U

(K)
L (σ))T in RKL

is a vector of the simulated voltages at theL electrodes produced
by the same K current patterns using the conductivity σ. The
term R(σ) represents a possible regularization term added to
the norm of the residuals, also called the data-fidelity term.

For an initial guess, σ0, we use the best constant conductivity
fit to the data [36]. Then, (7) can be rewritten as

F (σ0 + δσ) =
1

2
‖U(σ0 + δσ)− V ‖2 +R(σ0 + δσ), (8)

with the intent to minimize it with respect to δσ. Solving (8)
iteratively leads to the following classic update rule,

σk+1 = σk + δσk, (9)

given an estimate σk. We then iterate until a satisfactory solution
for (7) is found.

1) The Levenberg-Marquardt Algorithm: When there is no
explicit regularization included in the objective function (7),
then R(σ) = 0. The Taylor expansion of (8) to the quadratic
term is then given by

F (σ + δσ) = F (σ) + F ′(σ)(δσ) +
1

2
F ′′(σ)(δσ)2,

and a minimum can be found by differentiating the Taylor
expansion with respect to δσ and setting it equal to 0. This yields
the update

δσ = −F ′′(σ)−1F ′(σ), (10)

where F ′(σ) and F ′′(σ) are the gradient vector and Hessian
matrix of the objective function F . When R(σ) = 0, these are
defined as

F ′(σ) = J (σ)T (U (σ)− V )

F ′′(σ) = J (σ)T J (σ) +
∑
i

U ′′
i (σ) (Ui (σ)− Vi) , (11)

where J(σ) is the Jacobian of the simulated voltages U(σ)
(e.g., computed by [34], [35]). In Newton’s method, the Hessian
is computed exactly according to (11). In the Gauss-Newton
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(GN) method, the second term is ignored due to the costly
computation of the second order derivativeU ′′

i (σ). Alternatively,
the Levenberg-Marquardt (LM) algorithm proposes replacing
the second term with a scaled identity matrix λLM I where λLM ∈
R+, acting as regularizer of the ill-posed problem. Though the
identity matrix is used in this work, other matrices could be used.
This regularization has the benefit of improving the condition
number for the matrix to be inverted in (10) which is of particular
importance when the Jacobian of the forward problem is rank
deficient. The approximate solution to (8) is then

δσLM=−
(
J (σ)T J (σ) + λLM I

)−1

J (σ)T (U (σ)− V ) .

(12)

We obtain an iterative reconstruction algorithm by using the LM
updates 12 in the update rule (9) and a suitable stopping criteria.
In this work, we will use δσLM for our learned GCNM.

2) Regularized Gauss-Newton: Alternatively, one can en-
force certain priors, such as piecewise constant conductivity
reconstructions, that are desirable in EIT, as opposed to smooth
reconstructions. This is typically approached via Total Variation
(TV) with R(σ) = λTV

∑
i |Liσ| where L is a sparse matrix

representing the discrete gradient, see [19] for details. One often
considers a smoothed approximation of Total Variation regular-
ization using R(σ) = λTV

∑
i

√
(Liσ)2 + γ. The approximate

solution to minimize (8) is then

δσTV = − (J (σ)T J (σ) + λTV LTE−1L)−1

(
J (σ)T (U (σ)− V ) + λTV LTE−1Lσ

)
(13)

where γ ∈ R+ is the smoothing parameter that can be var-
ied [19], and E = diag(

√
(Lσ)2 + γ) is a diagonal matrix. We

will compare the GCNM recosntructions to TV reconstructions
using (13).

IV. METHODS

To evaluate the performance of the novel GCNM we looked at
a case study for 2D absolute EIT imaging. We trained a GCNM
network using the LM update (12) using 400 simulated training
samples and 100 simulated testing samples. The simulated sam-
ples each contained 1-4 piece-wise constant elliptical inclusions
all defined on the same circular mesh (radius 140 mm, L = 32
equally spaced electrodes of width 20 mm and height 20 mm).
For each simulated conductivity phantom, the forward EIT prob-
lem (5) and (6) was solved using FEM with approximately 5,000
triangular elements using adjacent current patterns with current
amplitude 2 mA. The inverse problem was solved using a FEM
mesh with approximately 4,000 elements. A study of the effect of
mesh granularity on reconstruction quality across methods was
not explored. Fig. 2 shows sample simulated phantoms used in
the training with conductivity values given in Table I.

Prior to solving the inverse problem, noise was added to the
simulated voltages of the training data using

vp = vp + νmean (|vp|) εp.
The parameter ν controls the level of noise, vp is the vector
of voltage measurements on the electrodes for the pth current

TABLE I
INCLUSION NUMBERS AND CONDUCTIVITY VALUES FOR THE SAMPLES IN

EACH TEST CASE ARE SHOWN BELOW. THE CONDUCTIVITY VALUES ARE

PRESENTED IN S/M AND WHERE A RANGE IS SHOWN, VALUES WERE DRAWN

FROM A UNIFORM DISTRIBUTION WITHIN THE RANGE

TABLE II
SUMMARY OF TEST CASES EXPLORED. THE DOMAIN SHAPE, WHETHER OR

NOT THE MESH IS THE SAME AS THE ONE USED IN TRAINING, AND OTHER

INFORMATION ARE NOTED

pattern, and εp ∈ RL is a vector of Gaussian random numbers.
Unless otherwise stated, 0.5% noise (ν = 0.005) was used in
this study. This corresponds to an SNR of about 51 dB. The
KIT4 system has an SNR of approximately 65.52dB [20] which
is well above the value used here.

A. Examples Considered

Several test cases will be used to assess the performance of the
trained GCNM. First we consider samples within the distribution
of the training data (Case 1). With an eye on the larger question of
how well the trained network generalizes to data it has not seen,
we focus the remainder of our attention on the following out
of distribution cases (Table II). Cases 2-6 explore samples from
simulated data outside the distribution of training data. Namely,
Cases 2-3 use a chest shaped domain with perimeter 900 mm.
Case 2 assumes correctly known electrode locations but Case 3
assumes that errors are made when placing the electrodes in an
experiment. The locations along the boundary of the electrodes
are shifted by N(0mm, 1mm) when simulating the measured
voltages as compared to where they are assumed to be during
reconstruction (evenly spaced). The same shift was used for all
samples in Case 3. Case 4 explores incorrect domain modeling
by reconstructing on an ovular domain (semi-major/minor axes
of 170 mm and 110 mm) while the measured voltages were
simulated on the chest shaped domain used in Cases 2-3. This
corresponds to a measurement scenario where the patient shape
is not accurately known. Case 5 introduces sharp corners by
using samples with large ‘L’-shaped targets as opposed to the
smaller ovular targets used in training. Case 6 considers samples
with varying levels of added noise.

Lastly, we reconstruct absolute EIT images from experimental
data in Case 7 using data collected with the 32 electrode ACT3
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system [37], [38] and 16 electrode KIT4 system [39], respec-
tively. The conductivity values for all targets are listed in Table I.
The archival ACT3 data used trigonometric current patterns with
maximum amplitude 0.2 mA and frequency 28.8 kHz on a tank
of radius 150 mm, with 32 equally spaced electrodes of width
25 mm and saline height 16 mm. The KIT4 data used adjacent
current patterns with amplitude 3 mA at current frequency
10 kHz on 16 approximately equally spaced electrodes. The
circular tank had a radius of 140 mm, with electrodes of width
25 mm, and had two targets a large resistor (0.067 S/m) and
small conductor (0.305 S/m) sitting in a saline bath 0.135 S/m of
height 45 mm. The chest shaped tank had perimeter 1020 mm,
electrodes of width 20 mm, and contained conductive (pink)
agar targets of conductivity 0.323 S/m and resistive (white) agar
targets of conductivity 0.061 S/m in a saline bath of 0.135 S/m
filled to a height of approximately 47 mm. See [38] and [13]
for additional experimental details for the ACT3 and KIT4 data,
respectively.

Finally, an important piece of modeling the forward problem
is estimating the contact impedance between the electrodes
and the surface of the domain. For all of the simulated cases,
the contact impedance at each electrode was selected from
N(5μΩm, 0.5μΩm) when computing the measured voltage.
Then, for all reconstructions, including the experimental test
cases, the contact impedance was assumed to be the mean.
Note that a device/experiment specific tuning of the contact
impedance values for each case could yield improved results.
Here we choose to forgo such tuning to emphasize the general-
izability of the GCNM.

B. Comparison Methods

We compare the learned GCNM results to the classical vari-
ational LM and TV approaches as well as a Graph Residual
Network (GResNet). For the LM and TV algorithms, the regu-
larization parameters, λLM = 10 for LM and λTV = 0.005 and
γ = 1e−8 for TV, were chosen empirically as those which
attained a minimum mean squared error (MSE) in conductivity
for a subset of the training data. These remained constant except
where specified in Case 7. Additionally, a line search was
implemented in the classical methods to select the step length
in the direction δσ that minimizes the objective function (7).
Iteration of the classical methods and the GCNM was stopped
with σrec = σk if the objective function failed to decrease on
the following 3 iterations.

1) A Graph Convolutional Residual Network: The most
computationally expensive step in each iteration of the GCNM
for EIT is computing the Jacobian of the forward problem J(σ)
used in the Newton-type update δσ. To show the importance
of including this model information, the GCNM will also be
compared to a GResNet of about the same size. As is common
in other residual networks, the GResNet used in this work and
shown in Fig. 1 used skip connections to add the input and output
of each block. See [40] for a discussion on skip connections and
graph residual network size.

The first iteration of the LM algorithm (without the use of
a line search) with λLM = 0.1 was used as input to the GRes-
Net with similarly structured blocks as the GCNM. In total,
five blocks with the skip connections were used in series to
compute the final reconstruction, σrec. To be clear, the main
difference between the GResNet and the GCNM, is the lack
of new information being introduced at each block and can be
understood as an ablation study for the model information. The
GCNM is a model-based iterative method while the GResNet
is a post-processing network. Without the need to compute the
updates at each iteration, the GResNet is trained end-to-end.

C. Training Details for GCNM and GResNet

The same set of data was used to train both learned methods.
For the GCNM, we computed the updates δσ following the LM
algorithm (12) with λLM = 0.1. Each block was then trained
minimizing the iterate-wise loss function (2) using mini-batches
of 10 samples and the Adam optimization method [41] as it is
implemented in PyTorch (version 1.7.1). An initial learning rate
of 2 · 10−3 was used. Lastly, training was only stopped when
the validation loss failed to decrease for 200 epochs, and the
trainable parameters that resulted in the minimum validation
loss were saved. No constraints on the trainable parameters were
used. Training the GCNM with 10 blocks took approximately
12 hours. Training of the blocks was done on a NVIDIA Titan V
GPU while simulating the forward problem and computing δσ
were performed on the CPU. Although a system of 10 blocks
was trained, the reconstruction was chosen as σrec = σk when
the objective function (7) failed to decrease in the following
three iterations or as the output of the final block σrec = σkmax

if the first criterion was not met. Accompanying code for this
publication can be found on GitHub.1

The training for GResNet used the same sized mini-batches,
optimizer, and stopping criteria as for training the GCNM net-
works, and was trained end-to-end in about 6 hours, including
the time to solve the forward problem and compute δσ0, on
the same hardware. Fig. 3 displays the training and validation
losses at the epoch with the minimum validation loss for each
of the 10 blocks in the GCNM and the GResNet as a whole. The
losses for the GResNet are shown at Network 0 on the horizontal
axis because only one Newton-type update is used, the same as
block 0 of the GCNM. The GResNet is not able to achieve a
smaller validation loss than the first iteration of GCNM which
indicates that a deeper residual network structure with GCN
blocks did not perform well and may have difficulties to capture
the underlying structures for the EIT reconstruction problem.

D. Metrics

As there is no gold-standard metric for EIT images, we include
the following metrics to provide information on the quality of
the reconstructed conductivity: MSEσ , dynamic range

DR =
max(σk)−min(σk)

max(σtrue)−min(σtrue)
× 100%,

1[Online]. Available: https://github.com/wherzberg/Graph-Convolutional-
Newton-type-Method
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TABLE III
ERROR METRICS FOR CASES 1-5. REPORTED METRICS ARE AVERAGES OVER

100 SAMPLES EXCEPT FOR CASE 5, WHICH USED 10 SAMPLES. BOLD TABLE

ENTRIES REPRESENT BEST IN CASE SCORES

�1 relative conductivity error

RE�1
σk

=
‖σk − σ‖1

‖σ‖1
,

as well as the �2 relative voltage error

RE�2
V (σk) =

‖U(σk)− V ‖2
‖V ‖2

. (14)

To compute the metrics for the test Cases 1-4, averages over 100
simulated samples will be reported. Case 5 uses an average over
only 10 samples due to the lack of deviation in inclusion location
and size of the ‘L-shaped’ targets. Case 6 uses an average over
100 samples at each noise level. For the experimental data, the
metrics each correspond to a single sample of data.

V. RESULTS

We now present the results for simulated in and out of dis-
tribution data, as well as experimental data that is also out of
distribution as the GCNM network and GResNet network were
not optimized for the specific EIT devices, target types, contact
impedances, current patterns (ACT3), or number of electrodes
(KIT4).

A. Simulated Results

Fig. 4 compares the results of the new GCNM against GRes-
Net, LM, and TV for two samples consistent with, but not used
in, the training or validation data. The initialization as well
as the next two iterations of GCNM are shown in addition to
the output GCNM image chosen by the stopping criterion. The
number in the top right of each image denotes the iterate chosen
by the stopping criterion for each iterative method. Note that
the GCNM outperforms the other methods in visual sharpness
as the only method to clearly separate all four, and all three,
targets for Samples A, and B, respectively. Table III shows
that the GCNM required the lowest number of iteration on

average and achieved the lowest conductivity errors MSEσ

and RE�1
σ of the iterative schemes. As expected, the classical

methods LM and TV both achieved lower relative voltage errors
RE�2

V as they minimize over the voltage error but both required
more than 15 iterations, on average, with the LM averaging
the full 20 allowed. It is not unexpected that the GCNM and
GResNet did not achieve the lowest relative voltage error as
the networks were optimized to reduce the MSE in the con-
ductivity rather than the voltage data. The TV method achieved
the best dynamic range, closely followed by the GCNM. The
GResNet provided significantly improved reconstructions over
the initialization in a single application but often overestimated
the dynamic range as can be seen in sample B of Fig. 4. The
output from the GResNet looks similar to the first iteration
of the GCNM except with more artefacts, especially near the
boundary. Note that the red and black colors indicate pixels
that are at least ±20% below and above the true conductivity
range.

Next, Fig. 5 presents results of the methods on out of distribu-
tion data for Cases 2-4; metrics are presented in Table III. Begin-
ning with Case 2, the chest shaped domain, again the GCNM and
TV produce the sharpest reconstructions with TV outperforming
the other methods in all but the relative voltage error (LM),
but requiring an average of 15.8 iterations. In Sample B, only
the GCNM and GResNet were able to clearly separate all four
targets. By the metrics, the GCNM performed second-best in
MSEσ , RE�1

σ and DR in an average of 4.4 iterations. Recall
that the learned networks were optimized for only data coming
from a circular domain. This generalizability stems directly from
the translation invariance of convolutions and nicely illustrates
the capabilities of the network to handle a mesh that it was
not trained on. This holds promise for clinical imaging settings
where domain shapes would be inconsistent from patient to pa-
tient. In Case 3, for which the electrode locations are incorrectly
modeled, visually the results are similar to that of Case 2 with
the GCNM and GResNet again obtaining clearly identifiable
separated targets requiring an average of 3.9 iterations and a
single application, respectively, and the GCNM obtaining the
best dynamic range and second-best RE�1

σ . The traditional LM
and TV methods slightly outperformed the learned methods in
MSEσ and RE�2

V again requiring over 16 iterations on average.
In Case 4 we reconstruct assuming an ovular domain instead

of the true chest shaped domain. Typically, mis-modelling of
the domain for absolute EIT results in large artefacts near
the boundary of the domain where the mis-modeling has oc-
curred. Here we see major artefacts around the boundary in
the GResNet and LM reconstructions. The GCNM contains
boundary artefacts as well, but the effect is less pronounced.
While Fig. 5 shows that none of the methods are able to resolve
all the targets for these samples, the GCNM appears the most
stable followed by GResNet. The LM method resolves some
but not all of the targets but suffers from additional artefacts in
the center. The TV reconstructions are dominated by domain
mismatch modeling errors at the electrodes resulting in very
low contrast, non-separated, reconstructions in the center of the
images. Large magnitude errors in pixels at the boundary of
the domain led to large dynamic range values that are reflected
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TABLE IV
METRICS FOR VARYING THE NOISE LEVEL AND ADJUSTING λLM. THE

METHOD “GCNM” USED λ = 0.1 FOR COMPUTING δσ (SAME AS TRAINING)
WHILE “GCNM*” USED λ = 5

Fig. 6. Results for Case 5: An L-shaped out of distribution inclusion.

in Table IV with an average of 444.7%. By the metrics, the
GCNM outperformed all methods in an average of just one
iteration, except for the relative voltage error. As the domain
model is such a poor match, we cannot expect the iterates to
minimize the objective function. To overcome this, one could
consider different stopping criteria for GCNM. The LM method
preformed second-best according to the metrics. We point out
that Cases 3 and 4 are particularly important points of study
for EIT where it is unlikely to precisely know the electrode
locations, and a patient breathing, or moving, changes their
location as well as the domain shape. The framework presented
in this work naturally extends to difference EIT imaging, where
such mismatches would be less pronounced since two frames of
EIT measurements are used to instead reconstruct the change in
conductivity.

Fig. 6 explores Case 5 where the target inclusion is an ‘L,’
a notoriously challenging target for EIT [42]. Recall that the
training data was only elliptical inclusions and thus this target
was quite different than those to which the network was exposed
during training. Nonetheless, each method produces visually
recognizable ‘L’ shaped targets. The GResNet image contains
significant fluctuations at the domain boundary, as does LM.
The GCNM contains a low conductivity artefact near the inner
corner of the ‘L,’ as does the TV image, but still resulted in the
sharpest corner reconstruction and best metrics (see Table III)
aside from the voltage error.

Fig. 7 compares conductivity reconstructions for varying
levels of noise in the simulated voltage data corresponding to
Case 6. Recall that the network was trained with 0.5% noise

Fig. 7. Results for Case 6: Varying the noise level. Note that samples with
0.5% noise were used during training.

Fig. 8. Case 6: GCNM reconstructions for two representative samples with
varying levels of added noise shown with two different values for the regular-
ization parameter λLM in (12). Note that the parameter was only changed when
testing; all training was done with λ = 0.1.

(51 dB SNR). While all the methods performed admirably on
this test, the GCNM was the only method able to separate the
three targets clearly, up through 1% noise (45 dB SNR), whereas
the other methods blurred the two resistive objects.

It should be noted that 2% noise (39 dB SNR) is an extreme
amount of noise for EIT reconstruction with systems capable of
SNR of 65 dB, comparable to 0.1% noise [20], or even 96 dB
for the ACT systems [43]. Nevertheless, the GCNM images are
not corrupted by errors, and as shown in Fig. 8, adjusting the
reconstruction parameter λLM in the update δσ in (12) resulted
in even fewer artefacts and more clearly defined targets. In Fig. 8
and Table IV, GCNM is used to denote tests where λLM = 0.1
(same as during training) and GCNM* is used to denote tests
where λLM = 5.

Authorized licensed use limited to: Marquette University. Downloaded on January 10,2022 at 17:05:49 UTC from IEEE Xplore.  Restrictions apply. 



1350 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 9. Results for Case 7: Experimental Data. Column 1 contains the experi-
mental setups. The ACT3 sample is shown with a colorbar range of [0, 1] while
the KIT4 samples are shown with colorbar ranges of +/- 20% of the true range.

Table IV demonstrates that the GCNMs outperformed the
other methods for all non-voltage metrics except the dynamic
range in the 1% noise case where TV was superior and GCNM*
was second. The GResNet, in just one iteration, performed
well across noise levels while the GCNM and GCNM* used
approximately 5 iterations and TV averaged more than 15 (for
ν > 0). The LM method ranked in the top two best for RE�2

V but
fell behind in the remaining metrics, as well as visual sharpness
requiring, on average, the full 20 iterations.

Note that above 1.0% noise, using a larger regularization
parameter λLM = 5 resulted in reconstructions with lower MSE
and relative �1 error with GCNM* vs GCNM. This is a key
feature of the proposed GCNM as a model-based approach,
that even after training a network with a fixed regularization
parameter one can adjust and control the performance if noise
levels and distributions change, offering greater flexibility and
control.

B. Experimental Results

We considered five data sets from two different EIT machines
using three tanks, the 32-electrode ACT3 system from Rensse-
laer Polytechnic Institute and the 16-electrode KIT4 system from
the University of Eastern Finland. Results are shown in Fig. 9.
Recall that for all reconstruction methods these are absolute EIT
images, not difference images, and thus they are notoriously
challenging to obtain without a careful tuning of the forward
model to the specific EIT machine hardware. Here, the forward
model was not tuned to the respective EIT machines and the
same contact impedance was used for all electrodes, the mean
of those used in the training. This choice was made to test the
generalizability of the network.

TABLE V
TABLE OF METRICS FOR EACH OF THE EXPERIMENTAL SAMPLES FROM ACT3

AND KIT4

As the noise distributions and parameter ranges are different
for the experimental data when compared to the training data,
it is natural that the regularization parameters would need to
be tuned for all methods. For the ACT3 reconstructions, we set
λLM = 10 for the GCNM and GResNet, λLM = 100 for the LM
algorithm, and λTV = 0.02 for the TV method. All of the KIT4
samples used λLM = 100 for the GCNM and GResNet, λLM =
50 for the LM algorithm, and λTV = 0.02 for the TV method.
The TV methods for both experimental setups used γ = 1e−8,
the same as was used for the simulated data. Here it is important
to emphasize again that the networks of the learned methods
were not retrained with these new regularization parameters.
The ability to adjust the regularization parameters used in the
update terms after training adds to the flexibility of the GCNM
and GResNet. To compute the MSEσ , RE�1

σ and RE�2
V metrics,

a simulated truth image was created using the photographs from
the experiments and the measured conductivity values reported
for the agar targets and saline. Results are presented in Table V.
Note that the LM and TV methods required all 20 iterations
whereas the GCNM ranged from 3 to 6 iterations across samples.

For the ACT3 data, each reconstruction method recovered
the heart and lungs’ shapes but failed to completely separate
the large resistive lungs. The GCNM and TV methods produced
the most distinct target boundaries and the lowest MSEσ but
overestimated the dynamic range. The GCNM obtained the
lowest relative �1 error RE�1

σ and required 3 iterations. The
GResNet had the least distinct targets visually, significantly
underestimating the conductivity of the heart, but the best DR.
Similarly to the simulated data cases, the LM and TV methods
outperformed the learned methods in relative voltage errorREV

requiring 20 iterations each.
The background conductivity in the KIT4 data was 0.135 S/m

whereas the training, testing, and ACT3 data was in the range
[0.40, 0.43] S/m. For the learned methods, to bring the input
data into scale for the trained networks, the network inputs σk
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and δσk were scaled up by a factor of 3 and the outputs σk+1

were scaled back down by a factor of 3; see Fig. 9.
Beginning with the circular tank, both targets were well

located by all the methods for the KIT4-A data. The GResNet
and GCNM obtained the best MSEσ , RE�1

σ , and DR. There
are obvious artefacts present in the bottom right corner of the
tank for the LM and TV images. More broadly, for all of the
KIT4 reconstructions, all methods produced reconstructions that
contain an artefact in that region suggesting a poor matching
of the forward model and/or contact impedance in that region.
A more device-specific tuning of the forward solver to the
experimental KIT4 device and contact impedances may improve
the results.

Next, for the KIT4-B data on the chest domain, the two
resistive lungs and conductive heart are visible for all methods,
each containing slightly different visual artefacts. The GResNet
obtained the lowest MSEσ and RE�1

σ and the GCNM the best
dynamic range. The LM reconstruction contained the least dis-
tinct targets. Sample KIT4-C contained a conductive portion
in the bottom left (viewer’s) lung. The LM and TV method
significantly overestimated that portion as can be seen by the
black pixels in Fig. 9, but, as usual, achieved the lowest relative
voltage error RE�2

V . The GResNet achieved the best MSEσ and
RE�1

σ but the top of the viewer’s left lung is not clearly visible
or defined. The GCNM overestimated the size of the conductive
portion of the lung but obtained the second best MSEσ , RE�1

σ

and the best DR. Lastly, reconstructions for sample KIT4-D from
the GCNM, LM, and TV methods all show the correct targets
with the GResNet underestimating the contrast of the viewer’s
left lung. The GCNM and GResNet outperformed the classic
methods across metrics except for the relative voltage error.
Summarizing across the KIT4 samples, the GCNM obtained
the best DR for all KIT4 samples, and routinely performed in
the top two for both MSEσ and RE�1

σ , while only requiring 3-6
iterations compared to the 20 required by the classic methods.

C. Further Discussion

The precise benefit of performing the model-based learning
on FEM meshes vs. interpolation to CNN pixel grids will be
problem-specific. The authors performed analogous test experi-
ments with the corresponding interpolations to utilize CNNs and
found results to be comparable to those of the GCN. We refer
the interested reader to [44] for an example of the interpolation
approach for model-based learning with diffuse optical tomog-
raphy. We believe the comparable performance is partially due
to the low resolution and accuracy of EIT, where interpolation
errors are minor compared to the overall reconstruction error.
In such cases, the GCN approach comes primarily with the
advantage of the flexibility to directly utilize FEM meshes.
However, we believe the GCN framework will be advantageous
in applications where geometry is important, such as imaging
or solving a problem on a surface which leads to periodicity
conditions if embedded into a 2D plane. Furthermore, a larger
payoff is likely for applications with higher resolution or higher
accuracy where an unequal mesh discretization can allow for a

FEM mesh with fewer elements than the corresponding uniform
pixel grid.

All computations were performed on the hardware described
in Section IV-C. Computational costs per sample were as fol-
lows: 2.4 seconds per iteration of GCNM, about 12.3 seconds per
iteration of LM and TV, and 4.6 seconds per reconstruction using
GResNet. Each forward solve took approximately 1.1 seconds
and each Jacobian computation approximately 1.3 seconds. We
emphasize that forward solver and the individual algorithms
were not optimized for speed in this study. Nonetheless, the
GCNM provided a significant speedup in reconstruction time by
requiring approximately five iterations (at 2.4 sec/iter) instead
of more than 15 for TV and the full 20 for LM, and without
the need to perform a line search at each iteration. Therefore,
the approximate computation time per image for GCNM was
12 seconds, the same approximate cost of a single iteration of
LM and TV, as implemented in this study. The GCNM reliably
produced images with clearly identifiable targets, and the best
or second best metrics across methods for the simulated and
experimental data considered in this work, with only a small,
general, training set used. The flexibility of the approach to
later allow the user to adjust the regularization parameter(s)
of the Newton-type method used (LM here) without retraining
the network adds generalizability. Of particular importance to
absolute EIT imaging were the incorrect domain modeling cases
(3 and 4). The apparent robustness of GCNM to such errors is
encouraging for future studies involving clinical data.

VI. CONCLUSION

We successfully introduced a novel approach to combine
optimization-based solution methods with deep learning directly
on nonuniform problem-specific solution meshes. The proposed
GCNM provides a simple, yet highly flexible, network architec-
ture that combines the current iterate σk and its Newton-type
update δσk to produce a new improved estimate. This enables
the network to leverage the information from both inputs, learn
a task-specific prior from training data, as well as improved
robustness with respect to noise and potential model mismatch.
As the domain modeling is conducted outside the network, a
network can be trained on a simplified domain such as a circle,
and learned weights can still be used later on different domain
shapes, without the need for potentially sub-optimal embeddings
to rectangular domains. This holds promise for several medical
imaging applications where training data could be simulated
on a fixed/average domain and then applied to patient-specific
models.

While we used a simple prototypical network architecture
to demonstrate the effectiveness of the model-based approach,
extensions to different architectures can be considered as well
as additional information supplied to the network. Finally, the
approach extends naturally into 3D with no major change, as
the graph structure is not limited by spatial dimensions. In terms
of the specific application, EIT is a highly ill-posed nonlinear
inverse problem and as such represents an especially challeng-
ing case study. The presented results demonstrate a promising
improvement for absolute EIT imaging given that we did not
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tune the forward solver to the experimental data taken from the
two separate machines and three tanks. Additionally, we trained
only on general ellipse inclusions and were able reconstruct
targets of different shapes. This can be attributed to the additional
information supplied by the Newton-type update. We expect
that the presented approach extends directly to, and bears great
promise for, other tomographic reconstruction problems, where
data and image are closely tied to problem specific finite element
meshes, instead of pixel/voxel grids.
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