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Abstract

Typical fMRI experiments involve analysis of only the magnitude portion of
the acquired signal to detect the functional response to an applied stimulus. How-
ever, there are potential benefits to using the fully complex-valued signal in fMRI.
Purely in terms of mathematical advantage, statistical power can be increased in
complex-valued models as opposed to magnitude-only only models simply due to the
fact that twice as many data points are included. This can be important when sample
size is small, but is less relevant with a large number of samples. Additionally, the
complex-valued model appropriately characterizes the noise across the entire range of
signal-to-noise ratio (SNR). This is generally not the case in magnitude-only models,
which tend to mischaracterize the noise distribution at low SNR. Besides the statis-
tical advantages, analysis of both magnitude and phase can be applied to potentially
enhance investigation into functional brain activity, since the physiologic informa-
tion encoded in the phase is likely to be quite different than that of the magnitude.
However, noise in the phase component of the complex-valued fMRI signal is much
more pronounced and detrimental to statistical analysis than that in the magnitude.
This complex-valued noise, its effect on complex-valued statistical modeling of the
functional response, and the development and demonstration of techniques to allevi-
ate its detrimental impact are the main themes of this dissertation. We repeatedly
demonstrate in this work that application of complex-valued models to typically pro-
cessed fMRI time series is generally impractical due to significant un-modeled signal
variance. However, we also show that by modeling and correcting for the temporal
fluctuations in the main B0 magnetic field, complex-valued time series characteristics
and statistical analysis greatly improve. We describe the theoretical development of
the model for estimating the temporally dynamic field fluctuations and characterize
its performance in simulated, phantom and human fMRI data in a variety of sit-
uations. We further develop the post-processing model by incrementally including,
along with the dynamic field correction, covariates of bulk motion and the ”nuisance”
physiologic phenomena of respiration and heart beat in the complex-valued linear re-
gression model applied to test for the presence of functional activity. It is shown that,
while the dynamic field correction easily provides the most significant benefit in terms
of noise reduction, the highest performance is obtained by including both motion and
physiologic covariates in the model along with applying the field correction. In this
case, complex-valued noise variance and temporal characteristics (including statistical
distribution and independence) are vastly improved. Finally, we demonstrate the ap-
plication of this full model in fMRI data acquired under conditions typically difficult
to analyze, which include data acquired in the presence of swallowing or chewing. In

xv



all, this work shows the obstacles that must be overcome when performing complex-
valued analysis and develops and evaluates a model with which to do so robustly. In
the process, we present further evidence of the potential benefits of complex-valued
analysis.
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Chapter 1

Introduction

Reliable utilization of the complex-valued data for analysis of functional MRI

(fMRI) time series has been the main goal of our recent work. There are a number

of theoretical advantages of complex-valued techniques beyond what the standard

magnitude-only methods can provide, but the former is essentially never applied in

practice. Over the course of our work, we have identified some of the underlying

reasons for this and developed methodology to attempt to negate them. We present

these developments in this work and demonstrate how our progress has narrowed the

gap between the theoretical potential and the reality of complex-valued fMRI.

In the first of the six chapters of this dissertation, we present the background for

the motivation for and methods for performing complex-valued fMRI. Additionally, we

review the sources and effects of noise in fMRI along with the techniques often used to

suppress them. The significant challenges facing realistically reliable complex-valued

modeling are demonstrated experimentally in chapter 2, although this is a theme of

the entire work and is emphasized throughout. This chapter also presents the model

1
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for estimation and correction of temporal variations in the bulk B0 magnetic field.

These field fluctuations have a significant impact on the acquired data, most notably

in the phase, and this technique provides the backbone for our noise and artifact

reduction processing. The following two chapters investigate the impact of complex-

valued regression with covariates of motion and physiologic phenomena (heart rate

and respiration), both with and without the dynamic field correction. These chapters

also continue to provide insight into the temporal characteristics the of complex-

valued fMRI, both as acquired and following application of these corrections. Chapter

5 demonstrates a few of the types of complex-valued analytics that can be obtained

when the data is corrected using the model developed over the previous three chapters.

These results are a strong indication that the potential applications and advantages

of complex-valued analysis of appropriately corrected data may be within reach. The

final chapter provides a summary and we discuss potential areas of future research

that would build upon the progress made so far.

1.1 Functional MRI Contrast

Traditional fMRI involves detecting signal changes, or contrast, between two or

more different states of functional stimulation. Here, we briefly discuss certain phys-

iologic correlates of brain activity and their expected impact on signal contrast, both

in the magnitude and phase.

1.1.1 BOLD

The blood oxygenation level dependent (BOLD) signal [1] is the basis for nearly

all fMRI experimentation. As its name indicates, it manifests from hemodynamic
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changes, specifically changes in blood oxygenation, that occur in response to neu-

ronal activity. When neurons increase their activity, the blood flow to and the oxygen

consumption at the active cortical site increase disproportionately, yielding a higher

blood oxygen concentration both at and downstream of the active cortex. Because

deoxyhemoglobin is paramagnetic but oxyhemoglobin is not, the presence of the for-

mer leads to an increase in the magnetic susceptibility of the blood, and vice versa.

Since the blood susceptibility is dependent on the relative concentration of deoxy-

genated and oxygenated hemoglobin, but the surrounding tissue is not, the difference

in susceptibility between the two varies with oxygenation. Precisely, the difference

in their susceptibilities decreases as oxygenation increases, resulting in a more homo-

geneous magnetic field within a voxel containing both tissue and blood vessels. The

spin system within the voxel is thus more coherent and signal intensity increases.

BOLD is typically associated with magnitude contrast, but can produce phase

contrast in certain situations as well. If a voxel contains large or coherently oriented

vessels, the magnetic field changes resulting from the reduced blood susceptibility can

be coherent enough across the voxel to produce a net phase shift [2]. Complex-valued

response modeling may be useful for differentiating different vascular morphologies

[3, 4].

1.1.2 Non-BOLD

Other types of contrast can also be used to study brain function. Among them

is arterial spin labeling (ASL), which provides blood flow measurements by using

endogenous blood tagged by an inversion pulse for contrast [5]. Magnitude-only sta-

tistical analysis is typical here as well, but complex-valued analysis could be beneficial,
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especially due to the commonly low signal-to-noise ratio (SNR) of the technique [6].

Diffusion weighted fMRI is another technique used to generate functionally related

contrast [7, 8]. Blood flow, volume and susceptibility changes can all affect the appar-

ent diffusion, and other physiologic effects, such as cell swelling, have been suggested

as possible mechanisms for functional diffusion contrast as well. The estimation of the

diffusion coefficients usually involves a fit of the magnitude data, but complex-valued

methods may prove useful for this type of technique as well [9].

The potential contrast arising directly from neuronal action potentials is an at-

tractive investigative tool because is would be a direct indication cortical activity,

opposed to traditional BOLD contrast which is a non-specific correlative effect. This

technique, termed neuronal current MRI (ncMRI), has not been proven feasible at

this time but continues to be an active area of research [10, 11, 12, 13, 14]. Mod-

els have been proposed and simulations performed that suggest that the response to

neuronal firing manifests in the magnitude and phase [15, 16, 17], indicating that

complex-valued analytical techniques may offer the best chance for detection.

1.2 Statistical Modeling of fMRI Time Series

A least squares regression model is generally used to determine the presence of

functionally related contrast [18]. As we have previously mentioned, this is typically

performed on only the signal magnitude, and is relatively straightforward. However,

the MRI signal is inherently complex-valued. Converting this signal into the magni-

tude has two detrimental consequences: (1) while noise in the real/imaginary data

is normally distributed, the noise structure in the magnitude is only normally dis-

tributed at high SNR and (2) it reduces the number of data values to be fit by half.
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Even if no significant response is expected in the phase (i.e. the signal of interest is

effectively real), fitting the complex-valued data can alleviate these issues.

Simultaneous fitting of the magnitude and phase, opposed to fitting each individu-

ally, is required to appropriately model the noise due to the fact that the noise, which

is independently additive to the real and imaginary data, is coupled when converted

to magnitude and phase. Unfortunately, the magnitude and phase have a non-linear

relationship with the acquired real and imaginary data, suggesting a non-linear least

squares approach to fitting a model. While this is possible, linear techniques are pre-

ferred. While a variety of linear models have been proposed to consider special cases

of complex-valued regression modeling, the most general that appropriately considers

the noise and allows general simultaneous modeling of both magnitude and phase is

that from Rowe [19]. Arbitrary groups of covariates may be fit to both magnitude

and phase, and maximum likelihood statistics can be computed for a range of hy-

pothesis tests. Using this type of model, (1) all the acquired data can be used in

the fit, theoretically increasing detection power, (2) noise is modeled appropriately

to account for the coupled uncertainty in magnitude and phase covariate coefficient

estimations so fits are accurate even at low SNR, and (3) contrast, or lack thereof,

can be modeled and tested for in both magnitude and phase.

A less commonly utilized technique for fMRI analysis is independent component

analysis (ICA) [20]. This is a data driven technique that separates the signal into a

specified number of independent components, one or more of which is expected to be

related to a functional response. It is advantageous in that no model need be specified,

as that model is extracted from the data itself, but disadvantageous in that the true



1.3 6

number of components in the signal cannot be known. In any case, application of

this method in the complex domain has been presented by Calhoun et al. [21], and it

could be used in lieu of a model such as that described above.

1.3 Noise in Complex-valued fMRI Time Series

In order to reliably detect the presence of a functionally related signal embedded

in an fMRI time course, the relative strength of the signal of interest to the noise

must be high enough. Additionally, models which estimate the signal in the presence

of noise assume it has certain properties, such as an independent and identically

normal distribution. Thermal sources of noise are unavoidable and have the desired

characteristics, but a variety of other “noise” components can be present in the time

series that not only reduce detection power by increasing signal variance, but often

have undesirable properties that violate model assumptions. We discuss here how two

main sources of noise, subject motion and physiologic processes such as respiration

and heart beat, induce noise in the magnitude and phase of fMRI data. The effects

of changes in bulk susceptibility, often caused by these processes, is explained as well.

Respiration can be associated with bulk head motion in certain cases, and blood

oxygenation and blood flow are modulated by the respiratory cycle as well [22]. This

in turn modulates the blood susceptibility and thus results in a respiration related

BOLD response that is strongly dependent on the phase of the respiratory cycle and

the depth of respiration [23, 24, 25]. The cardiac cycle also modulates blood flow, and

induces a pulse in the flow of blood and cerebrospinal fluid. This effect is dependent on

cardiac cycle phase during acquisition, and is typically a spatially local phenomenon,

most apparent near the sulci, ventricles and blood vessels [26]. The manifestation of
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these processes in the signal is expected to be similar to typical BOLD contrast, in

that it is dependent on the coherence of the susceptibility and flow changes with a

voxel volume. When flow or susceptibility changes coherently over voxel sized spatial

scales, as might be expected in ventricles and larger vessels, phase change is expected.

Otherwise magnitude signal change will result.

The obvious result of bulk motion occurring between the ith and jth acquisitions

is the reflection of the same bulk motion represented in the ith and jth reconstructed

volumes. An additional consequence, far more important with respect to phase noise,

is that tissues with different magnetic susceptibilities are reoriented. This causes a

change in the magnetic field, which can be quite detrimental. Besides bulk motion

within the field of view, motion outside the field of view can induce significant fluctu-

ations in the magnetic field within the imaging plane. This includes involuntary chest

wall motion associated with respiration or voluntary movement such as swallowing,

speaking or chewing [27, 28]. As a significant portion of the work in the following

chapters pertains to these fluctuations and removal of their effects, we will provide

somewhat more detailed background here.

First, we present the equation describing the signal which is acquired in MRI,

s(t) =

∫∫
ρ(x, y, t)e

(
i

{
γ

∫ t

0

(xGx(τ) + yGy(τ) + ∆B(x, y, τ)) dτ + Φ0(x, y)

})
dxdy.

(1.1)

Here ρ is the proton spin density, γ is the gyromagnetic ratio, Gx and Gy are the x

and y magnetic field gradients, ∆B is the difference in the strength of the magnetic

field from resonance, Φ0 is the initial phase of the radio frequency pulse, and s is the
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acquired signal in time. The variable t is the time elapsed since the application of

the RF excitation pulse. Here we don’t explicitly show the inherent tissue relaxation

properties, T1 and T2, which can be grouped into the ρ function for our purposes.

The important term here for our purposes is ∆B(x, y, t). We can separate it out and

express Eq. 1.1 in slightly different terms

b (x, y, t (kx, ky)) = e

(
i

{
γ

∫ t(kx,ky)

0

∆B(x, y, τ)dτ + Φ0(x, y)

})
(1.2)

s(kx, ky) =

∫∫
b (x, y, t (kx, ky)) ρ(x, y)ei2π (kxx+ kyy)dxdy (1.3)

kx = γ

∫ t

0

Gx(t)dt, ky = γ

∫ t

0

Gy(t)dt, (1.4)

where the variable t from Eq. 1.1 is now the function tkx, ky, and represents the time

between the RF pulse and acquisition of the (kx, ky) point. If we inverse Fourier

Transform both sides of Eq. 1.3 and recognize that its right hand side is equal to

the Fourier Transform of ρ multiplied by b, then we obtain the actual reconstructed

image, ρ′ = IFT{s}, in terms of the true image, ρ, convolved with the inverse Fourier

Transform of b, B.

B (x, y, f (u, v)) =

∫∫
b (x, y, t (kx, ky))e

i2π (kxx+ kyy)dxdy (1.5)

ρ′(u, v) =

∫∫
ρ(x, y)B (x, y, f (u− x, v − y)) dxdy (1.6)

Equation 1.6 represents a convolution of ρ with a kernel that varies according to points

in the reconstructed image. Each point ρ′(ui, vi) is computed by convolving ρ(x, y)
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with B(x, y, f(ui, vi). Intuitively, B provides a mapping between where points in

the true space will be mapped to in the reconstructed space due to the off-resonance.

Expressing the form of the B kernel, which is the inverse Fourier Transform of Eq. 1.2,

is relatively straightforward if we make the assumption that ∆B is time invariant

over the course of the acquisition. Ignoring the constant Φ0 term for the moment,

the assumption of time invariance reduced Eq. 1.2 to

b (x, y, t (kx, ky)) = eiγ∆B(x, y) (tp(kx, ky) + TE) (1.7)

tp = t− TE, tp(kx = 0, ky = 0) = 0, (1.8)

where the change in the timing function is made so that it is independent of the echo

time, TE. We note here that tp is a pulse sequence dependent function, and we can

use to define a pulse sequence dependent kernel in response to a unit off-resonance,

hpsq, that is dependent on this timing alone. The B kernel can then be expressed in

terms of hpsq,

hpsq(u, v) = IFT
{
eiγtp(kx, ky)

}
(1.9)

B(x, y, f(u, v)) = IFT
{
eiγ (tp(kx, ky) + TE) ∆B (x, y)

}
eiΦ0

= hpsq

(
u

∆B(x, y)
,

v

∆B(x, y)

)
ei (γ∆B (x, y)TE + Φ0). (1.10)

An important consequence of this result is that a spin at location (x, y) will accu-

mulate a phase equal to the product of the off-resonance at that point and the echo

time, independent of the pulse sequence trajectory. If ∆B is relatively constant in a
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voxel, a phase change will be observed and if it is variant over small spatial scales,

spins will destructively interfere.

In cartesian echo-planar imaging (EPI), which is the pulse sequence used in the

experimentation to follow, the timing function is tp(kx, ky) = tespky, where tesp is the

time between acquisition of the kx = 0 point in adjacent ky lines. This assumes each

ky line is acquired instantaneously, which is reasonable. The off-resonance kernel,

hepi, is then

hepi = δ

(
u, v +

γtesp∆B (x, y)

2π

)
ei (γ∆B (x, y)TE + Φ0) (1.11)

which indicates that the off-resonance causes a shift along the y direction in the image,

i.e. geometric warping, in addition to the phase accumulation. If the off-resonance

varies from image to image, the warping will vary in time as will the image phase.

Additionally, if sub-voxel gradients in ∆B fluctuate as well, it can lead to variations

in image intensity and potentially phase.

1.4 Noise Reduction in fMRI Time Series

Noise resulting from motion is generally corrected retrospectively by performing

bulk image registration of all acquired volumes to a reference, or base, volume. The

first step in the process is to estimate the motion itself. This is usually done in images

space through a least squares approach to minimizing the residual error between each

volume and the base [29], but k-space based methods have been proposed as well,

which may offer some advantages [30]. It is also not uncommon to regress the fMRI

time series using the motion parameters as nuisance covariates to remove addition
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motion correlated noise [31]. This can be an issue, of course, if motion happens to be

correlated with task.

Physiologically related noise, specifically in terms of respiratory and cardiovascu-

lar processes, is generally handled through nuisance regression of waveforms which

correlate with the response to the phenomena in the acquired signal. In order to

accomplish this, seperate monitoring of respiration and heart rate is required, using

any number of different types of equipment to do so. One of the most commonly used

methods to generate compensatory waveforms and remove the offending signal com-

ponents is RETROICOR [32]. This method involves generating a low order Fourier

series basis for functions of respiratory and cardiac cycle phase at the point of image

acquisition, fitting these to the data and removing the fitted components. This is

designed to eliminate signal that is time locked to the respiratory and cardiac phase.

More recently, other work has shown that other covariates of these processes may also

be useful, for example respiration volume per time (RVT) [23]. Investigation into the

impulse response functions associated with respiration and heart rate has also been

presented [24, 33].

It should be noted that the above mentioned techniques were designed for and are

almost exclusively used for correction of the magnitude. Some recent effort has been

made to investigate the impact of RETROICOR correction in phase data, however

[34].

The noise that results from time variability in the magnetic field, as discussed

in the previous section, is nearly never directly corrected for. Off-resonance of the

magnetic field is typically treated as static over the course of a time series, and all
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images are corrected with a single field map for the purposes of removing geometric

distortions, which improves registration to higher resolution anatomical data. Addi-

tionally, some of the corrections for motion and physiologic processes will indirectly

correct some of the effects arising from field fluctuations. If off-resonance changes

are spatially uniform, as often is the case with respect to respiration induced fluctu-

ations, the shifting of voxels as described by Eq. 1.11 will also be uniform and will

imitate bulk motion. It will also be correlated with respiration so nuisance regression

of respiratory waveforms will indirectly remove some of these effect as well. As will

be shown over the course of the remainder of this work, the effect of time variant

off-resonance is not terribly detrimental in the magnitude, but is terribly so in the

phase. Characterizing and reliably removing these effects is the topic of the following

chapter.



Chapter 2

Temporal fluctuations in the B0 magnetic

field

The topic of this chapter, which marks the beginning of the report on our main ex-

perimental findings, involves the development and implementation of a novel method

for estimating and subsequently correcting signal errors arising from temporal fluc-

tuations in the main magnetic field. The underlying motivation for undertaking this

task is an apparent underperformance of complex-valued statistical modeling of fMRI

data, specifically in this case with a complex-constant phase model. Additionally, no

existing methods were robust enough to perform the required task. After presenting

the theoretical basis for the model of the field dynamics, we present data from phan-

tom, simulated and human experimental data. In the phantom we demonstrate that

the correction can reduce the signal changes arising from intentional disturbance of

the field during the time series acquisition. Hypothetical fMRI data sets are then

simulated with and without the influence of off-resonance variations in order to com-

pare corrected data with an ideal control and to attempt to characterize the influence

13
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the field variations have on uncorrected results compared to controls. Finally, hu-

man fMRI data is acquired in subjects instructed to breathe heavily or perform jaw

motions while simultaneously performing a finger tapping functional task. Magni-

tude only and complex-valued statistics are computed and compared before and after

correction. Additionally, the signal component at the heavy breathing/jaw motion

frequency is investigated before and after correction. The field correction unquestion-

ably makes a significant difference in complex-valued analysis, which, at least using

the complex-constant phase model, is essentially useless in uncorrected data under

these conditions. The impact of correction in the magnitude is less apparent, but

simulated data suggests there may be more subtle effects.

2.1 Introduction

Experiments in functional MRI (fMRI) often involve single-shot gradient echo echo-

planar imaging (GE-EPI) pulse sequences to maximize acquisition speed and blood

oxygenation level dependent (BOLD) contrast [35]. However, inhomogeneities in the

static magnetic field can result in severe artifacts, most notably image warping and

signal loss. Correcting these errors has been a consistent field of research. In general,

this correction is a two-step process, involving estimation of the spatially dependent

main field offsets followed by image correction based on the estimated map. The field

map can be calculated in a variety of ways [36, 37, 38], often with two or more ref-

erence images acquired at different echo time (TE) values [36]. In practice, the field

offsets are assumed to be temporally invariant, justifying the correction of an entire

time series of images with a single map. Although large scale inhomogeneities are

generally constant over experimental time series, this assumption fails when consider-
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ing sensitive phase data due to the small scale changes associated with the resonance

offset caused by the breathing cycle [39, 40] and slight changes in the orientation

of tissue boundaries. The former is unavoidable in vivo, and subject movement,

whether inside or outside the field of view, can cause non-negligible changes in the

magnetic field due to reorientation of the aforementioned susceptibility profile. When

the field changes, so does the induced spatial warping, which can have significant con-

sequences. For example, this warping and its associated voxel intensity modulation

can cause less reliable bulk motion correction [41]. In addition, spatial specificity is

sacrificed as the point spread function associated with the off-resonance changes [42].

These phenomena are well known and often have non-negligible effects, most notably

additional temporal (non-white) “noise” that reduces strength and specificity of acti-

vation statistics. Accompanying phase changes can have similar detrimental impact

on complex, or phase sensitive activation models [2, 43]. In depth performance anal-

ysis of these methods and identification of their sensitivity to these potentially large

phase variations has resulted in the recognition of the potential value of correcting for

off-resonance dynamics [44]. An alternative method involves a model for magnitude

activation in complex data, and has been developed to account for phase variations

[19]. However, it can be difficult to provide valid regressors for phase, and even when

properly modeled, dynamic image warping artifacts still remain, currently making

this a less attractive solution.

Current methods to combat the problem of temporal field variations include low

resolution field mapping with a type of dual-echo single-shot EPI [45], zero-order

field offset correction using only a pair of navigator echoes [39, 46], and real-time
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magnetic field shimming based on a priori knowledge of the field changes resulting

from a regular phenomena [47]. While each of these provides certain benefits, issues

exist preventing their widespread use. Each method struggles to provide field maps

with a combination of high resolution, SNR and spatial order to be useful to correct

for commonly unpredictable and non-linear temporal field dynamics. Alternatively,

effects from certain field variations may be removable without either field measure-

ments or shimming by monitoring physiologic phenomena that influence field changes,

such as breathing rate. Signal components at the measured frequencies can then be

retrospectively accounted for [48]. This method not only requires the acquisition of

physiologic information but may remove signal of interest aliased to the frequency

of the physiologic fluctuations while failing to remove “noise” due to field changes

arising from unmonitored sources.

One of the most common methods of field map estimation involves acquiring

images at different echo times and comparing the difference in phase evolution between

the two [36]. Given two images I1 and I2, with echo times TE1 and TE2 respectively,

the general equation for the estimated resonance offset in a voxel at location (m,n),

denoted by ∆ω̂(m,n) (radians/sec), can be written as

∆ω̂(m,n) =
arg
(
I2(m,n)I∗1 (m,n)

)
(TE2 − TE1)

(2.1)

where Ii(m,n) represents the complex value of the voxel with coordinates (m,n) in

image i = 1, 2, ∗ denotes complex conjugation, and the arg operator returns the phase

angle of its argument. The signal-to-noise ratio (SNR) of ∆ω̂(m,n) is proportional

to the ratio of TE2 − TE1 (referred to as ∆TE) divided by the geometric mean
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of the standard deviation of the phase noise in the two images. Thus, increasing

the difference in echo times decreases variation in the field map, but with such an

increase, complicated phase wrapping can occur, along with an offsetting increase

in phase variance resulting from the longer TE. These issues require the echo time

difference be kept relatively short and multiple references are sometimes acquired to

achieve the necessary accuracy [37], inherently requiring more time. For these reasons,

it is not surprising that previous evaluation of methods based on Eq. 2.1 for dynamic

field mapping has not produced promising results [49]. While the work of Hutton

et al. [49] is not exactly contemporary, there is not, to our knowledge, more recent

literature which evaluates the performance of these type of dynamic field mapping

techniques. More current work has demonstrated the effectiveness of a prospective

method based on real-time shimming to compensate for dynamic field fluctuations

resulting from respiration [50]. This type of prospective method does not suffer from

the aforementioned problems, however.

The recent method of Lamberton et al. [51] also utilizes Eq. 2.1 but assumes

invariance of the RF pulse phase (and thus the initial spin phase, Φ0) from shot to

shot to alleviate the need for two unique images at each time point to calculate the

corresponding field map. Rather, because Φ0 is the same for all images, it can be used

for reference (as I1 is in Eq. 2.1) as the image phase at TE = 0. Additionally, this

method provides a maximum ∆TE without increasing the echo time of each acquired

image. However, because the static field will likely cause the phase of each image to

wrap many times over the course of TE, complicated phase unwrapping procedures

are necessary to find the correct phase accumulation in reference to the initial phase.
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In order to apply the method, an initial measurement of Φ0 is also required before

acquiring the image time series.

The method of Lamberton et al. [51] can be extended to find the difference, δω̂t,

between the resonance offset during acquisition of the tth image, ∆ωt, and the average

resonance offset during the entire series acquisition, ∆ω, rather than attempting to

directly calculate the absolute resonance offset at each time point. Further analysis

yields

δω̂t(m,n) =

arg

{
It(m,n)

N∑
j=1

I∗j (m,n)

|Ij(m,n)|

}
(TE2 − TE1)

(2.2)

for a series of N images with identical TE. This provides two significant advantages

over the method as presented by Lamberton et al. [51]. First, while ∆TE remains

TE, the phase of It will not normally differ by > 2π from the average image phase

(represented by the summation in Eq. 2.2), which removes the need for any phase

unwrapping. Second, correction for temporal variations in off-resonance (using the δω̂t

measurements) can be performed without any reference at all, as δω̂t does not depend

on Φ0. While a static effect would remain in this case, a single measurement of ∆ω

(similarly to Lamberton et al. [51]) provides the means to fully correct every image

in a series with no need to apply any phase unwrapping. The benefit of the proposed

method is mostly realized through the convenience of avoiding phase unwrapping and

the ability to correct for field dynamics in the absence of any reference. Performance

of the methods, determined by the accuracy of the measured fields, should be very

similar, except when phase is incorrectly unwrapped, as both otherwise share similar

sources of error.
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2.2 Theory

The proposed method relies on the assumption that the initial spin phase, Φ0, remains

constant throughout the acquisition of a series of images, although the value of Φ0 is

inconsequential. The validity of this assumption is a significant topic of Lamberton

et al. [51], and is well addressed in the literature. It is also true that, in general,

any multi-shot imaging modality requires RF pulse consistency from shot to shot and

as a result, Φ0 is almost always necessarily assumed to be constant through time.

Other field mapping methods making this assumption are commonly used with a

great degree of success [37, 52], further illustrating its practical validity.

Let the value of Φ0 represent the phase of an image, I0, acquired with TE = 0.

In other words, Φ0(m,n) = arg
(
I0(m,n)

)
, where I0(m,n) is the complex value of

the voxel with coordinates (m,n). The value of Φ0 is assumed to be unknown, but

constant from acquisition to acquisition in a series of N images, with each image in

the series having echo time TE. Then from Eq. 2.1, the estimated magnetic field

offset in the voxel with coordinates (m,n) in the tth image, represented as ∆ω̂t(m,n)

(radians/sec) can be written as

∆ω̂t(m,n) =
arg
(
It(m,n)I∗0 (m,n)

)
TE

(2.3)

The average estimated magnetic field offset present during the entire series acquisition

in the voxel with coordinates (m,n), represented as ∆ω̂(m,n), (in radians/sec) can
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be similarly written as

∆ω̂(m,n) =
arg
(
I(m,n)I∗0 (m,n)

)
TE

(2.4a)

I(m,n) =
N∑
j=1

Ij(m,n)

|Ij(m,n)|
(2.4b)

Given the unknown nature of I0, neither Eq. 2.3 nor Eq. 2.4a can be calculated

directly. However, by writing ∆ω̂t(m,n) in terms of ∆ω̂(m,n) plus some offset,

δω̂t(m,n),

∆ω̂t(m,n) = ∆ω̂(m,n) + δω̂t(m,n) (2.5)

it is possible to solve for δω̂t(m,n) by combining Eqs. 2.3 through 2.5, and rearranging

the variables to arrive at Eq. 2.2, which does not directly depend on I0(m,n).

2.3 Materials and Methods

2.3.1 Simulation

A computer simulation was designed in Matlab (The Mathworks, Natick, MA, USA)

to test the potential benefits of the time varying magnetic field correction on an fMRI

series. First, gradient waveforms were generated for the given imaging parameters

(GE-EPI, 96 × 96 matrix, TE = 42.7 ms, BW = 125 kHz, echo spacing= 0.708

ms, and FOV= 24 cm). Maps of spin density, transverse relaxation time and main

magnetic field offset, denoted as ρ(x, y), T ∗2 (x, y) and ∆B0(x, y) respectively, were

provided as input, and the k-space signal based on these three input maps and the
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generated gradient waveforms, Gx and Gy, was output according to

S(m∆t) =

Nx
2
−1∑

q=−Nx
2

Ny
2
−1∑

r=
−Ny

2

ρ(q∆x, r∆y)e

(
m∆t

T ∗2 (q∆x, r∆y)

)

× e
iγ∆t

(
m∑
w=0

(
Gx(w∆t)q∆x+Gy(w∆t)r∆y

)
+m∆B(q∆x, r∆y)

)
(2.6)

where Nx and Ny are the number of discrete points in ρ along the x and y dimensions.

After acquisition of S, the samples are placed accordingly in the 2D k-space matrix

for image reconstruction. In Eq. 2.6, ∆t is not necessarily the sampling interval, but is

the resolution with which the summation in the exponential is computed. The values

of m at which samples are actually recorded are not necessarily sequential, and will

be determined by the gradient sequence and other parameters. As ∆x, ∆y and ∆t

approach zero, the summations become better estimations of the integral representing

the theoretical signal, but computation time grows quickly. With larger values, some

error is induced through inability to properly account for k-space truncation and

poorer modeling of the continuous image acquisition process.

Two different series of 276 images were created in this way using the same, tempo-

rally constant, ρ(x, y) map for each series. In each series, identical magnitude and/or

phase activations were simulated by locally modulating the value of T ∗2 for magni-

tude change and ∆B0 for phase change in a block design pattern (20 repetitions rest

followed by 16 epochs of 8 repetitions active and 8 repetitions rest). Six different

combinations of activation types and sizes were considered, indicated by pairs of T ∗2
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Figure 2.1: Spin density map, ρ, used for simulation (a). Regions of simulated ac-
tivation are represented by black squares. The global, static field offset applied in
simulation and the variance of the simulated dynamic field used in simulation are
shown in b and c, respectively.

and ∆B0 changes in the first two columns of Table 2.1. Each combination was sim-

ulated in 6 different 3 voxel by 3 voxel regions, shown in Fig. 2.1a. The use of the

various locations is directed at averaging out the influence of differences in spatial

contrast, size of field variations, and field gradients in the field offset.

The first of the two series (series A) was simulated under the influence of an

additional global, static, ∆B0 field, which is shown in Fig. 2.1b. The second series

(series B) was simulated under the influence of a global, time variant, δB0 field

in addition to the aforementioned static field, so that the total field present was

∆B0 + δB0. The variance of the time variant field is shown in Fig. 2.1c. All fields

used for simulation were taken from fields modeled directly from experimental data

of a human subject performing a deep breathing task at 0.167 Hz. The initial value

of the δB0 map for series B was equal to zero so that the initial field offset was
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identical for series A and B and equal to ∆B0. In order to measure this initial field

inhomogeneity, an additional 10 images were simulated using this initial ∆B0 time

point only, and images 2, 4, 6, 8 and 10 had the TE increased to 47.2 ms.

The only difference between series A and series B is the time varying portion of the

magnetic field offset. As such, series A serves as a control, allowing for determination

of the effect of the time varying field as well as the quality of the correction.

Series A was corrected for static field inhomogeneities using an initial measurement

of the field offset, ∆ω̂1, acquired with the first 5 pairs of simulated images using

Eq. 2.1. Series B was corrected in two different ways, firstly identically to the static

correction for series A, and secondly using a dynamic field correction, using maps of

δω̂i calculated with Eq. 2.6. Subsequently, ∆ω̂i was calculated for images 11 through

286 (the first 10 images were discarded after being used to find ∆ω̂i as described

above), and a fourth order polynomial was fit to each ∆ω̂i map, helping to eliminate

spatially varying random noise. Additionally, this process prevented the removal of

the local high spatial frequency ∆B0 modulations so that phase activations remained

in the corrected time series. As a final processing step, the polynomial field models

were allowed to smoothly fall to zero outside the object area by applying a mask over

the imaged object, which had been previously dilated and smoothed by a Gaussian

filter with FHWM of 4 voxels.

Once magnetic field estimations had been made using the proposed method, the

appropriate corrections were applied using the Simulated Phase Rewinding (SPHERE)

method [53]. In the static case, the initial ∆ω̂1 map was applied to each image, while

the ∆ω̂i map was used to correct the ith image in the dynamic case. This provided a
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direct means to evaluate the effects of dynamic correction.

Activation statistics were calculated for each corrected time series using two differ-

ent methods. The first method, most typically used, analyzes only the magnitude of

the image time series, and is thus termed the magnitude-only (MO) method [54, 55].

This was implemented with a general linear model (GLM) with regression for con-

stant and linear trends, as well as for the task reference function, which was equal

to 1 during stimulus and -1 during rest. The second method used was the complex

constant phase (CP) method [43]. This is a complex-valued linear model which mod-

els the phase as constant through time. If the phase contains time-variant signals,

overall variance is increased resulting in a decrease in the significance of detected

activity in the magnitude. This technique has been shown to be biased against vox-

els containing phase changes, and useful due to their likely association with venous

macrovasculature [2, 44]. Comparisons between the activation statistics (z-statistics)

from the different time series were made in order to gain insight into (i) how temporal

variations in ∆B0 affect the activation statistics, and (ii) the effectiveness of the dy-

namic field calculation (and subsequent correction) method in restoring the original

activation.

2.3.2 Phantom

In addition to simulations, imaging experiments were performed. First, a spherical

phantom filled with SiO2 oil was imaged to evaluate the potential of the proposed dy-

namic field mapping method to correct for the effects of a time varying magnetic field

offset in a controlled environment. The experiment was performed using a GE Signa

LX 3T scanner (General Electric, Milwaukee, WI) with a GE-EPI pulse sequence (8
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axial slices, 64 × 64 matrix, TE = 44.1 ms, TR = 1 s, flip angle= 45◦, BW = 125

kHz, echo spacing= 0.624 ms, FOV= 24 cm, slice thickness= 3.8 mm, and 276 rep-

etitions). During the acquisition of the images, perturbations in the main field were

induced by manually moving a bottle filled with water along the InferiorSuperior axis

at a rate of 0.2 Hz. These field perturbations would mimic those seen with motion

outside of the field of view, such as breathing. This is in contrast to motion within

the field of view, which would also cause field changes, but is not simulated here.

The perturbation frequency of 0.2 Hz was chosen to approximate a normal breathing

rate, but perturbation rate should not affect the results, as long as intra-acquisition

effects remain small. The peak-to-peak displacement of the bottle was approximately

20 cm, and it was brought as close to the phantom as possible without entering the

field of view. This resulted in field fluctuations on par with those measured in human

data (see Figure 2.5 for comparison).

In this case, no initial reference of an absolute field offset map was calculated, i.e.

only the maps of δω̂i were estimated and applied, as correction for δω̂i alone should

reduce effects of the temporal variations in ∆ω.

The raw estimated maps were processed in an identical fashion to that described

in section 2.3.1 and the SPHERE method of correction was used as well.

2.3.3 Human

Additionally, two separate imaging experiments were performed with a human subject

to evaluate the dynamic field map corrections in vivo in two different situations where

temporal changes in the magnetic field were likely to occur. Experiments were both

performed using the same GE 3T scanner as for the phantom experiment. A GE-
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EPI pulse sequence was used for both experiments (9 axial slices, 96 × 96 matrix,

TE = 42.8 ms, TR = 1 s, flip angle= 45◦, BW = 125 kHz, echo spacing= 0.768 ms,

FOV= 24 cm, slice thickness= 2.5 mm, and 296 repetitions). Even repetitions up to

repetition 20 had an increased TE of 47.8 ms and were used in Eq. 2.1 for calculation

of ∆ω̂1. The first 20 repetitions were subsequently discarded, leaving the last 276

repetitions for further analysis. Smaller voxel size (and thus longer TE) was used to

increase the effect of the field variations, which are smaller in these experiments than

in the phantom.

Each experiment involved a combination of two tasks. The task common to both

was visually cued bilateral finger tapping (the “functional” task), which followed a

simple block design (20 s off, 16 epochs of 8 s on, 8 s off, for 0.0625 Hz task on/off

frequency, starting at repetition 21). In the first experiment, the second task was

deep, heavy breathing at a rate of 0.167 Hz. The second experiment replaced the

heavy breathing with opening and closing of the jaw at the same rate. In each case,

the timing of the second task was cued visually along with the “functional” task cue.

The purpose of the second, “field modulating” task, was to modulate the main field

at a known rate in order to make the effects on the time series clear and to allow

more straightforward evaluation of the correction.

The experimental design provides an initial estimate of the field offset, ∆ω̂1, and

thus, both static and dynamic correction were performed in the same manner as

described for the Simulation. Again, the SPHERE method was used to apply the

correction.

Following the correction for the magnetic field offset, each corrected image series
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was motion corrected using the AFNI [29] 3dvolreg program. Motion correction

was applied to the magnitude images only, as is usually the case. Available motion

correction techniques are not optimized for complex valued data and are thus not

applied. The evaluation of such techniques, although necessary, is beyond the scope

of this manuscript.

The processing resulted in four time series for each experiment: static field cor-

rected with and without motion correction; and dynamic field corrected with and

without motion correction. Activation statistics using both the MO and CP methods

were computed in the same manner as described for the Simulation, only in this case,

the first 10 images were discarded to allow the magnetization to reach steady state

and the task reference function was delayed 4 s to account for hemodynamic delay.

Because motion correction was applied only to magnitude data, complex activation

statistics were not calculated after applying the motion correction.

2.4 Results

2.4.1 Simulation

In order to analyze the effects of the time varying magnetic field as well as the quality

of the correction method, 100 iterations of each image series were processed, each

with the addition of random, normally distributed noise added to both the real and

imaginary channels of the simulated k-space signal. The amplitude of the added

noise was such that the maximum contrast to noise ratio in the magnitude signal

was approximately 1. Because six different combinations of magnitude and/or phase

activations were used, a total of 600 iterations of each series were performed, with
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100 iterations for each of the different activation sizes in each region.

The statistics generated for Fig. 2.2 originate from images simulated with a unique

activation type from Table 2.1 in each region (iterated 100 times). The top left ROI

(Fig. 2.1a) contains the combination from the first row of Table 2.1 (no ∆B0 change)

and the regions were assigned the remaining combinations, down the rows of Table

2.1, in clockwise order. The mean values (z-statistics, beta coefficients) are computed

from 100 samples, and the power being referred to is the percentage of times a voxel

was active above a p = 0.01 unadjusted threshold.

The nearly total lack of voxels with a mean CP z-statistic above threshold (Fig. 2.2d)

as well an almost complete loss of power (Fig. 2.2f) after static correction alone is

precisely the expected result in the presence of the time variant field. Additionally,

the losses appear nearly completely recoverable after dynamic correction. The ob-

served detrimental effects, which are not accounted for by the static correction, can

be attributed to phase changes caused by the variable field, which are greatly reduced

by the dynamic corrections. Such variations will result in abnormally high complex

residuals, reducing statistical significance in voxels that have no true physiologically

related phase changes. Dynamic warping and shifting in the image from field varia-

tions can be visualized through the regression beta coefficients of the static images

(Figs. 2.2g and h). The regression attempts to model the signal changes due to these

effects, which are most apparent from elevated beta coefficients in areas of high spatial

contrast, such as the object boundaries. Again, these undesirable signal components

are largely diminished after dynamic correction.

The effect on MO activations and power (Figs. 2.2a through c) is not as clear, but
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Figure 2.3: Scatter plots of mean MO z-statistics for static correction vs. control
(a) and dynamic correction vs. control (b). Also shown, a scatter plot of mean CP
z-statistics for the dynamic correction vs. control (c). Points are color coded by the
amount of variation of the dependent variable from the control (small variation =
dark blue, large variation = red). z-statistics following dynamic correction appear
closer to the control z-statistics than those following static correction (i.e. less scatter
around a straight line in (b) than in (a)).
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comparison of the two correction methods against the control suggests that the field

variations reduce the precision and accuracy of the calculated activations, with evi-

dence provided in Figs. 2.3 and 2.4. The data displayed in these figures, as well as that

used in the following analysis, comes only from voxels within the six ROIs after ex-

panding the regions by 2 voxels on each side. The apparent tighter clustering of points

around a 45◦ line in Fig. 2.3 and narrower error distributions in Fig. 2.4 with correction

suggest that the statistics tend more often toward the control (expected) value than

without. To confirm this, concordance correlation coefficients [56] between the control

and both the static and dynamic mean MO activation z-statistics were computed to

determine the reproducibility of the true (control) activations in each, resulting in val-

ues of 0.902 (z = 1.485, p = 0.069) and 0.919 (z = 1.58, p = 0.057) respectively. High

coefficients (low p-values) suggest the presence of a one-to-one relationship between

data sets, in contrast to the Pearson correlation coefficient, which detects any linear

relationship. These results provide evidence for better reproducibility in dynamically

corrected images. Additionally, the variance of the mean MO z-statistic error (from

the control) in the static and dynamic results were σ2
stat = 0.623 and σ2

dyn = 0.512

respectively, with a hypothesis test of H0: σ
2
stat ≤ σ2

dyn vs. Ha: σ
2
stat > σ2

dyn resulting

in p = 0.0018 (F (899, 899) = 1.215). Additionally, the variances of the error in the

power are σ2
stat = 199.74 and σ2

dyn = 174.91, and the same test results in p = .0233

(F (899, 899) = 1.142). It is also important to note that t-tests for non-zero mean of

the error in all of these cases is not significant. This evidence strongly suggests that

1) on average, MO statistics in dynamically corrected data will have less variation

about the true value, and 2) with correction, the probability that voxels will be above
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Figure 2.4: Histograms of static and dynamic mean MO z-statistic error, defined as
difference from control (a), static and dynamic MO power error (b), MO and CP z-
statistic error after dynamic correction (c), and MO and CP power error after dynamic
correction (d). Voxels included in the analysis contained regions defined by expanding
the active ROIs (see Fig. 2.1a)) by 2 voxels on each side. ROI’s were expanded by
2 voxels to capture any errors in static or dynamic corrected data associated with a
shift in the area of detected activity.

the threshold chosen here will be closer to the probability of being above threshold

in the absence of any changing field.

Similar comparison can be made between the two statistical models with dynamic

correction. The dynamic and control mean CP z-statistics have a concordance corre-



2.4 34

lation coefficient of 0.911 (z = 1.53, p = 0.063), indicating reproducibility similar to

that of the MO statistics. A test of H0: σ
2
dyn,MO ≤ σ2

dyn,CP vs. Ha: σ
2
dyn,MO > σ2

dyn,CP ,

where σ2
dyn,CP and σ2

dyn,MO represent the CP and MO power error variances, does not

provide a significant result (σ2
dyn,MO = 174.91, σ2

dyn,CP = 165.00, F (899, 899) = 1.06,

p = 0.193). However, the same test with σ2
dyn,CP and σ2

dyn,MO equal to the mean CP

and MO z-statistic error variances respectively, results in p < 0.005 (σ2
dyn,MO = 0.512,

σ2
dyn,CP = 0.390, F (899, 899) = 1.312), providing evidence supporting a reduction in

statistical error variation across voxels for the CP model when used in conjunction

with the dynamic correction.

The validity of previous analysis using the F -test for difference in variance be-

tween populations relies on normally distributed and independent populations. The

distributions in Fig. 2.4 appear normally distributed and correlations between pop-

ulations were moderate (r < 0.45) in all cases, with the exception of the final test

between the mean CP and MO z-statistic error variances after dynamic correction

(r = 0.975). Correlation between populations will reduce the significance of these

tests, however the large sample sizes used will diminish the effect. To appropriately

qualify the significance of the results, the null distribution of the random variables

was verified for every test case by Monte Carlo simulation (10,000 iterations).

2.4.2 Phantom

The variance of the induced field perturbations is shown in Fig. 2.5a. The effect that

these magnetic field dynamics have on the series of phantom images can be visualized

well through the voxel power spectra. Fig. 2.6 displays the power spectrum of the

magnitude signal from a particularly affected voxel, emphasizing the large component
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Figure 2.5: Maps of the temporal variance in the estimated magnetic field during
the phantom, human data with heavy breathing, and human data with jaw motion
experiments are shown in a, b and c respectively. Maps were computed from axial
slices.

at approximately 0.2 Hz corresponding to the frequency of the field perturbations.

The voxel-wise amplitude of the power spectrum at 0.2 Hz (Figs. 2.7a and b) gives a

good indication of the effect of the time varying field in both the magnitude and the

phase through time. Two important things are made clear by these images. First,

the most affected voxels in the magnitude power spectra occur in areas of high spatial

contrast along the phase encoding direction (top to bottom), as expected. Second,

the stronger amplitude in the power spectra near the bottom of the image reveals the

origin of the applied field perturbations.

Further evidence of the effect of the temporal field perturbations is provided

through two regression analyses. The first fit a 0.2 Hz sinusoid, including regres-

sors for a constant and linear trend. The sinusoid phase was determined by the 0.2

Hz component in the image phase time course. The sinusoid regression coefficients
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Figure 2.6: Power spectra of a single voxel time series with (red) and without (blue)
correction. The same plot is shown full scale (a) and at reduced scale (b).

(Fig. 2.7c), whose values indicate the effect of the field variations on the voxel mag-

nitude, are largest in areas of high spatial contrast, in agreement with the previous

data. In the second regression the sinusoid reference was removed and the variance

of the residuals (shown in Fig. 2.7d) was used as the indicator of the size of the effect

of the changing field, with larger residuals implying larger effects. These results are

consistent with the previous evidence shown in Figures 2.7a and c.

The desired consequence of the dynamic correction is reduced signal characteristics

correlating with applied field perturbations while maintaining a similar level of noise.

This is demonstrated by reduction of the large 0.2 Hz peak in the power spectrum

(Figs. 2.6, 2.7a and 2.7b), and Fig. 2.6 shows reduction in several smaller structural

components, while the noise floor appears consistent. The results of the regression

analyses are similar. Specifically, Fig. 2.7d further suggests that no additional signal

is induced by the correction, which would increase the residuals shown here.
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Figure 2.7: Voxel-wise maps shown are amplitudes of the magnitude (row a) and
phase (row b) power spectra at 0.2 Hz, regression coefficients of a 0.2 Hz sine wave
(row c) and mean squared error of a regression fit of a constant and linear reference
(row d). Row c and row d shown with threshold of 2 and 17.5 respectively. Images
on the right and left correspond to data with and without dynamic correction respec-
tively. Dynamic field correction reduces the 0.2 Hz signal and reduces error variance
compared to the uncorrected data.
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2.4.3 Human

The temporal variance in the estimated magnetic field is shown for the heavy breath-

ing and jaw motion experiments in Figs. 2.5b and c. The activation z-statistic maps

computed for both the MO and CP models (Fig. 2.8) show recovery of CP activation

statistics after correcting for the dynamic field as suggested by simulation. At a false

discovery rate (FDR) corrected threshold for multiple comparisons [57] of p < 0.05,

practically all of the complex activation is eliminated in the static case for both exper-

iments. Also corroborating simulated results, dynamic correction has a less obvious

impact on the MO activations. Activation maps (not shown) resulting from the same

finger-tapping task with no intentional field perturbations showed similar results, al-

though the change in the complex activation was not quite as dramatic. Although

the correction appears to provide little at the provided threshold in this case, further

analyses gives evidence for a benefit of dynamic correction in the magnitude of the

image time series which could lead to more significantly improved activation statistics

for tasks with less robust active response or requiring motion nearer to the imaging

field of view.

The power in the magnitude signal at 0.167 Hz (Fig. 2.9) illustrates how the

dynamic correction reduces the effect of the time varying field. In both experiments,

the dynamic correction alone reduces the unwanted signal component. However, both

field perturbation tasks are likely accompanied by correlated head motion within the

field of view, which will not be removed by any field correction. Therefore, it’s

not surprising that the best results in both cases result from performing dynamic

field correction followed by bulk motion correction. Results of the heavy breathing
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experiment (Fig. 2.9a) suggest that field changes were relatively constant spatially,

and a very small amount of breathing related head motion occurred. The slight

improvement resulting from motion correction, indicated by reduction in the 0.167

Hz signal power, even after dynamic correction, is evidence for the presence of true

motion. However, the ability of motion correction alone to provide similar results is

likely due to spatial constancy in field variations, which would manifest as apparent

bulk motion and is thus correctable as such. With jaw motion (Fig. 2.9b), field

changes predictably had more spatial variability, preventing motion correction from

performing as well without the dynamic field correction.

A multiple regression analysis was performed as well, which fit a 0.167 Hz sinusoid

in addition to the constant, linear and finger tapping task reference functions used

for the activation models (Figs. 2.10a and b). These results are in good agreement

with the previous data, and support the same conclusions.

Finally, quality of the bulk motion correction parameters calculated by 3dvolreg

was evaluated using the root mean square (RMS) error between each volume repeti-

tion in the series and the volume used as the base for alignment. A paired t-test of

H0: µERR,stat = µ2
ERR,dyn vs. Ha: µERR,stat 6= µ2

ERR,dyn, where µERR,stat and µERR,dyn

are the mean RMS error after static and dynamic correction respectively, resulted in

p� 0.0001 (t = 6.24) in the heavy breathing experiment and p� 0.0001 (t = 12.73)

in the jaw motion experiment. This significantly supports the conclusion that dy-

namic correction improves subsequent motion correction and, predictably, benefit is

increased as the field changes become more spatially variant, i.e. the differences in

the variations over space contain higher order terms.
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2.5 Discussion

The results of our investigations consistently show how temporal changes in the mag-

netic field can largely confound statistics that rely on models of phase that do not

account for these effects. More interestingly, the strikingly positive results of dynamic

correction for complex data analysis are demonstrated with a similar consistency, and

similar benefits would be expected when using other phase sensitive statistical models

[2, 58]. Additionally, evidence suggests the dynamic correction improves the ability

to perform motion correction and can reduce temporal magnitude signal components

likely induced by temporal field variations. This is especially true in areas most

susceptible to these changes, such as areas of high spatial contrast along the phase

encoding direction. However, the data shown reveals little change in the MO acti-

vations after performing the correction. When the variation in the magnetic field

is relatively constant over space, as often results from breathing, motion correction

alone provides comparable results to the dynamic correction in the magnitude sig-

nal. However, when the field changes with significant spatial variability, bulk motion

correction alone was not able to match the performance of the dynamic field correc-

tion. In either case, however, motion correction was improved when applied after

the dynamic correction. Also, the indirect effect of bulk motion on phase cannot be

removed with bulk motion correction, but the dynamic correction accomplishes this

as well.

Better results may be achievable by utilizing more effective correction methods

than SPHERE. The inverse approaches [59, 60] have shown the ability to provide

improved intensity correction, especially in the presence of large field gradients. These
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techniques require field maps estimated in non-warped space, which is not the case for

this method, preventing their use. However, investigation into methods of applying

these or similar techniques to dynamic field mapping is underway.

This straightforward method requires no additional reference scan, specialized

pulse sequences or hardware. In addition, it can be applied to any previously acquired

GE-EPI data set where complex data is available. It is, however, only applicable

to single shot GE-EPI and can be applied retrospectively. Neglecting computation

time, the summation in Eq. 2.2, representing the average phase of all images, could be

computed from a subset, such as the first 25 images in a series, to enable pseudo-real-

time application of the corrections. Possibly the most important potential drawback

is the dependence on the temporal invariance in the phase of the radio frequency

pulse. However, nearly every multi-shot imaging method relies on this invariance to

hold true. However, extreme amounts of movement within the transmit coil can alter

its loading and thus the homogeneity of the B1 field phase. This is unlikely to occur

within the range of routine scans [51], even those requiring small amounts of head

movement.

Overall, the proposed method for measuring and subsequent correction of MRI

time series for effects of temporal dynamics in the main (static) magnetic field, which

we will refer to as TOAST (Temporal Off-resonance Alignment of Single-echo Time-

series), has shown the capability of restoring statistical power to the complex con-

stant phase fMRI activation model. Simulation results also indicate that the dynamic

correction results in more robust statistics, which more reliably represent the true un-

derlying activation. While it is difficult to directly conclude this from experimental
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data, there is clear evidence showing reduction in undesired signal components corre-

lating strongly with known temporal magnetic field variations, suggesting this to be

the case.



Chapter 3

Enhancing detection of complex-valued func-

tional activity

The work in this chapter builds upon the Temporal Off-resonance Alignment of

Single-echo Timeseries (TOAST) dynamic field correction of the previous chapter

by including nuisance regression of motion covariates in the complex-valued linear

model. We compare TOAST with nuisance regression, i.e. including covariates of

signal not-of-interest in the multiple linear regression model, as well as application of

both together with each other and with uncorrected time series. In data sets from a

human asked to breathe heavily or move their jaw while performing a functional task,

we compute and compare magnitude-only, phase-only and magnitude and phase acti-

vations using a more general complex-valued linear model than the complex-constant

phase model utilized in the preceding experimentation. This allows us to demon-

strate that the corrections not only stabilize the phase, but preserve functionally

related response in magnitude and phase. We also present time series analysis of the

complex-valued residuals of the linear model following different corrections, specifi-

46
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cally in terms of their normality and temporal independence. A simulation designed

to emulate the human fMRI data sets is also performed and identical analysis pre-

sented. Finally, we compute complex-valued activations in a more typical fMRI data

set which is not corrupted by a nuisance task such as heavy breathing. The results

of these analyses indicate that it is worthwhile to include motion covariate regression

with the TOAST correction for complex-valued analysis preprocessing. However, the

nuisance regression alone is not sufficient and is greatly outperformed by TOAST.

Correction with both methods greatly increases the strength of detected activity and

greatly improves the distribution and temporal independence of the noise. These re-

sults further indicate that complex-valued analysis is not feasible, at least not reliably,

in the uncorrected data. This is true even in the more typical fMRI dataset with no

nuisance task.

3.1 Introduction

The state of the spin system and the magnetic environment in MRI have unique

effects on the magnitude and phase portions of the complex-valued reconstructed

image. Accordingly, in a functional MRI (fMRI) time series, each signal component

may contain different information pertaining to the changing system and environment

encoded in its temporal response, which can then be used to infer certain physiology

and/or physiologic function. Analysis of only the magnitude is standard in traditional

Blood Oxygenation Level Dependent (BOLD) [35, 54] fMRI, but the potential value

of the phase signal for the study of brain function and physiology may be substantial.

For example, the hemodynamic phase response can provide useful information in

BOLD fMRI. The phase offset caused by a change in blood oxygenation, flow and/or
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volume is dependent on the vascular morphology [2, 61] much more so than is the

magnitude. The theory presented suggests that voxels containing relatively small,

randomly oriented vessels will show little phase change as opposed to voxels with

larger, more coherently oriented vessels where significant phase change is expected.

This distinction could be used to distinguish voxels more likely to contain cortical

neurons from a delocalized area containing either penetrating or pial veins draining the

active cortex [2, 44, 62]. Recent findings indicate, however, that hemodynamic phase

response occurs in areas of microvasculature as well, suggesting a bulk magnetization

effect leading to a net phase change [63]. While this could confound identification

of large vessels, it also presents an opportunity to use this response to further the

understanding of hemodynamic biophysics.

Phase may be even more useful in neuronal current MRI (ncMRI) for the direct

detection of action potentials [10]. The induced magnetic field expected from such

an event is small, but potentially large enough to noticeably disturb the system and

be detected. Simulations have shown that a larger phase than magnitude effect is

expected in ncMRI [16], and phantom studies have come to similar conclusion [64, 65].

Although an in vitro experiment showed promising results suggesting a detectable

ncMRI signal [12], at this point no robust or undeniable detections have been reported

in vivo [11, 66].

The lack of complex-valued BOLD fMRI used in practice and the lack of firm

success or failure with ncMRI can be partially attributed to phase instability, which

has been recently investigated by Hagberg et al. [67]. Their results indicate that the

presence of physiological noise tends to be more detrimental to phase than magnitude
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in terms of temporal standard deviation of phase (tSDΦ) and magnitude temporal

signal-to-noise ratio (tSNR). Although physiologic noise is certainly detrimental in

both magnitude and phase, the particularly sensitive nature of the phase to these

phenomena often renders it of little use in statistical analysis.

Using the sensitivity of the phase robustly and repeatably as an investigative tool

requires improved signal quality through reduction of the effects of noise described

above. This ideal signal would consist of the smallest independently and identically

distributed white Gaussian noise, as well as the largest evoked signal response possi-

ble. Any other structured signal confounds detection of the desired response unless

properly modeled. Identifying the ideal pulse sequence parameters and using multiple

receiver coils can help minimize noise and maximize response, while applying post-

acquisition modeling techniques can either provide direct stabilization or attempt to

compensate for nuisance signals. A recently developed dynamic magnetic field map

estimation and correction post-process [68] appears capable of compensating for or

removing signal likely caused by larger spatial scale temporal fluctuations in magnetic

field. This was shown to significantly reduce phase variance and magnitude signal

correlated with the field dynamics. By restricting the spatial variability of the es-

timated field, spatially local changes remain unaffected, only removing dynamics on

larger spatial scales.

Appropriate statistical modeling is also important for detection of functional re-

sponse. A line of research involving complex-valued regression models has been de-

scribed in the literature [19, 43, 55, 69, 70, 71, 72, 73], and each is appropriate in

certain situations. In general, these models fall into two separate categories: the mag-
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nitude and phase signals are either uncoupled, as in the case of Lai and Glover [69]

as well as in Lee et al. [70], or coupled appropriately as in Nan and Nowak [71], Rowe

and Logan [43, 55], and Rowe [19, 73]. These models are only appropriate when-

ever the phase data represents relevant information, i.e. is dependent on the state

of an input of interest. Examples of situations where phase has a relavent response

are discussed above, and results will be presented below supporting a relationship

between the phase and task performance. When used appropriately, complex-valued

regression models provide the inherent benefit of increasing statistical power simply

by using twice as many data values as a scalar alternative [72]. Inappropriate tests

with irrelevant phase data will in fact be less powerful than if phase was excluded

altogether. The complex-valued model can be designed to detect task related phase

changes in addition to task related magnitude changes [19] thereby increasing the

possible circumstances under which activation is detected for a given signal-to-noise

ratio (SNR) and contrast-to-noise ratio (CNR) [6]. Furthermore, by operating on real

and imaginary data, the potential problems with magnitude and phase distributions

at low SNR, which approach Raleigh and uniform distributions respectively [43], are

avoided. Data analysis was performed with the model from Rowe [19] in this work.

It is the most flexible, allowing separate, arbitrary design matrices for the magnitude

and phase, however it is also more computationally intensive. This computational

complexity can be spared in certain, more restricted situations. It is worth empha-

sizing that using a complex-valued approach requires an expected response reference

for both magnitude and phase, and very poorly chosen phase responses can limit

its usefulness. When this is the case, it may be appropriate to analyze only the
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magnitude data [54, 55, 72] using a general linear model (GLM). Analysis of only

the phase might also be appropriate, either with the same technique (in the absence

of wraparound), or with a more advanced angular regression model [58]. Clearly,

the statistical advantages of the joint magnitude and phase complex-valued methods

would be sacrificed.

As an alternative to using a GLM for complex-valued statistical analysis, a method

for independent component analysis (ICA) of complex-valued data has been provided

by Calhoun et al. [21]. Like all ICA techniques, the algorithm does not require

regressors a priori like the GLM, but rather generates them from the signal itself under

linear independence constraints. This provides certain advantages, most notably that

the response to input can be unknown, which is not feasible with a GLM. For the

purposes of this work, ICA is not appropriate for this precise reason. The need to

include or exclude certain regresssors such as estimated motion parameters led to the

choice of a GLM.

The work reported in Hahn et al. [68] presented the framework for the TOAST

method and showed its usefulness with regards to phase stabilization and use with

the complex constant phase statistical model [43]. The results presented here aim to

extend that work in two ways: 1) by evaluating the addition of nuisance regression us-

ing estimated motion parameters [74] to the complex-valued post-processing pipeline,

and 2) by demonstrating the potential to repeatably provide access to physiologic

information embedded in the phase of the complex-valued fMRI signal that may be

otherwise practically undetectable, rather than simply the ability to provide phase

stabilization. Specifically, the most general complex-valued statistical model of Rowe
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[19] is used to show improved detection ability in both magnitude and phase as op-

posed to simply demonstrating improved detection in magnitude assuming temporally

constant phase. This is accomplished by first demonstrating this ability in human ex-

perimental fMRI time series. Additionally, the effect of the dynamic field corrections

and nuisance regression on the magnitude and phase stability in terms of the vari-

ance, autocorrelation and distribution of the residuals after regression is presented.

This is followed by similar analysis of simulated fMRI data to provide verification of

the experimental results. The reliability shown to be provided by these techniques

will hopefully make complex-valued analysis more commonplace, and presents greater

opportunity to measure and utilize all the fMRI data acquired to investigate various

physiologic processes.

3.2 Materials and Methods

3.2.1 Data Acquisition

All experimental fMRI data was acquired using a GE Signa LX 3T scanner (General

Electric, Milwaukee, WI) using the stock quadrature head receiver coil, and functional

images were collected with a single-shot echo planar imaging (EPI) pulse sequence.

Three separate fMRI experiments were performed, and will be referred to as EXPB,

EXPJ, and EXPC. The pulse sequence parameters for each experiment are shown

in Table 3.1. The first two experiments were performed during the same scanning

session, while the third was collected at a later date with parameters that are more

representative of a typical experimental fMRI acquisition.

The human subject was scanned after providing informed consent using a protocol
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EXPB EXPJ EXPC
# Slices 9 9 9
Matrix Size 96×96 96×96 64×64
TE (ms) 42.8 42.8 26.0
TR (s) 1.0 1.0 1.0
Flip Angle 45◦ 45◦ 45◦

Bandwidth (kHz) 125 125 125
Echo Spacing (ms) 0.768 0.768 0.680
Field of View (cm) 24 24 24
Slice Thickness (mm) 2.5 2.5 3.8
Repetitions 296 296 180
# Alternating TE’sa 20 20 0
Functional Task finger tap finger tap finger tap
Nuisance Task b deep breath jaw motion none

Table 3.1: Pulse sequence parameters and tasks for each fMRI experiment.

aodd numbered images have 5 ms longer TE
btask performed at 0.167 Hz rate

approved by the Institutional Review Board (IRB). During all the experiments, the

subject performed a bilateral finger-tapping task in a block design pattern, and on/off

signaling was provided with a visual cue. For experiments EXPB and EXPJ, the block

design pattern consisted of 16 blocks of 8 seconds of stimulus and 8 seconds rest, all

following a 20 second initial rest, while EXPC had only 10 blocks of 8 seconds of

stimulus and 8 seconds rest, all following a 20 second initial rest. EXPB and EXPJ

also introduced intentionally sub-optimal conditions to emphasize the types of often

occurring phenomena that can confound statistical analysis. This was accomplished

using a secondary “nuisance” task, intended to induce an elevated yet reasonable

amount of signal instability, performed simultaneously with the finger-tapping task.

In EXPB, the same subject was instructed to breath deeply at a 0.167 Hz rate for

the duration of the experiment, and a timing reference indicating when to inhale and
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exhale was provided visually along with the finger-tapping cue. Experiment EXPJ

replaced the heavy breathing with periodic jaw movement at the same frequency.

Specifically, the subject was given the same timing cue as provided to keep breathing

consistent, but with breath in/out replaced by open/close mouth. For experiment

EXPC, the subject was asked to perform the stimulus task only, with no nuisance

task, and to remain as still as possible otherwise.

It is also important to note that for experiments EXPB and EXPJ, the TE was

lengthened by 5 ms on odd numbered repetitions during acquisition of the first 20

repetitions to provide an initial absolute magnetic field map reference, ∆ω̂0, to be

used as described below. These additional images were discarded before statistical

activation analysis. This was not done for EXPC.

The results to follow are focused on analysis of EXPB and EXPJ to provide con-

sistency of sequence parameters and experimental design (other than the nuisance

task) across the data from which conclusions may be drawn. However, it is worth-

while to similarly investigate a situation representing more typical fMRI experimental

conditions, and this purpose is served by EXPC. The results of this analysis are left

for the Discussion section of this document and are thus considered for the purposes

of discussion only.

3.2.2 Reconstruction and Dynamic Magnetic Field Correction

All acquired image data were reconstructed offline from raw GE p-files. Data process-

ing required for image reconstruction and correction of magnetic field dynamics was

done with a custom program written in C and designed in-house. The process flow

involved image generation from k-space by inverse Fourier transform, Nyquist ghost
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removal [46], estimation of the dynamic field using Temporal Off-resonance Align-

ment of Single-echo Timeseries (TOAST) [68], and finally correction of the images

with the calculated field maps.

The method for estimating the main magnetic field offset at each time point t,

∆ω̂t, from time variant portion of the main magnetic field off-resonance, δω̂t, and

an initial absolute reference, ∆ω̂0, is described by Hahn et al. [68], and is applicable

to single-shot gradient echo EPI (GE-EPI) pulse sequences. The calculation can be

written as

∆ω̂t =

arg

{
It

N−1∑
k=1

I∗k
|Ik|

}
− arg

{
I0

N−1∑
j=1

I∗j
|Ij|

}
TE

+ ∆ω̂0 (3.1)

for a series of N images where It is the reconstructed complex-valued image at time

t, TE is the echo time, ∗ denotes complex conjugation and the arg operator returns

the phase angle of its argument. It is worth noting that ∆ω̂0 is not required to correct

the field dynamics, but without it, absolute field correction is not possible and thus

registration of the functional data to T1 weighted anatomical images is not reliable.

The raw field maps were processed to reduce noise, control non-activation related

high spatial frequency information captured by the field map and reduce estimation

artifacts at the image boundaries before being applied in the correction. This was

accomplished by using a locally weighted least squares regression [75]. The first step in

this process was to censor voxels to be used in the fitting procedure. A binary mask of

voxels above 7% of the maximum voxel magnitude was generated, representing voxels

within the brain. Voxels well outside the brain were selected by dilating the original

mask by 10 voxels and then inverting it. These voxels had the value of the estimated



3.2 56

field (originally only noise) set to zero. This caused the fit of the raw estimated field

to fall to zero outside the brain. The voxels not contained within either of these two

masks were censored and not used in the fitting procedure.

The next step involved moving voxel by voxel over the entire image and fitting a

weighted two-dimensional polynomial using the 20% of all non-censored voxels which

are closest (by Euclidean distance) to the current voxel. After selecting the closest

20% of voxels, a tri-cube weight function is used to weight each point according to

its distance from the current point. The weight for the jth point, wj, is found using

wj =

(
1−

(
dj
dmax

)3
)3

, (3.2)

where dj is the Euclidean distance between the current voxel and the jth voxel and

dmax is the maximum Euclidean distance between the current voxel and a voxel within

the closest 20% of non-censored voxels. The two-dimensional polynomial coefficients

were fit using weighted least squares according to

P =
(
XTWX

)−1
XTWY (3.3a)

xj =
[
1 dx,j d

2
x,j dy,j d

2
y,j

]
. (3.3b)

The jth row of X is xj, and dx,j and dy,j are the distances from the current voxel

in the x-direction and y-direction of the the jth voxel, respectively. W is a diagonal

matrix, the jth diagonal element of which is wj from Eq. 3.2. P is a 5-element vector

containing the polynomial coefficients.

Once the coefficients for the fit were computed at a specific point, the value of
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the processed estimated field at that point was calculated. It should be noted that

the estimated value of the voxel of interest is simply the first element of P , because

the distance from itself is clearly zero in each direction (i.e. designed to be located

at position x = y = 0).

Once this processing has been carried out, the field maps were applied using the

one-dimensional (phase-encoding direction) Simulated Phase Rewinding (SPHERE)

[53] correction method to remove their effects from the original images.

As a final processing step, the angular mean [58] of each voxel time series following

the dynamic field correction was subtracted out to prevent phase wrapping within

the imaged object. No voxels inside the object drifted more than 2π radians over the

length of the experiment, especially after being corrected for the field dynamics, and

zeroing the mean was sufficient in all cases to prevent wraparound in voxels within

the head.

3.2.3 Simulation

Simulations were performed to supplement and verify the results obtained from the

human fMRI experiments described above. The simulator is designed to emulate

the acquisition of k-space as would occur in an actual scan session. Generation of

a single image (slice) requires two conceptually separate configuration specifications.

First, certain properties of both the object to be “scanned” and the magnetic envi-

ronment within the space occupied by the object must be provided. These include 2-

dimensional spatial maps of spin density, ρ(x, y), tissue transverse relaxation T ∗2 (x, y),

and the magnetic field offset from resonance (resonance defined as 3.0 T), ∆B(x, y).

The second configuration concerns the scanning parameters for the k-space acquisi-
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tion itself (limited to GE-EPI), which include echo time, field of view, image matrix

size and sampling bandwidth. These parameters provide the necessary information

for the simulator to create x and y gradient waveforms (150 mT/m/s peak slew rate,

40 mT/m peak amplitude), Gx and Gy, emulating those which would be generated

by an actual scanner given the specified input. Finally, sampling times, m(kx,ky)∆t,

are associated with each sampled k-space point and the “acquired” signal for the jth

image in a time series, Sj, is produced according to

Sj(m∆t) =

Nx
2
−1∑

q=−Nx
2

Ny
2
−1∑

r=
−Ny

2

{
ρj(q∆x, r∆y)e

(
−m∆t

T∗
2,j

(q∆x,r∆y)

)

× eiγ∆t(
∑m

w=0{Gx(w∆t)q∆x+Gy(w∆t)r∆y}+m∆Bj(q∆x,r∆y))

}
. (3.4)

In the above equation, ∆x and ∆y are the spatial dimensions represented by

a single point in the Nx × Ny point input parameter maps ρ, T ∗2 , and ∆B. The

simulations presented in this work used ∆x = ∆y = 468.75 µm and Nx = Ny = 512.

Note that these do not represent the spatial resolution and matrix size of the images

reconstructed from the simulated data. Images were reconstructed at much lower

resolution and matrix size (matching the of acquired data with 96 × 96 matrix size

and 2.5 mm isotropic voxels). The higher resolution of the input parameter maps

simply provides a more accurate simulation of the sub-voxel effects of motion and

magnetic field gradients. The variable ∆t represents the timing resolution of the

gradient waveforms (not the sampling rate). The value of ∆t can be any divisor

of the sample rate, and the smaller its value, the closer the gradient sum over m
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approximates the continuous integral over time m∆t (0.1 µs used here).

Three separate series of 296 (0 ≤ j < 296) single-slice images were simulated

containing areas of locally induced temporal signal change designed to mimic a func-

tional response, and will be referred to as SIMB, SIMJ and SIMC. The SIMB and

SIMJ series were created using a temporally variant ∆B field and simulated motion

in an attempt to emulate similar effects in EXPB and EXPJ, while the SIMC series

contained neither and is intended to serve as a control.

The ρ(x, y) parameter map, shown in Figure 3.1a, was the same for all three series,

and was created using a slice from the reconstructed images from EXPB after it had

been corrected for magnetic field inhomegeneity. The magnitude of the original image

was sinc interpolated to dimensions of 512×512, and then masked to zero everywhere

outside of the brain. The simulated functional responses, also identical in each, were

induced by increasing the value of T ∗2 and either increasing or decreasing the value of

∆B during task to elicit magnitude and phase changes, respectively. The variations

were applied in a block design pattern identical to that used for the finger-tapping task

in EXPB and EXPJ. The map of ρ and the locations containing these local variations

are shown in Figure 3.1b, and each active area is a 13×13 square, measuring 6.1 mm

on a side. The values of T ∗2 and the portion of ∆B associated with local activity at

each location are shown for task “off” and task “on” periods in Table 3.2. During

task “off” periods and everywhere outside of the active locations, T ∗2 is equal to 35

ms and the local ∆B equal 0.

The SIMB and SIMJ series were generated with simulated bulk motion, as previ-

ously mentioned. The amount of motion to apply was determined directly from the
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Figure 3.1: The ρ map used as input to the simulation (a). The same map is shown
in (b), overlaid by the locations where activation was simulated in either magnitude,
phase or both. The type and size of the simulated activity can be found for each
numbered location in Table 3.2.
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estimations of the motion made with the AFNI [29] plugin 2dImReg from EXPB for

SIMB, and EXPJ for SIMJ. The simulated motion was implemented by shifting and

rotating the ρ, T ∗2 , and local activation related ∆B maps, discussed above, by the

appropriate amount at each time point, j, before applying Equation 3.4.

In addition to the ∆B map for inducing phase activation related response, each

simulated image series contained an additional magnetic field offset representing bulk

field inhomogeneity. In SIMC, a temporally static field was applied, and it was

generated using the static field (∆ω̂0) estimated for EXPB following interpolation to

dimensions of 512 × 512, similarly to the ρ map. SIMB and SIMJ were generated

using the sum of the same map used for SIMC and the series of dynamic reference

field maps (δω̂t from Hahn et al. [68]) estimated for EXPB and EXPJ, respectively,

also interpolated to 512 × 512. It should be noted that this portion of the ∆B was

not included in the motion simulation process because it was assumed that it already

contained the changes which occurred due to any motion that occurred. The full

∆B map that was finally applied in Equation 3.4 was the sum of this bulk field

inhomogeneity map and the local activation field map (after having motion applied,

if applicable).

A static magnetic field offset was applied to all three series as well. This field

was simply the static field estimation from EXPB (nearly identical to that in EXPJ)

following interpolation to dimensions of 512× 512, similarly to the ρ(x, y) map. The

additional temporally dynamic fields used for SIMB and SIMJ were generated directly

from those estimated in EXPB and EXPJ, respectively, again interpolated to a 512×

512 matrix.
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Location: 1 2 3 4 5 6 7 8
T ∗2 (ms), Task “off” 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
T ∗2 (ms), Task “on” 35.35 35.7 35.0 35.35 35.7 36.05 35.35 36.05
∆B (nT), Task “off” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
∆B (nT), Task “on’ 2.83 -4.25 2.83 0.0 1.42 -2.83 4.25 1.42

Table 3.2: Local values of T ∗2 and ∆B during both task “off” and task “on” periods
at locations 1 through 8. The area to which each refers is shown in Figure 3.1b.

Besides the already specified parameters, each series was simulated with identical

scan parameters to EXPB and EXPJ above, with the exception of the echo spacing,

which was 759 µs in the simulation. This includes the images with extended echo

time during the initial 20 repetitions. The difference in echo spacing from that in

the actual experimental data (768 µs) was due to roundoff errors in the calculation

method of the simulated gradients. This small 9 µs difference should not be of any

consequence.

Finally, once all three of the simulated image series were generated, each was

duplicated 100 times and independently and identically distributed Gaussian random

noise was added to the real and imaginary channels of the k-space samples. The

variance of the added noise, equal to 10, was scaled such that the signal-to-noise ratio

(SNR) of the reconstructed images was similar to that in EXPB and EXPJ, which

was approximately 20 within the brain. Each image series was then processed in an

identical manner to the human results.

3.2.4 Statistical Modeling and Analysis

The complex-valued generalized likelihood ratio detection model used is described

in detail in Rowe [19], but will be summarized for clarity. The general form of the
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complex-valued multiple regression model, assuming a series of n complex-valued

images and using notation similar to the original work is

yt = [ρt cos θt + ηRt] + ı [ρt sin θt + ηIt] (3.5a)

rt =
√
y2
Rt + y2

It , φt = arctan

(
yIt
yRt

)
(3.5b)

ρ = Xβ, θ = Uγ (3.5c)

where (ηRt, ηIt)
′ ∼ N (0,Σ) ,Σ = σ2I2, ρt and θt are the true magnitude and phase

elements of ρ and θ at time t, and yt is the observed complex-valued signal at time

t, also represented as magnitude, rt, and phase, φt. Additionally, assuming that s

slices are acquired and each image has dimensions h × w, r and φ are n × (hws)

matrices containing the magnitude (former) and phase (latter) measurements from

an individual voxel in each column. The n× (q1 + 1) matrix X and the n× (q2 + 1)

matrix U contain q1 magnitude and q2 phase regressors (besides a mean regressor)

column-wise, and the corresponding coefficients in each voxel fill the columns of the

(q1 + 1)× (hws) matrix β and the (q2 + 1)× (hws) matrix γ.

Four hypothesis conditions are described by Rowe [19] which can be used to for-

mulate a variety of statistical tests on the regression coefficients. The aforementioned

hypotheses are Ha : Cβ 6= 0,Dγ 6= 0, Hb : Cβ = 0,Dγ 6= 0, Hc : Cβ 6= 0,Dγ =

0, and Hd : Cβ = 0,Dγ = 0, with linear constraint matrices for magnitude, C

(r1 × (q1 + 1)), and phase, D (r2 × (q2 + 1)). Using these in proper combination of

null and alternative hypotheses makes tests for arbitrary magnitude or phase response

either with, without or regardless of a response (also arbitrary) in the other signal
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component possible, and provides all necessary capabilities for the analysis to follow.

After estimating the regression coefficients under both the null and alternative

hypothesis, a χ2
r distributed general likelihood ratio test statistic, −2 log (λ), can be

computed using the variance of the residual error of the least squares fit for the null,

σ̃2, and alternative, σ̂2, hypotheses as

σ2 =
1

2n

[
(r−Xβ)T(r−Xβ)+ 2(r− r∗)

TXβ
]

(3.6a)

−2 log (λ) = 2n log

(
σ̃2

σ̂2

)
. (3.6b)

The degrees of freedom, r, in the test statistic is dependent on the specific hypotheses

being tested. A comparison of either Hb vs. Ha or Hd vs. Hc gives r equal to r1, the

full row rank of C, while Hc vs. Ha or Hd vs. Hb tests yield r equal to r2, the full

row rank of D. If comparing the Hd and Ha hypotheses, the test statistic has r1 + r2

degrees of freedom.

The stimulus reference function, fstim(t), was modeled here by a function that is

simply −1 during task off periods and 1 during task on periods, shifted by an amount

δth = 4 s to account for hemodynamic delay. The shifted boxcar was chosen as

opposed to a more elaborate reference curve, for example the boxcar convolved with

a gamma function, for the sake of simplicity. The relative accuracy of a boxcar and an

alternative model function is impossible to determine and will vary with location, thus

providing little motivation to change. Unless otherwise stated, the design matrices X

and U were the same, with a column of 1’s (mean regressor), a column with a linear

ramp from −1 to 1 (linear trend regressor), and a column containing fstim(t − δth),
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effectively treated as the response model in this case. The test contrast matrices C

and D have a single row of 0’s with a single 1 in the column of X or U, respectively,

containing fstim(t− δth) (C = D).

Regression analysis of both magnitude-only and phase-only data were also used

for the purposes of comparison, both of which are special cases of the model described

above. To test the magnitude-only hypothesis, X remains as described above and the

phase is left unconstrained under both null and alternative hypotheses (Hb vs. Ha),

with U equal to an n × n identity matrix, In (The constraint matrix D is not used

in the computation because phase is unconstrained under Hb and Ha). Similarly,

allowing unconstrained magnitude under both hypotheses (Hc vs. Ha) with X equal

to In performs a test of the phase-only with U unchanged (the constraint matrix C

is unused in this case).

3.3 Results

3.3.1 Human

Regression analysis using the complex-valued model was performed on both fMRI

time series after correction of only a static magnetic field inhomogeneity using ∆ω0,

as well as dynamic magnetic field errors using ∆ωt. Estimates of the motion in two

axes of translation and one of rotation were made using the AFNI plugin 2dImReg,

also before and after each type of field correction. Motion compensation, when used,

was applied by including the temporal motion estimates as additional regressors in

the design matrices X and U. Specifically, motion estimates made before applying

field correction were used as regressors in X and U when computing activation in the
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time series of images that was not corrected for temporal magnetic field variations

(motion correction only case). On the other hand, estimates of motion made after

field correction were used to compute activation in the images that were corrected for

temporal magnetic field variations (motion and field correction case). The series of

images were not shifted or rotated at all using the motion estimates at all. The mo-

tivation for this analysis method will be discussed in the Discussion section to follow.

The term motion correction or motion compensation will be used in the remainder

of this analysis to refer to the inclusion of the motion estimates as additional regres-

sors as described here and not as rigid body rotation and translation. This process

yields the results of 4 processing types: none, motion compensation only, dynamic

field correction only, and dynamic field correction and motion compensation. Static

magnetic field correction is implied in the all four types.

Maps of − log10 p where p is the p-value associated with the χ2 test statistic at a

p < 5× 10−4 unadjusted threshold in a single slice from EXPB and EXPJ after each

combination of processing steps are shown for tests of the magnitude-only, phase-

only and magnitude-and-or-phase in Figure 3.2. The anatomic underlay in each of

these figures, and in the figures to follow, is the first image in the functional EPI

time series. The hypotheses for the test of magnitude-and-or-phase are Hnull : Cβ =

0,Dγ = 0, vs. Halt : Cβ 6= 0,Dγ 6= 0, and all other parameters for each test are

described in the Methods section of this document.

The different post-processes appear to have only a slight impact on the magnitude-

only activation detection, as evident from Figures 3.2a and b, which show a single slice

from EXPB and EXPJ with the processing combinations along the columns. This is
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not unexpected, and is in agreement with previous results reported by Hahn et al.

[68], which analyzed the effect of the dynamic field correction and motion on the

magnitude signal component and magnitude-only activations in some detail. This

is especially true of the results of EXPB (Figure 3.2a), which involves the heavy

breathing nuisance task and shows very little difference between the four different

processing cases. The results of EXPJ (Figure 3.2b) show somewhat more significant

differences, especially in the cases including motion compensation. Including motion

correction appears to reduce the amount of detected activity, although there are a

few areas where activity may be increased with its inclusion.

The phase-only activations clearly show that the different post-processing steps

affect the detection of activation response in the phase signal (Figures 3.2c and d).

In both experiments, the number of active voxels and their relative significance is

elevated following any post-processing compared to none at all, with the exception

of using motion compensation alone in EXPJ. This is significant in that the applied

corrections not only stabilize the phase signal by removing spatially global variation,

as was demonstrated by Hahn et al. [68], but additionally preserve spatially local

variations and increase the detection power of task related signal of potential interest.

In EXPB, results indicate that TOAST correction alone appears to allow for better

activity detection than only motion compensation, however it is difficult to discern

whether the application of both provides additional improvement or not due to the

relative similarity between the activated regions when using the field only and when

using both the field and motion in the correction.

The analysis of EXPJ (Figure 3.2d) indicates similar benefit from using only the
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Figure 3.2: Maps of − log10 p where p is the p-value associated with the χ2 statistics
for magnitude-only (a,b), phase-only (c,d) and magnitude-and-or-phase (e,f) activa-
tion. The results of EXPB (a,c,e) and EXPJ (b,d,f) are shown for each activation
model. From left to right, columns show results after no post-processing, motion com-
pensation only, dynamic field correction only and both motion and field correction.
Active voxels shown above a threshold of p < 5× 10−4 (unadjusted).
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field correction as in EXPB, but performing motion compensation in this case yields

somewhat different results. As previously mentioned, motion correction alone has very

little effect on the phase-only activity. However, when applied in conjunction with

TOAST, an activation pattern results which is different in certain respects from what

is shown using just TOAST. Specifically, when both corrections are applied significant

activity is detected in the skull region on both the left and right sides and some

additional activity is detected within the brain as well on the left side. The uniqueness

and questionable anatomical relevance of this detected activity with respect to the

finger-tapping functional task suggests that it is of an artifactual nature. This artifact

may be related to the jaw motion occurring during acquisition, due to its location

above the jaw bone, and the affect of this motion on the main magnetic field [27].

Detection of false positive activity has been described by Soltysik and Hyde [76] in the

presence of similar jaw motion associated with chewing. In that case, however, the

jaw motion was directly related to the task of interest, opposed to this case where the

functional task and jaw motion occur at different frequencies. However, an additional

factor could potentially be instability of the motion compensation regression model

resulting from multicollinearity of the design matrix columns which include motion

parameters.

The degree of multicollinearity in the independent variables of the linear model

including the motion estimates in EXPJ was evaluated by using the condition number

of the X′X matrix. This value is defined as the square root of the ratio of its largest

to smallest singular values, and provides information about the linear independence

of the matrix’s columns. An orthogonal matrix has a condition number of one, and
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a matrix containing one or more columns which are a perfect linear combination of

the other columns has a condition number of infinity. The condition number without

including motion parameters is 3.46, while including motion yields a condition number

of 30.33 and 23.02. The literature states that a condition number of 10 represents the

low end of where collinearity starts to affect the solution, while a condition number

of 100 indicates serious effects of collinearity [77]. The model including motion is well

into this range, thus multicollinearity may be causing instability.

The results provided in Figures 3.2e and f present little surprise given the magnitude-

only and phase-only activations in Figures 3.2a-d. However, it is apparent that the ac-

tivated locations are understandably not simply a combination of the magnitude-only

and phase-only activations. The differences arise from the fact that the uncertainty of

the overall fit in this case involves a combination of the uncertainty in both the mag-

nitude and phase [78]. Intuitively, in the unprocessed data, the large phase variations

cause increased uncertainty nearly uniformly, resulting in a loss of significance where

activations in the magnitude were previously apparent. This “grouped” variation can

become beneficial, however, if both magnitude and phase are properly modeled. In

this case, the overall variation of both magnitude and phase is less than either alone,

due to the increased number of data values, thus leading to significant detection of

response which otherwise is too small. As a result, the magnitude-and-or-phase acti-

vations can be a superset of the magnitude-only and phase-only activations, and have

greater significance where overlap occurs.

One notable characteristic of these results is the apparent difference between the

activity detected in EXPB and EXPJ, given that the only difference between the two
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is the type of nuisance task being performed. Specifically, the size and significance of

the activation seems greater in EXPB in both magnitude and phase even after full

correction. The most likely reason for this are differences in the amount and type

of motion present during each experiment. First, maintaining head position when

opening and closing the mouth is a greater challenge than doing so during heavy

breathing, and this was represented in the computed motion parameters in all 3 axes.

The variance of the displacement in EXPB (for repetitions 31 through 296, the same

set used for regression analysis) was 2.35 × 10−3 mm left-to-right, 5.30 × 10−3 mm

anterior-to-posterior, and 9.36 × 10−3 degrees rotation around the inferior-superior

axis, compared to 9.36×10−3 mm, 8.12×10−3 mm and 2.51×10−2 degrees in EXPJ,

each of which is significantly larger than the corresponding variance in EXPB when

using an F-test (p < .001). Besides containing greater amounts of bulk motion, the

close proximity of the jaw motion in EXPJ to the imaging plane results in variable

sub-voxel field gradients and thus variable signal dropout. This is not correctable

using TOAST and is not necessarily associated with bulk motion, although there is

likely a correlation between the two. Regardless, this phenomenon almost certainly

decreases sensitivity of activation detection.

The data presented so far indicates that statistical tests for the presence of a

task related signal component in the magnitude, phase or both has significantly more

power after being processed. It is somewhat apparent by comparison of the statistics

in Figures 3.2a and 3.2b with those in and 3.2c and 3.2d that there is a different

pattern of activation in magnitude and phase, and thus potentially different physio-

logic information. However, the complex-valued regression more appropriately models
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Figure 3.3: All slices from EXPB after dynamic field and motion correction are shown
with overlays of βref (a) and γref (b), calculated from the complex-valued regression
test. The coefficients are shown where the χ2 of the overall test was significant with
p < 5×10−4 (unadjusted). βref and γref are the estimated coefficients of the stimulus
response reference function in the magnitude and phase, respectively, and are shown
to be very different.
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the two components in tandem, as described by Rowe [19] as well as the Statistical

Modeling and Analysis section of this document, and thus presents a better represen-

tation of the joint magnitude and phase response through more accurate coefficient

estimates. The individual response characteristics of the magnitude and phase, in

addition to the relationship between them, can be visualized with more clarity in

Figure 3.3. Here, all slices from the fully post-processed experiment EXPB data set

are shown with overlay maps of βref (Figure 3.3a) and γref (Figure 3.3b), the coeffi-

cients of the task reference regressor in the magnitude and phase, respectively. These

coefficients are shown only where the overall test (χ2) was significant to p < 5× 10−4

(unadjusted). Using this display method, locations with only magnitude activation

are located where the phase coefficients displayed are nearly 0, and vice versa for

locations with only phase activation. The fact that each contains unique information

is apparent, and the most notable pattern seems to be the increasing strength of the

phase response in the superior direction. Thorough and conclusive interpretation of

these results is not the focus of this work, and this information is provided here as

further evidence that such results are accessible and potentially meaningful.

To supplement the regression analysis, time series modeling of the real and imag-

inary regression residuals was performed to determine both the initial characteristics

of voxel time series and the temporal stabilizing effects of the dynamic field map-

ping and nuisance signal regression. In an ideal situation, as assumed by the linear

regression model, residual errors in the real and imaginary channels are temporally

independent and normally distributed. The degree to which these assumptions are

violated influences the interpretation of the significance of the test statistic and coef-
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ficient estimators [79].

Voxel-wise tests for temporal independence of both real and imaginary residuals

of the complex-valued regression after the different post-processing steps is displayed

for a single slice (the same slice as used for previous analysis) from each experi-

ment in Figure 3.4. These figures show maps of − log10 p, where p is the p-value

associated with the the χ2 statistic of a Breusch-Godfrey test [80, 81] for the pres-

ence of autocorrelations at a time lag of 1, with voxels shown as significant above a

threshold of p < .001 (unadjusted). The Breusch-Godfrey test is used instead of the

Durbin-Watson test [82], which is the test used by Lou and Nichols [79], because of

its insensitivity to deviations from normality of the samples. Results of these tests

indicate that the presence of motion and a temporally dynamic magnetic field offset

both influence the temporal independence of the residuals to varying degrees, which

is an expected result. This is evident from the fact that neither the field nor mo-

tion correction alone are generally sufficient for removing the sample autocorrelation,

while application of both consistently provides the minimum autocorrelation. It is

worth noting that in the data from EXPJ remains significantly autocorrelated in part

of the area above the jaw, even after full correction.

Voxel-wise analysis of the normality of the real and imaginary residuals from

the complex-valued regression after the different post-processing steps is displayed

in Figure 3.5. Specifically shown are the results of an Anderson-Darling test [83] in

EXPB and EXPJ, which tests for deviations in the error from a normal distribution.

In these images, voxels colored red represent those which reject the null hypothesis

that the residuals belong to a normal distribution with probability p < .01. The
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Figure 3.4: Maps of the χ2 statistics resulting from voxel-wise Breusch-Godfrey tests
for autocorrelations in the real (a,b) and imaginary (c,d) residuals of complex-valued
regression at a lag of 1 after different post-processing steps. Significant voxels shown
above a threshold of p < .001 (unadjusted). Results are shown for both EXPB (a,c)
and EXPJ (b,d). Full correction results in the least amount of significant residual
autocorrelation.
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Anderson-Darling test is used because it has been shown to be one of the most

powerful tests for deviations from normality [84], and is on par with the Shapiro-

Wilk test [85], which is the test employed by Lou and Nichols [79]. Similar to the

autocorrelations, it seems that application of both motion compensation and dynamic

field correction provide the most desirable signal characteristics. However, in this case,

either motion correction or field correction alone seem to provide nearly the same

performance as the two combined, except in the case of the imaginary residuals from

EXPJ. In that case, deviations from normality were the most severe, and the relative

normality in the other cases may be the reason either correction alone performs as

well as both together.

In EXPJ, there are a few areas which contain significantly autocorrelated and to a

lesser extent non-normal residuals even after full correction. The greatest example of

this can be seen in the real autocorrelations in Figure 3.4c. The failure to completely

restore temporal independence and normality is likely two-fold. First, The spatial

variation in the field is very large in these areas and may not be fully captured by

the model, thus leaving it partially uncorrected. Additionally, because of these large

spatial variations significant intra-voxel effects are likely to be present and this is

not correctable with the TOAST method and is likely unrelated to bulk motion. It is

interesting to note that the areas previously mentioned which become active in EXPJ

in the test of magnitude-and-or-phase after applying both corrections (Figure 3.2f)

coincide with locations where the autocorrelations and departures from normality are

not fully removed. This combined with the relatively poor conditioning of the design

matrix could explain why these areas become active in this case.
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Figure 3.5: Maps of the results from voxel-wise Anderson-Darling tests for deviations
from normality in the distributions of the real (a,b) and imaginary (c,d) residuals of
complex-valued regression after different post-processing steps. Voxels colored red are
those in which the null hypothesis is rejected with probability p < .01 (unadjusted).
Results are shown for both EXPB (a,c) and EXPJ (b,d). Full correction results in
the least amount of significant deviation from normality.
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3.3.2 Simulation

Each of the 100 iterations of the simulated experiments SIMB and SIMJ were an-

alyzed in exactly the same fashion as the human experiments, EXPB and EXPJ.

The SIMC iterations were only processed corresponding to the “none” case of the

human experiments as no dynamic field offset nor motion was present. The results

were analyzed by quantifying the detection power, which is defined as the number of

iterations out of 100 in which a test statistic was significant at a specified threshold.

For each set of tests, the threshold for each individual test matched that used in the

human data analysis. Only voxels meeting this threshold in at least 5 of the 100 tests

are shown in the images, masking away the others. This choice of thresholding was

used to provide optimal comparability with the human results. Each of the images

resulting from simulation represent voxels where the true mean of the distribution is

shifted such that at least 5% of its area lies over the percentage corresponding to the

specific single test threshold of the area under the null distribution curve. This way,

the probability that an unmasked voxel would be significant in a single trial at its

single trial threshold is the same regardless of that threshold.

The results of magnitude-only, phase-only and magnitude-and-or-phase activa-

tion detection are shown in Figure 3.6 for the SIMC series and Figure 3.7 for SIMB

and SIMJ. The results shown in Figure 3.7 present characteristics which appear to

corroborate what was seen in the human data. First, magnitude-only activity (Fig-

ure 3.7a,b) is not drastically different between various post-processing steps, which

is similar to the behavior of the experimental data, and it is arguable that the de-

gree of variation in both simulated and acquired data is somewhat similar. Second,
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Figure 3.6: Maps of the detection power for magnitude-only (a), phase only (b) and
magnitude-and-or-phase (c) in the SIMC simulation. Voxels are shown when detection
power is 5% or greater. Detection power is defined as the percentage of iterations a
voxel tested significant at p < 5× 10−4 (unadjusted).

phase-only detection power in SIMB and SIMJ, shown in Figures 3.7c and 3.7d, is

significantly reduced without dynamic field correction and reaches power levels near

the control with the field correction applied. The relative effect of the motion com-

pensation alone corresponds to some degree with the acquired data, in that a small

amount of power is recovered from the unprocessed case. It is of interest to note that

the previously mentioned area which becomes active outside of the motor cortex in

EXPJ after applying both corrections is not reproduced in SIMJ. This may be caused

by the imperfect representation of the exact field changes or motion that occurred,

the lack of through plane field gradients in the simulation, or some other signal source

present in the experimental data that was not included in the simulation. Finally, the

magnitude-and-or-phase power in SIMB and SIMJ (Figures 3.7e,f) show responses to

post-processing similar to those observed in experimental data in the majority of cases

as well.

It should be noted that the detection power shown for SIMC is not expected to be
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Figure 3.7: Maps of the detection power for magnitude-only (a,b), phase-only (c,d),
and magnitude-and-or-phase (e,f) activation. The results of SIMB (a,c,e) and SIMJ
(b,d,f) are shown for each activation model. From left to right, columns show results
after no post-processing, motion compensation only, dynamic field correction only
and both motion and field correction. Voxels are shown when detection power is 5%
or greater. Detection power is defined an the percentage of iterations a voxel tested
significant at p < 5× 10−4 (unadjusted).
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achievable in either SIMB or SIMJ. The motion applied to both SIMB and SIMJ shifts

the active locations around through time, and the motion compensation applied will

not account for this. The correction for motion which is applied will simply remove

variance in the signal that is correlated with the estimated motion. Achieving the

smallest difference between the control and the test cases is still obviously the goal,

however.

The temporal autocorrelations and distribution normality of the real and imagi-

nary residuals following complex-valued regression after the different post-processing

steps in SIMB and SIMJ were investigated in the same manner as done for EXPB and

EXPJ previously. The results of the voxel-wise Breusch-Godfrey test of temporal in-

dependence and the Andreson-Darling test of deviations from normality are shown in

Figures 3.8 and 3.9, respectively. The same tests for SIMC resulted in no significance

for either test beyond the expected type 1 errors, and are not shown here.

The images in Figures 3.8 and 3.9 show that the simulated motion and mag-

netic field variations cause significant autocorrelation and deviations from normality

as seen in experimental data. Additionally, the autocorrelations appear to be more

problematic than non-normality in this case as well. The corrections also seem to

have a similar impact in the simulated data as they do experimentally. In the auto-

correlations, neither motion nor TOAST correction alone generally provide as good

a result as the two together. The deviations from normality, when not very strong,

appear to be corrected equally well by either motion or field correction alone, but

across the board, the best results are achieved by applying both in tandem.

Beyond the similarities between simulated and experimental data in terms of how
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Figure 3.8: Maps of the detection power for voxel-wise Breusch-Godfrey tests of
autocorrelations in the real (a,b) and imaginary (c,d) residuals of complex-valued
regression at a lag of 1 after different post-processing steps. Voxels are shown when
detection power is 5% or greater. Detection power is defined an the percentage of
iterations a voxel tested significant at p < .001 (unadjusted). Results are shown for
both SIMB (a,c) and SIMJ (b,d).
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Figure 3.9: Maps of the detection power for voxel-wise Anderson-Darling tests for
deviations from normality in the distributions of the real (a,b) and imaginary (c,d)
residuals of complex-valued regression after different post-processing steps. Voxels
are shown when detection power is 5% or greater. Detection power is defined an the
percentage of iterations a voxel tested significant at p < .01 (unadjusted). Results
are shown for both SIMB (a,c) and SIMJ (b,d).



3.4 84

the corrections affect the temporal signal characteristics, there also seem to be similar-

ities between the two with respect to the pattern of autocorrelation and non-normality.

Connections between them can be seen in many cases, and this helps to support the

validity of the simulation and the repeatability of the corrections.

3.4 Discussion

The experimental and simulated data presented thus far have demonstrated the im-

provements that can be achieved with complex-valued fMRI analysis using TOAST

and motion correction in situations containing known nuisance signals that are likely

exaggerated compared to what will usually occur during a common fMRI experimen-

tal acquisition. While this shows that this methodology can be beneficial in more

extreme and difficult cases, it does not necessarily indicate the expected benefit in

more common environments. As previously mentioned, a more typical fMRI acqui-

sition was not included in the Results section above so that the argument presented

there relied on consistent, comparable data. Rather a quick inspection of the complex-

valued activation statistics after performing TOAST and motion correction in a fMRI

time series acquired with more common parameters and without any nuisance task is

presented here for the purposes of discussion.

Figure 3.10 shows the activations detected using the model for magnitude-only

(Figure 3.10a), phase-only (Figure 3.10b) and magnitude-and-or-phase (Figure 3.10c)

in EXPC. The details of the acquisition of EXPC can be found in Table 3.1 and the

Methods section above. The results of the magnitude-only statistics show behavior

similar to what was observed in EXPB and EXPJ, i.e. little difference between each

case. Phase-only results are slightly more interesting. Around the motor cortex,



3.4 85

the results are the same as those previous in that little to no activity is present

without correction and applying TOAST, and TOAST with motion correction yields

activations in that area. However, without any correction, a large area of activity is

detected in the anterior part of the brain that appears artifactual in nature. In this

case applying the corrections removes the significant activity in this area. Finally, the

magnitude-and-or-phase activity is what is expected given the magnitude-only and

phase-only data. Most importantly, the significance of activations in the expected

areas, i.e. motor cortex, is increased by the corrections, while the activity in the

anterior brain is reduced by them. In these final results, the activity in the motor

cortex, although diminished, is present with no correction at all.

Two things can be said of these results. First, it appears that some improvement,

in terms of phase-only and complex-valued detection power, is possible using the two

correction methods in this case. However, the degree of improvement, especially in the

magnitude-and-or-phase activations, is diminished compared to that seen in EXPB

and EXPJ, which is not unexpected. Second, the corrections seem to be beneficial

with respect to removal of artifactual activity in this case, which was not necessarily

the case in EXPB and EXPJ. It is hard to predict the occurrence of such artifacts,

but it seems reasonable to think that these corrections could reduce their effects.

Rather than reduce artifacts, the use of both motion correction and field correction

as opposed to simply field correction alone seemed to induce an artifact in EXPJ in

the phase-only and magnitude-and-or-phase activations as previously mentioned, and

it was suggested that ill-conditioning of the design matrix when including motion esti-

mations as regressors may be a contributing factor. This potential ill-conditioning is a
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Figure 3.10: Maps of − log10 p where p is the p-value associated with the χ2 statistics
for magnitude-only (a), phase-only (b) and magnitude-and-or-phase (c) activation
in EXPC after different post-processing corrections. Active voxels shown above a
threshold of p < 5× 10−4 (unadjusted).
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weakness associated with performing motion compensation in this way. Additionally,

certain signal components may not arise due to motion, but motion regressors can,

in certain situations, account for some of the signal, reducing the significance of the

task reference regressor and thus the detection of true activation. It is possible that

this problem can be eliminated through use of a motion correction scheme tailored

for complex-valued fMRI data, and further work is necessary to determine whether

this is feasible. However, the data shows in the other cases that even this imperfect

motion compensation appears to be beneficial in a general sense, and including it as

a post-processing correction still provides the best results. This certainly seems to be

true with regard to residual temporal autocorrelations and non-normality.

The processing techniques used to optimize the complex-valued fMRI signal pre-

sented here represent only two of the potentially useful methods. The dynamic mag-

netic field correction appears to provide the foundation for the demonstrated im-

provements, and motion correction was included because of its common use in many

fMRI experiments. Additionally, these two methods alone provide a significantly

more optimal and robust time series, and can be employed without any special pulse

sequence modifications or physiologic monitoring during experimentation, thus may

be applied to any EPI fMRI data set previously collected if the complex-valued images

are available.

Additional benefit may be realized by using time series representing unwanted

signal components other than motion as nuisance regressors during statistical analy-

sis. These may be based on respiration, heart rate or any other physiologic process

monitored during an experiment [32], or can be derived directly from from the ac-
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quired data itself along with a short reference scan [86, 87]. While the work of

Glover et al. [32], de Zwart et al. [86] and Bianciardi et al. [87] discuss application for

magnitude-only data, extension to complex-valued data is possible in the same man-

ner used for motion parameter regression in this work. This type of technique would

likely complement the field correction well, providing the capability to compensate

for detrimental signal which is more spatially localized and often not associated with

a bulk magnetization shift, such as cardiac induced pulsatile blood flow or modulated

blood oxygenation with respiration.

The complex-valued regression analysis used in this work is only applied in a

very rudimentary and straightforward manner as a means of demonstrating the ini-

tial challenges facing the technique and its potential utility following the correction

processes. Further work is necessary to focus more on utilizing its flexibility to ap-

ply more appropriate complex-valued functional response models and investigate the

complex-valued functional impulse response now that a foundation exists to consis-

tently achieve a robust complex-valued time series.



Chapter 4

Physiologic noise in complex-valued time

series

The complex-valued noise correction methodology which has been developed over

the previous two chapters is extended again here with the addition of physiologic

covariates of heart beat and respiration to the nuisance regression. As in the previous

chapter, the inclusion of an additional correction motivates a comparison between

different combinations of each to determine which corrections are useful under which

conditions and whether a correction works better when performed with another than

when performed alone. Data was acquired from a human subject, both in a “resting-

state” and performing a functional task. The resting state data was analyzed almost

exclusively in the phase, as physiologic covariate nuisance regression in the magnitude

is well studied. We compare temporal phase variance with temporal magnitude SNR,

which should have a inversely proportional relationship under ideal conditions. We

also investigate the phase power spectrum after different corrections and test for

significant differences between the signal power across frequencies. The fit of the

89
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physiologic covariates in the magnitude and phase is presented as well as the spatial

correlation structure of the phase through time. Finally, we also compute complex-

valued activations in the functional data set and compare results between corrections.

We will show that including physiologic regression doesn’t appear to have as great an

impact on the phase time series as either TOAST or motion regression, but it does

provide some benefit with respect to the phase signal (and certainly provides a benefit

with respect to the magnitude signal). Interestingly, the performance of motion and

physiologic regression together seems to be much better than would be expected given

the results of each individually. In all, we argue that these analyses indicate that we

can approach the theoretical noise limit in the phase (i.e. where phase standard

deviation is equal to the inverse magnitude temporal SNR) with these corrections.

4.1 Introduction

The functional magnetic resonance imaging (fMRI) signal is corrupted not only by

random thermal noise, but by systematic noise associated with bulk motion of the

head as well as noise associated with heart beat and respiration. The signal not

of interest due to motion is usually dealt with by estimating the motion occurring

throughout the acquisition and using the estimations to register each acquired volume

to a common reference using tools such as the AFNI plugin 3dvolreg [29]. Reduction of

physiologic noise, on the other hand, is often accomplished by applying RETROICOR

[32] using the information from physiologic recordings of the subject’s heart rate

and respiration during the scan. These corrections are both typically done for the

magnitude of the signal only, due to the fact that phase is typically discarded when

performing statistical analysis of the blood oxygenation level dependent (BOLD)
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fMRI to detect active brain areas [35].

It is becoming more and more likely that it may be beneficial to consider in-

cluding the phase in analysis of fMRI data. First, the BOLD phase response may

be non-negligible in brain areas containing uniformly oriented vasculature (typically

macrovasculature) [2, 44, 61] and results have been reported that complex-valued

analysis can suppress activation from these areas [44, 78]. A phase response may addi-

tionally be associated with BOLD activity in areas of microvasculature [63]. Whether

the phase response in these two cases can be distinguished has yet to be shown; how-

ever it may present an opportunity to use the phase to probe the vascular structure

at the site of activation. Second, it has been suggested that the response in the

fMRI signal directly associated with neuronal action potentials may be manifested

to some degree in the phase [10, 12, 16, 64, 65]. Whether or not this response can

be detected in vivo is still not clear, but it seems most likely to be found in the

complex-valued signal. Finally, statistical analysis of only the magnitude of the fMRI

signal has inherent drawbacks. For one, only half the data is used which reduces

statistical detection power. Noise in the magnitude is also not normally distributed,

an assumption generally made in least-squares regression used to detect activation,

at high signal-to-noise ratio (SNR). This is typically not a problem inside the brain

given the scan parameters most commonly used, but can be an issue where B0 field

inhomogeneity causes signal dropout or in experiments with atypically high resolution

or short repetition times where SNR is reduced. Recent work has also shown that

non-negativity and edge effects may be problematic when performing magnitude-only

BOLD fMRI analysis [88].
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The apparent advantages of complex-valued statistical analysis of fMRI data begs

the question as to why it is so uncommon in practice. Previous work by Nencka

and Rowe [44], Hahn et al. [68, 89] have demonstrated the difficulty of complex-

valued signal modeling, suggesting that unexpectedly large noise in the phase (given

complementary noise in the magnitude) is the culprit. If the complex-valued signal

is corrupted by thermal noise alone and SNR is high, the phase and magnitude SNR

should be inversely related. Recent investigations into the noise characteristics of

the phase signal have indeed shown that temporal variation in the phase is typically

much larger than expected for a given magnitude SNR [34, 67]. If this additional

phase variance is not accounted for, including phase in the statistical model greatly

reduces detection power.

It is reasonable to assume that the sources of variance in the phase are the same

as those in the magnitude, i.e. motion and physiologic phenomena such as respiration

and heart rate, with the case being that these effects manifest much more strongly in

the phase than the magnitude. This assumption, at least with respect to physiologic

phenomena (specifically respiration), appears to have been corroborated by Petridou

et al. [34], who showed that performing physiologic RETROICOR regression on the

phase signal reduced phase variance by 7%-90% while similarly reducing magnitude

variance by an average of 1%-2%. In white matter, the ratio of phase to magnitude

SNR approached the theoretical value, but did not quite do so in grey matter. Hahn

et al. [89] demonstrated a method for improving complex-valued time series charac-

teristics with regard to residual normality and temporal autocorrelation, as well as

vastly improving the utility of complex-valued activation detection. That method
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involved using a dynamic magnetic field mapping technique, referred to as temporal

off-resonance alignment of single-echo time series (TOAST), to correct for the unde-

sirable phase variance, in addition to incorporating a compensation for bulk motion

using motion estimates as models for nuisance signal in the regression analysis.

It is the goal of this work to both compare the performance of removing physio-

logic sources of noise from the phase using physiologic RETRICOR regressors with

TOAST and motion compensation, and to incorporate complex-valued physiologic

RETROICOR regressors into the method used in Hahn et al. [89], such that TOAST

is applied to remove spatially correlated noise of arbitrary sources and motion and

physiologic noise sources are modeled as nuisance signal in the regression analysis used

to detect activation. The performance of TOAST, motion regression and physiologic

noise regression will be evaluated by investigating the phase variance, the spectral

phase signal characteristics, spatial phase correlation structure and activation maps

when applying different combinations of correction techniques.

4.2 Materials and Methods

4.2.1 Data Acquisition

Two fMRI data sets were acquired with a single human subject in a single scan

session using a GE Signa LX 3T scanner (General Electric, Milwaukee, WI) using

the stock quadrature head receiver coil, and functional images were collected with

a single-shot echo planar imaging (EPI) pulse sequence (9 slices, 96 × 96 matrix,

2.5mm×2.5mm×2.5mm voxels, 42.8ms TE, 1 s TR, 45◦ flip angle, 125 kHz readout

bandwidth, 0.768ms echo spacing, 510 repetitions). During both acquisitions, the
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echo time was increased in 2.5ms increments from repetition 11-15 and this was

repeated again for repetitions 16-20. This provided information to compute a static

magnetic field offset map using the method described in Reber et al. [37]. The first

of the two scans was acquired with the subject at rest, with eyes open fixated on a

single point of their choice. This is similar to the type of data acquired for functional

connectivity MRI [90], and thus does not include any signal fluctuations related to

any explicit stimulus. During the second scan, the subject was asked to perform a

simple unilateral finger tapping task, with a block design of 16 epochs of 15 s on, 15 s

off, beginning at repetition 31 (repetitions 1-30 were all off). The subject was queued

when to tap and when to rest visually, where the screen was black during rest and the

word “tap” was displayed when the subject was to perform the finger tapping task.

The subjects respiration and heart rate were monitored during both acquisitions

using a bellows belt and pulse oximeter. The pulse oximeter was placed on the hand

opposite that used for finger tapping to avoid inducing artifacts in the heart rate

signal.

4.2.2 Data Processing and Analysis

All acquired image data were reconstructed offline from raw GE p-files. Data process-

ing required for image reconstruction and correction of magnetic field dynamics was

done with a custom program written in C and designed in-house. The process flow for

every correction method involved image generation from k-space by inverse Fourier

transform, Nyquist ghost removal and correction for global, zero-order, off-resonance

using three navigator echos [91] and estimation of the static magnetic field offset from

repetitions 10-20 with varying echo times was performed using the method of Reber



4.2 95

et al. [37]. To summarize these processes, the ghosting, caused by alternating shifts

in the readout lines of k-space acquired in opposite directions, is corrected using the

Fourier shift theorem to shift each readout line of k-space by the amount calculated

from navigator echoes. The zero-order off-resonance is corrected by removing the ac-

cumulated phase due to the off-resonance, again measured from the navigator echoes,

from each readout line of k-space. The phase removed from each line is dependent on

the off-resonance value and the time between the acquisition of the readout line and

the application of the RF excitation pulse. Calculation of the static magnetic field

offset involves fitting a line to the relationship between the phase in each voxel and

echo time. The slope of that line represents the static off-resonance and is computed

voxel-wise. When TOAST was used, the dynamic field was found and combined with

the static field map as described in [68]. Other dynamic magnetic field mapping tech-

niques than TOAST have been proposed, such as that described by Roopchansingh

et al. [45]. The basis for the choice to use TOAST opposed to another technique

here is based on the discussion of the advantages and drawbacks of both TOAST and

other dynamic field mapping techniques by Hahn et al. [68].

Before applying field maps in the correction, the raw maps (both static alone or the

combination of static and dynamic as needed) were processed to reduce noise, while

maintaining low spatial frequency information and eliminating high spatial frequency

field fluctuations potentially related to desirable activity, with the goal of minimizing

estimation artifacts at the image boundaries. This was accomplished by using a

locally weighted least squared regression [75]. The first step in this process was to

censor voxels to be used in the fitting procedure. A binary mask of voxels above 7% of
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the maximum voxel magnitude was generated, representing voxels within the brain.

Voxels well outside the brain were selected by dilating the original mask by 10 voxels

and then inverting it. These voxels had the value of the estimated field (originally

only noise) set to zero. This caused the fit of the raw estimated field to fall to zero

outside the brain. The voxels not contained within either of these two masks were

censored and not used in the fitting procedure.

The next step involved moving voxel by voxel over the entire image and fitting a

weighted two-dimensional polynomial using the 20% of all non-censored voxels which

are closest (by Euclidean distance) to the current voxel. After selecting the closest

20% of voxels, a tri-cube weight function is used to weight each point according to

its distance from the current point. The weight for the jth point, wj, is found using

wj =

(
1−

(
dj
dmax

)3
)3

, (4.1)

where dj is the Euclidean distance between the current voxel and the jth voxel and

dmax is the maximum Euclidean distance between the current voxel and a voxel within

the closest 20% of non-censored voxels. The two-dimensional polynomial coefficients

were fit using weighted least-squares according to

P =
(
XTWX

)−1
XTWY (4.2a)

xj =
[
1 dx,j d

2
x,j dy,j d

2
y,j

]
(4.2b)

The jth row of X is xj, and dx,j and dy,j are the distance from the current voxel in

the x-direction and y-direction of the jth voxel, respectively. W is a diagonal matrix,
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the jth diagonal element of which is wj from Equation 4.1. P is a 5-element vector

containing the polynomial coefficients.

Once the coefficients for the fit were computed at a specific point, the value of

the processed estimated field at that point was calculated. It should be noted that

the estimated value of the voxel of interest is simply the first element of P , because

the distance from itself is clearly zero in each direction (i.e. designed to be located

at position x = y = 0).

Once this processing has been carried out, the field maps were applied using the

one-dimensional (phase-encoding direction) Simulated Phase Rewinding (SPHERE)

[53] correction method to remove their effects from the original images.

As a final processing step, the angular mean [58] of each voxel time series following

the dynamic field correction was subtracted out to prevent phase wrapping within

the imaged object. No voxels inside the object drifted more than 2π radians over the

length of the experiment, especially after being corrected for the field dynamics, and

zeroing the mean was sufficient in all cases to prevent wraparound in voxels within

the head.

The complex-valued generalized likelihood ratio detection model used is that de-

scribed in detail by Rowe [19]. In short, the model allows separate design matrices for

the magnitude and phase as well as separate contrast matrices to perform arbitrary

general linear tests of the significance of various linear combinations of regressors.

In this work, magnitude and phase design matrices were identical (but resulted in

different estimated magnitude and phase coefficients). They included a constant and

linear trend in each case, and included regressors to compensate for motion, phys-
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iologic RETROICOR regressors, or both as appropriate. Motion regressors were

computed using the AFNI plugin 3dvolreg [29] which yields 6 separate waveforms (3

for translational, 3 for rotational motion). If TOAST is also being used, motion was

estimated after applying TOAST. Physiologic RETROICOR regressors were com-

puted from the respiration and heart beat waveforms as described by Glover et al.

[32], resulting in 8 waveforms (4 for respiration, 4 for heart rate). Modeling of the

data set including finger tapping included one additional reference function in the

design matrices corresponding to the task stimulus. The stimulus reference function

was modeled here by a function that is simply −1 during task off periods and 1 during

task on periods, shifted by 4 s to account for hemodynamic delay. The shifted boxcar

was chosen as opposed to a more elaborate reference curve, for example the boxcar

convolved with a gamma function, for the sake of simplicity and consistency. The

relative accuracy of a boxcar and an alternative model function is not well known

with respect to the phase response, and will likely vary with location.

The spectra and spatial correlations of the residual phase time series following the

regression were investigated and are presented in the results to follow. Additionally,

activation maps showing results of tests of the significance of the stimulus reference

function in both magnitude and phase are presented.

4.3 Results

Characteristics of the distribution of the phase variance, magnitude variance, and

ratio of phase standard deviation to the inverse temporal magnitude SNR (tSNR)

in all voxels within the brain over all 9 slices in the resting state data set (n =

14579) are shown following various corrections in Figure 4.1. These boxplots show
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the minimum, maximum, median, 1st and 3rd quartiles where outliers are removed if

they are greater than the value of quartile 3 plus 5 times the interquartile range. The

phase variance plots in Figure 4.1a show that TOAST reduces the variance by a much

larger amount than either motion or physiologic regression alone, however, the use of

all three provides minimum phase variance of the corrections applied. The ratio of

phase standard deviation to inverse magnitude tSNR plots in Figure 4.1b again show

that without TOAST, this ratio does not approach the theoretical value of 1. With

TOAST alone or with TOAST and physiologic regression, however, the median ratio

is near 0.965, and the 75th percentile is near 1.01, indicating that nearly 75% of voxels

have lower than theoretical ratios. When motion regression is added, the median rises

to around 1.02 (slightly lower with TOAST and physiologic regression), indicating

that the distribution is centered right around the theoretical value. The reason the

ratio rises with motion regression can be seen from Figure 4.1c, which shows boxplots

of magnitude variance distribution. TOAST does not change the magnitude variance

distribution much (although the minimum 25th and 75th percentiles and the minimum

median are obtained with TOAST, motion and physiologic regression), however, the

motion regression significantly reduces magnitude variance and thus magnitude tSNR.

It is apparent that without TOAST, motion and physiologic regression reduce phase

variance more than magnitude variance, but with TOAST, motion regression does

the opposite which physiologic regression seems to reduce each in equal proportions.

The square root of the power spectra (magnitude of Fourier spectra) of the phase

in voxels within all 9 slices of the brain in the resting state data set (n = 14579) were

compared to determine how well TOAST, motion regression and physiologic regres-



4.3 100

Figure 4.1: Boxplots of distribution characteristics of the phase variance, σ2
θ , (a), the

ratio of phase standard deviation to inverse magnitude temporal SNR, σθ/(tSNR
−1
mag),

(b) and the magnitude variance, σ2
mag, (c) in all voxels within the brain over all 9

slices in the resting state data set following various corrections. For each correction,
the median value is shown as a red line and the blue box is bounded on the left by
the 25th percentile and on the right by the 75th percentile (i.e. 1st and 3rd quartiles).
The black dotted lines show the minimum value on the left and the maximum on the
right, after removing outliers. Values are considered outliers if they lie more than 5
times the interquartile range (width of blue box) above the 75th percentile.
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sion removed noise both individually and when used together. The square root power

was used because pairwise differences in the square root of the power are normally

distributed, whereas differences in power are not. This allows the significance of the

mean difference in power at each frequency following different correction methods to

be computed with a pairwise t-test. However, for simplicity the use of the term power

going forward will refer to the square root power unless specifically noted otherwise.

The mean phase power spectrum is shown before applying any corrections in

Figure 4.2a. It shows an elevation in the very low frequencies as well as a hump

around 0.1 Hz. An important point should be made here considering this spectrum.

The reconstruction process included a zero-order main field off-resonance correction

as part of the method described in Nencka et al. [91]. This effectively removes a large

amount of the constant (over space) frequency off-set, and thus the associated phase

accumulated, at each time point over the acquisition. This alone immensely reduces

the power in the phase near the respiration frequency especially, which is between

about 0.05-0.1 Hz. If this zero-order correction is not made, the peak in the average

power is many times larger than shown in Figure 4.2a. However, the zero-order off-

resonance drifted over the course of the scan so severely that if left uncorrected, the

images at the end of the acquisition appear shifted by nearly 6 voxels compared to

those at the beginning. This drift is most likely due to gradient coil related heating,

but could have other potential causes such as an instability in the shimming field.

The zero-order correction almost completely fixes this. The important point here is

that not only will further correction have less impact than it otherwise might have,

but this may have also affected the temporal phase characteristics enough so that the
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physiologic regressors (specifically with respect to respiration) may no longer fit as

well over the whole brain. This should be kept in mind when interpreting the results

to follow.

The plots in Figures 4.2b-h show mean pairwise differenced between the uncor-

rected signal and the signal following various combinations of applied corrections.

Additionally, red stars are shown below frequencies at which the uncorrected phase

power is greater than the corrected phase power by pairwise t-test at Bonferroni cor-

rected p < .05 (uncorrected p < 2.96 × 10−5). It should be noted that the sample

size here is very large (n = 14579), so it requires very little positive mean difference

to reach the extreme level of significance used here. While it is still a useful statistic,

more qualitative comparison between correction combinations is important.

The most apparent result shown in Figures 4.2b-e, which depict the pairwise dif-

ference between the power in the uncorrected signal and the signal corrected with

either TOAST (Fig. 4.2b), physiologic waveforms (Fig. 4.2c), motion (Fig. 4.2d) or

both motion and physiologic waveforms (Fig. 4.2e), is that TOAST clearly performs

far better than any of the others on their own (note the difference in scale in Figure

4.2b and Figures 4.2c-e). It is also interesting to note that using physiologic regres-

sors alone makes little impact (mean difference < 0.5 everywhere), although it does

significantly reduce power at a wide range of frequencies (although, mostly clustered

at lower frequency). Motion regression alone does much better at very low frequency,

removes a peak near 0.1 Hz, and also significantly reduced power at a range of fre-

quencies. However, it clearly increases the power at many frequencies as well, notably

around 0.025 Hz, between 0.075 Hz and 0.1 Hz, and at a few other frequencies near



4.3 103

Figure 4.2: Voxels used for these plots were all those inside the brain in all slices
from the resting state data set (n = 14579). The mean voxel square root of the phase

power spectrum,
√
θpow, (i.e. the Fourier spectrum magnitude) with no correction

is shown in (a). In (b)-(e), the mean of the pairwise voxel difference in square root

phase power, ∆
√
θpow, between the uncorrected data and data corrected with TOAST

only (b), physiologic regression only (c), motion regression only (d), and both motion
and physiologic regression (e) is shown. In (f)-(h), the mean of the pairwise voxel

difference in square root phase power, ∆
√
θpow, between the data corrected with

TOAST only and the data corrected with TOAST and physiologic regression (f),
TOAST and motion regression (g), and TOAST, motion and physiologic regression
(h) is shown. Red stars indicate frequencies where the mean pairwise difference is
significantly greater than zero at p < .05 threshold, Bonferroni corrected for multiple
comparisons. The mean voxel phase power, θpow, with no corrections as well as after
correction with TOAST, motion and physiologic regression is shown in (i).



4.3 104

0.15 Hz and 0.28 Hz. Interestingly, including the physiologic waveforms with motion

does much better than might be expected from the results of physiologic regression

alone. The power in the physiologically related frequencies (heart rate is aliased into

the low frequencies near the respiration frequency) is reduced as well as very low

frequency power. There are still, however, clearly multiple frequencies where mean

phase power increases a substantial amount.

The fact that TOAST reduces power so much more than any of the other methods

motivates Figures 4.2f-h, which show pairwise differences between phase signal power

after correction with only TOAST and the phase power after correction with phys-

iologic waveforms (Fig. 4.2f), motion (Fig. 4.2g) and both motion and physiologic

waveforms (Fig. 4.2h) in addition to TOAST. This allows the relatively small, but

non-negligible, effect of the regressions to be seen clearly. Similarly to the results

without TOAST, the motion regression alone seems to be slightly more beneficial

than physiologic regression alone. The motion regression reduces power significantly

at very low frequencies as well as in the 0.05 Hz to 0.1 Hz range, while physiologic

regression reduces power over a similar frequency range but to a lesser degree. In

this case the combination of motion and physiologic regression performs about as one

would expect. In fact, although not shown here, the mean difference between motion

alone and both motion and physiologic regression (all with TOAST) yields something

very similar to the difference between no regression and just physiologic regression

(again with TOAST in both cases) (Fig. 4.2f). These plots also show that when ap-

plied in conjunction with TOAST, all of the regressions result almost exclusively in

decreases in power, and in the few cases where mean power difference is negative, it
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is negligible. This is in stark contrast to what is seen without TOAST. Additionally,

the frequencies which are significantly reduced by the regressions when applied with

TOAST are all below 0.16 Hz. When applied without TOAST, significant power

reduction was achieved over the range of frequencies. Finally, the regressions clearly

have a reduced impact following TOAST (noting the scale on Figures 4.2f-h compared

to Figures 4.2c-e). This is not unexpected, since it is likely TOAST removes much of

the signal power that the regressions were removing in the absence of TOAST. What

is being removed by regression in this case is likely spatially localized. TOAST does

not remove this by design since desirable signal activity is expected to have similar

spatial characteristics. In all, it is clear that the best results (in terms of mean phase

signal power spectrum) are achieved using TOAST, motion and physiologic regression

in tandem.

Figure 4.2i shows the mean phase power spectrum (not the square root in this

case) in the fully corrected signal (TOAST and full regression) plotted in red. The

original uncorrected phase power (again not the square root as in Figure 4.2a) is

shown as well for reference. The improvement is clear, but there clearly remains an

elevated (on average) phase power which is significantly elevated relative to higher

frequency (> 0.1 Hz) components below about 0.075 Hz. Further investigation beyond

the scope of this paper would be interesting to attempt to identify the source of the

phase fluctuations at these frequencies.

Further investigation of the effect of complex-valued physiologic regression applied

with and without TOAST is shown in Figure 4.3. The significance of the regression

coefficients corresponding to the 8 physiologic RETROICOR waveforms was tested
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Figure 4.3: Maps of the χ2 (16 degrees-of-freedom) statistics associated with tests of
the significance of the 8 physiologic RETROICOR regressors in the magnitude-and-
or-phase without TOAST (column a) and with TOAST (column b). All nine slices
from inferior to superior (top to bottom, left to right) are shown from the resting
state data set. Active voxels are shown above a threshold of p < .01 (unadjusted).
Color saturates at a χ2 of 75, corresponding to p < 1.3× 10−9.



4.3 107

in both the magnitude and phase. The significance of each coefficient was tested

individually in magnitude and phase and the test statistic resulting from the complex-

valued regression was thus Chi-square distributed with 16 degrees of freedom. Figure

4.3a shows the result of the test in all slices from the resting state data set without

TOAST and Figure 4.3b shows the same but with TOAST. The significance of the

physiologic regressors appears increased with TOAST in certain slices but the opposite

appears true in others. The physiologic regression appears to remove more phase

power without TOAST than with TOAST (see Figures 4.2c and 4.2f), so one might

expect much greater significance when not using TOAST. However, TOAST itself

removes a large amount of phase variance so that a similar proportion of variance

is removed by physiologic regression in that case as when TOAST is not used. The

most important thing to notice is that the spatial distribution of significant voxels is

different to some degree when TOAST is used, as opposed to when it is not. Without

TOAST, there are some slices that clearly show patterns where significant voxels are

grouped closely over a large area in space, which suggests that physiologic noise is

present on large spatial scales. This is clearest in the anterior brain in the top slice

(most inferior) and the global nature of the significant voxels in the seventh slice from

the top in Figure 4.3a, although there are other locations in other slices as well. When

TOAST is applied, the active voxels are much more spatially distributed, i.e. there

are no large clusters of significant voxels, indicating that TOAST removed physiologic

noise over large spatial scales but that residual physiologic noise is present on much

smaller scales. It is worth noting when interpreting these results that the significance

may be related to reduction in the variance of the phase, magnitude or both.
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Figure 4.4: Maps of the coefficients fit to each of the 8 physiologic RETROICOR
regressors in the phase in a single slice of the uncorrected data (a) and the data
corrected with TOAST (b) in the resting state data set.
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To determine exactly how the physiologic regressors are fit, maps of the regression

coefficients for the 8 physiologic RETROICOR phase regressors are shown in Figure

4.4 for a single slice in the resting state data set. The fit of the regressors without

TOAST is shown in Figure 4.4a and the fit following TOAST is shown in Figure 4.4b.

It is clear that without TOAST, spatially global patterns are apparent, while following

TOAST the pattern of non-zero coefficients is much more spatially localized (no large

scale patterns are apparent). This corroborates the assumption stated earlier and the

results in Figure 4.3 that following TOAST, physiologic regression is removing signal

that exists on small spatial scales.

A final analysis of the performance of the corrections is shown in Figure 4.5. A

random voxel (indicated by the dark red voxel at the center of the black square

in Figure 4.5c) from within the brain was chosen from a single slice in the resting

state data set. The phase residual of this voxel was then correlated with the phase

residuals of every other voxel in the slice. This was done for the uncorrected signal

(Figure 4.5a), the signal corrected with only motion and physiologic regression (Figure

4.5b), and the signal fully corrected with TOAST, motion and physiologic regression

(Figure 4.5c). The global correlations are extreme in the uncorrected signal and

are somewhat reduced after performing just motion and physiologic regression, but

significant spatial correlations remain. The fully corrected signal, however, provides a

much more desirable spatial correlation structure, further indicating that application

of all corrections is ideal.

Activations related to the finger-tapping task in the functional data set are shown

for two different slices in Figure 4.6 following different combinations of applied cor-
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Figure 4.5: Maps of the correlation coefficients between the phase residuals in a
randomly chosen voxel in the brain (at the center of the black square in a-c) and all
other voxels in a single slice in the resting state data set with no correction (a), motion
and physiologic regression (b), and TOAST, motion and physiologic regression (c).
The red voxel in (c) is the randomly chosen voxel.
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Figure 4.6: Maps of the χ2 (2 degrees-of-freedom) statistics associated with tests of
the significance of the finger-tapping stimulus reference function in the magnitude-
and-or-phase. Two of the nine slices in the finger-tapping data set are shown, with a
more inferior slice in (a) and a more superior slice in (b). Along the top row of both
(a) and (b) from left to right are shown results of no correction, motion regression
only, TOAST only, and TOAST and motion correction. The bottom row of both (a)
and (b) show results following the same corrections as shown in the row above, with
the addition of physiologic regression. Active voxels are shown above a threshold of
p < 5 × 10−4 (unadjusted) and masked to show only those within the brain. Color
saturates at a χ2 of 35, corresponding to p < 2.5× 10−8.
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rections. Figure 4.6a shows detected activity in the magnitude and phase in one of

the more inferior axial slices and Figure 4.6b shows the same for a more superior slice.

Along the top row of both Figure 4.6a and 4.6b, from left to right, are shown results

of no correction, motion regression only, TOAST only, and TOAST and motion cor-

rection. The bottom row of both Figure 4.6a and 4.6b show results following the same

corrections as shown in the row above, with the addition of physiologic regression.

Analysis similar to this has already been presented by Hahn et al. [89] for TOAST

and motion regression, so this analysis will concern only the effect of physiologic re-

gression on detected activation patters. First, though, it is worth taking notice of the

fact that in the uncorrected data, significant activity is detected, where it was shown

in Hahn et al. [89] that activations were nearly completely absent in uncorrected data.

The difference here is the zero-order off-resonance correction was made, which acts as

a crude dynamic field correction. This removes a large portion of the phase variance

and makes activity apparent (although not shown, uncorrected activation patterns for

this data set when the zero-order correction is not applied almost entirely disappear).

However, the uncorrected results here still appear to contain significant artifactual

activations, showing that the zero-order correction is not sufficient. In terms of the

performance and benefit of the physiologic regression, almost no difference in the

activation patterns are evident when adding physiologic regression to the correction.

This is not terribly surprising given the spectral analysis previously shown. As previ-

ously mentioned, it is likely that physiologic regression would have more of an effect

when the zero-order off-resonance is not applied.
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4.4 Discussion

Work by Hahn et al. [89] has previously demonstrated the efficacy of TOAST, a dy-

namic field correction technique, and the use of motion regression in complex-valued

time series with respect to time series characteristics and complex-valued statistical

modeling. Here, this methodology was implemented with the addition of physio-

logic regression using RETROICOR regressors in complex-valued fMRI. Generally,

the RETROICOR correction is made independently, prior to detection of activation.

In our case, however, we implement the RETROICOR regressors directly into the

complex-valued linear model. This is a more appropriate technique as all modeled

waveforms, including both those of nuisance and those of functional relevance, are

simultaneously fit to the data. Just as the previously mentioned work showed that

the best results were obtained by applying both TOAST and motion regression, these

results show that adding physiologic regression as well provides even better noise re-

duction. However, the addition of physiologic regression does seem to add much in

and of itself.

The relatively small reduction in phase variance obtained with physiologic regres-

sion here seems much smaller than reported in previous work by Petridou et al. [34].

In fact, although the ratio of the phase standard deviation to the inverse magnitude

tSNR was reduced to near the theoretical ratio of 1 over all voxels within the brain

when applying TOAST with motion and physiologic regression, whether or not phys-

iologic regression is included negligibly changes this ratio. We suspect the major

reason for this is the inclusion of the zero-order off-resonance correction applied as

part of the reconstruction in this work, which was not applied by Petridou et al. [34].
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As previously discussed, this does much of the work of removing phase variance due

to respiration in particular, due to its manifestation over large, even global, spatial

scales. This is precisely what Petridou et al. [34] reported and they found that much

of the reduction from phase RETROICOR was in respiratory frequencies. Thus, fol-

lowing zero-order off-resonance correction, less phase variation is left for physiologic

regression to remove. Additionally, the zero-order correction might change the tempo-

ral characteristics of the phase noise such that the fit of the RETROICOR regressors

is suboptimal. Finally, the previous work was also performed at 7T, which likely

results in higher phase noise in and of itself compared to this work at 3T.

It is also interesting to note that motion regression, especially after TOAST has

been applied, performs quite a bit better than physiologic regression. One reason

this might be is that relatively global phase variations from off-resonance fluctua-

tions produce the effect of bulk motion. The motion estimates pick this up and are

thus best suited to remove the phase associated with this apparent motion. If the

zero-order correction alters the temporal characteristics of the respiration effects, the

motion estimates would pick this up, but the physiologic regressors would fail to do

so. It is somewhat puzzling, however, that the combination of physiologic and motion

regressors with TOAST performs much better than expected from the performance of

motion or physiologic regressors alone without TOAST. This does, however, demon-

strate the benefit of regressing motion and physiologic regressors simultaneously. If

RETROICOR were to be applied independently first, the combined benefit shown

here would likely not be obtained.

Other models of physiologic processes besides RETROICOR, for example respi-
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ration per volume time (RVT) described by Birn et al. [23] or the cardiac response

function described by Chang et al. [33], may also be useful to include in noise re-

gression. It is unlikely that including other physiologic regressors would make much

difference when applied with TOAST, motion and physiologic RETROICOR correc-

tions as done here, however. These corrections reduce the average power in the phase

signal to nearly the level of high frequency power, which is likely representative of the

thermal noise floor. If TOAST is not used, it is more likely that additional models of

physiologic noise would provide a significant benefit.

Motion correction has been applied here only by including estimates of bulk mo-

tion as nuisance regressors in the linear model. Motion is often corrected through

registration of each volume in the time series to a reference volume using the motion

estimates. This is not done here because registration of complex-valued volumes is

not as straightforward as registration of magnitude data alone [92]. Further work

is necessary to develop a robust registration method for complex-valued image vol-

umes, and as such, is not applied here. It is likely that doing so could provide further

reduction in phase noise, however.

In all, previous literature and these results strongly suggest that TOAST is the

crucial component for reducing phase noise in complex-valued fMRI data. However,

the TOAST correction alone is suboptimal and further sources of noise, especially

those which manifest over small spatial scales, remain and can be reduced significantly

with regression of motion and physiologic regression.



Chapter 5

Applications of complex-valued artifact re-

duction in fMRI

A noise correction methodology has been built, tested and characterized in the

work presented in the previous three chapters. It has been shown to be robust and

effective, and this is supported by substantial analyses. The point of noise reduction,

of course, is to perform statistical analyses more effectively. The work in this chap-

ter demonstrates some of the complex-valued statistical analyses that might be of

potential investigative interest. The emphasis on the comparison between corrected

and uncorrected data is gone, since this has been well established, and we focus on a

variety of complex-valued tests and analyses in the corrected data. Various potential

hypothesis tests of the presence of contrast in magnitude or phase will be compared

to show that all are indeed feasible and to show the differences in the test statistic

significance in each. One interesting result is that the proportion of voxels containing

some degree of stimulus related contrast in the phase is roughly equal to the propor-

tion of those containing some degree of stimulus related magnitude contrast. We also

116
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investigate the complex-valued response estimated from complex-valued deconvolu-

tion and show that a variety of responses, that are duplicated in multiple data sets,

appear to differ (to varying degrees) from the typical hemodynamic response function

usually used to model response to stimulus.

5.1 Introduction

The typical analysis of fMRI data generally involves fitting a model of the hemody-

namic response, resulting from blood oxygenated level dependent (BOLD) contrast

[35], to an applied functional stimulus in the magnitude of the time series. This is a

fairly robust process, evidenced by the fact that although the shape of the response

varies somewhat with anatomical location [93], the response is typically strong enough

that a poor model will perform well enough in most cases. However, the detection of

functional response in the phase is not necessarily so similar. While some work has

been published regarding detected phase response to activation [4, 63, 94], it is not

nearly so well understood as the magnitude. In most of the studies, phase response

is modeled identically to magnitude response, and there is certainly rationale to do

so. However, there is reason to believe that information in the magnitude and phase

may be quite complimentary, and different types of response in the phase may be of

interest.

There are a variety of reasons why fMRI phase response is studied less than the

magnitude. The most probable is due to the fact that magnitude BOLD contrast is

so large and easy to detect. Another is that noise is typically much more prevalent

in phase than in magnitude [34], which prevents reliable detection of activity. How-

ever, corrections have been recently developed, specifically a dynamic magnetic field
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mapping technique termed TOAST [68], that provide the requisite noise reduction

for adequate complex-valued statistical power [68, 89]. Finally, activation related

hemodynamic changes in the microvasculature are not expected to produce a phase

response in the MRI signal.

Here, we will utilize these previously developed corrections to demonstrate and

characterize a variety of statistical tests of functionally related contrast in complex-

valued fMRI. We will show that these different potential hypotheses tests can be used

with sufficient power and will also characterize the differences in the resulting test

statistics between different sets of contrast tests and constraint conditions. Following

these results, we will investigate the estimated functional response to stimulus in the

magnitude and phase resulting from a complex-valued deconvolution. The goal is

to show the types of response waveforms present in each and that, especially in the

phase, these waveforms can vary quite a bit from the typical hemodynamic response

function which is typically used to model the response in fMRI experimentation.

5.2 Materials and Methods

5.2.1 Data Acquisition

Two fMRI data sets were acquired with a single human subject in a single scan

session using a GE Signa LX 3T scanner (General Electric, Milwaukee, WI) using

the stock quadrature head receiver coil, and functional images were collected with

a single-shot echo planar imaging (EPI) pulse sequence (9 slices, 96 × 96 matrix,

2.5mm×2.5mm×2.5mm voxels, 40.4ms TE, 1 s TR, 45◦ flip angle, 125 kHz readout

bandwidth, 0.720ms echo spacing, 510 repetitions). During both acquisitions, the
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echo time was increased in 2.5ms increments from repetition 11-15 and this was

repeated again for repetitions 16-20. This provided information to compute a static

magnetic field offset map using the method described in Reber et al. [37]. During both

scans the subject performed a unilateral finger tapping task in a block design with 16

epochs of 15 s of task and 15 s of rest following an initial period of rest lasting 30 s.

The queue alerting the subject when to rest and when to tap was provided visually

on a screen, where the screen was black during rest periods and displayed the word

“tap” during task periods. In addition to the functional stimulus, the subject was

asked to perform a “nuisance” task as well. During the first acquisition, the subject

was told to repeatedly swallow and perform a sucking action as if eating a piece of

hard candy. During the second, the subject was instructed to chew as if chewing

gum. These tasks were intended to induce larger than average fluctuations in the

main magnetic field to provide evidence of the fact that the applied corrections were

capable of handling situations that deviated significantly from ideal.

The subjects respiration and heart rate were monitored during both acquisitions

using a bellows belt and pulse oximeter. The pulse oximeter was placed on the hand

opposite that used for finger tapping to avoid inducing artifacts in the heart rate

signal.

5.2.2 Data Processing and Analysis

All acquired image data were reconstructed offline from raw GE p-files. Data pro-

cessing required for image reconstruction and correction of magnetic field dynamics

was done with a custom program written in C and designed in-house. The process

flow the reconstruction and correction involved image generation from k-space by in-
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verse Fourier transform, Nyquist ghost removal using three navigator echos [91], and

estimation of the static magnetic field offset from repetitions 10-20 with varying echo

times which was performed using the method of Reber et al. [37]. To summarize these

processes, the ghosting, caused by alternating shifts in the readout lines of k-space

acquired in opposite directions, is corrected using the Fourier shift theorem to shift

each readout line of k-space by the amount calculated from navigator echoes. Cal-

culation of the static magnetic field offset involves fitting a line to the relationship

between the phase in each voxel and echo time. The slope of that line represents

the static off-resonance and is computed voxel-wise. TOAST was then applied by

estimating the dynamic field and combining it with the static field map as described

in [68].

The raw maps (both static alone or the combination of static and dynamic as

needed) were processed to reduce noise, while maintaining low spatial frequency in-

formation and eliminating high spatial frequency field fluctuations potentially related

to desirable activity, with the goal of minimizing estimation artifacts at the image

boundaries. This was accomplished by using a locally weighted least squared regres-

sion [75]. The method used here is identical to that described in previous work by

Hahn et al. [89] involving TOAST. To summarize the method, certain voxels are se-

lectively censored to be excluded from any of the fits, and voxels well outside the

brain are set to zero. Then, for each voxel, a weighted polynomial is fit to a subset

of all non-censored voxels in the vicinity of the current voxel. The polynomial fit is

weighted such that voxels nearer the target voxel carry more weight in the fitting

model. The fit itself is accomplished using a weighted least squares estimation of the
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polynomial coefficients. The fitted polynomial is then used to estimate the target

voxel. This is repeated for all voxels.

Once the field map processing has been carried out, the maps were applied

using the one-dimensional (phase-encoding direction) Simulated Phase Rewinding

(SPHERE) [53] correction method to remove their effects from the original images.

As a final processing step, the angular mean [58] of each voxel time series following

the dynamic field correction was subtracted out to prevent phase wrapping within

the imaged object. No voxels inside the object drifted more than 2π radians over the

length of the experiment, especially after being corrected for the field dynamics, and

zeroing the mean was sufficient in all cases to prevent wraparound in voxels within

the head.

The complex-valued generalized likelihood ratio detection model used is that de-

scribed in detail by Rowe [19]. In short, the model allows separate design matrices for

the magnitude and phase as well as separate contrast matrices to perform arbitrary

general linear tests of the significance of various linear combinations of regressors.

In this work, magnitude and phase design matrices were identical (but resulted in

different estimated magnitude and phase coefficients). They included a constant and

linear trend in each case, as well as nuisance covariates to compensate for motion,

respiratory and cardiovascular effects. Motion regressors were computed using the

AFNI plugin 3dvolreg [29] which yields 6 separate waveforms (3 for translational,

3 for rotational motion). These were estimated following correction with TOAST.

Physiologic RETROICOR regressors were computed from the respiration and heart

beat waveforms as described by Glover et al. [32], resulting in 8 waveforms (4 for
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respiration, 4 for heart rate).

Modeling of the functional response was done using a deconvolution method [95].

The stimulus reference function was represented by a function that is −1 during task

off periods and 1 during task on periods. This reference function was then lagged over

the range of 0 − 14 s and added to both the magnitude and phase design matrices.

The resulting design matrices both had 30 columns (6 motion covariates, 8 physiologic

covariates, 14 lagged stimulus references, a constant and a linear trend).

Constraint matrices were generated so that general linear tests could be performed

to determine whether the estimated deconvolved response was significant. The linear

constraint matrices C and D, again identical for magnitude (C) and phase (D), were

14 × 30 matrices constructed by concatenating a 14 × 14 identity matrix onto the

right of a 14×16 matrix of all zeros. Using these constraints, coefficients and residual

variance were estimated under four different hypotheses: Ha: Cβ 6= 0,Dγ 6= 0, Hb:

Cβ = 0,Dγ 6= 0, Hc: Cβ 6= 0,Dγ = 0, and Hd: Cβ = 0,Dγ = 0. Using the variance

estimations from each hypothesis, 5 different general linear tests were performed to

determine the significance of the deconvolution in several cases. These hypotheses

are (1) Hd vs. Ha, (2) Hb vs. Ha, (3) Hc vs. Ha, (4) Hd vs. Hb and (5) Hd vs.

Hc. These test for significance in (1) magnitude, phase or both, (2) significance in

magnitude regardless of any phase response, (3) significance in the phase regardless

of magnitude response, (4) significance in magnitude tending to bias against voxels

containing functional phase response, and (5) significance in the phase tending to

bias against voxels containing functional magnitude response. These tests will be

performed on both data sets and comparisons made between the tests’ significance to
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identify and confirm the type of differences they are designed to detect. Additionally,

the linear regression will only be performed on voxel time series from within the

brain. This can significantly reduce computational load, which is not insignificant in

this case with 980 data points, 60 regressors and up to 28 simultaneous general linear

tests.

The estimated functional response in each voxel will be generated by multiplying

the 14 lagged stimulus regressors by the associated coefficients estimated in the linear

least squares fitting procedure. This is designed to produce the response in the absence

of the noise in the measured data. With this information, we can investigate the types

of responses in the phase that are estimated in different areas of the brain. We also

compare the estimated response to the average over all epochs in the measured data

to determine whether the fit is reasonable or if there may be some artifacts induced

by the fit itself.

5.3 Results and Discussion

The results from the 5 different hypothesis tests from a single slice in both data sets

are shown in Figure 5.1. The slice shown here was chosen because it contained a

cluster of voxels with significant phase in the interior of the brain, which most other

slices do not contain (although near surface phase activations are prevalent in most

slices). The observations we will make can be observed from any of the slices in the

data sets. From left to right, the voxels testing above a significance threshold of

p < 5 × 10−4 are shown for the test for magnitude and phase contrast (Fig. 5.1a,f),

magnitude contrast with unrestricted phase (Fig. 5.1b,g), magnitude contrast with

restricted phase (Fig. 5.1c,h), phase contrast with unrestricted magnitude(Fig. 5.1d,i)
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and phase contrast with restricted magnitude (Fig. 5.1e,j). For these images, the χ2

test statistic has been converted to −log10(p), where p is the p-value associated with

the χ2. This normalizes the intensity across all tests, which do not all yield χ2

statistics with equal degrees of freedom.

The first point to note is the similarity of the activation patterns between data sets.

While the first does appear to have a slightly more significant response in general,

the difference is relatively small and the spatial distribution is similar in both. The

comparison between the effect of different hypothesis tests is also generally equivalent

in both data sets. First, the test for both magnitude and phase contrast (Fig. 5.1a,f)

seems to provide the greatest significance, but it is not clear whether this case or

the magnitude contrast with unrestricted phase (Fig. 5.1b,g) yields more activation.

There are certainly voxels in Fig. 5.1a and f that are not active in (Fig. 5.1b,g, and

vise versa. This does make sense, however. Effectively, testing for contrast in the

magnitude and phase simultaneously will provide greatest significance when contrast

in both exists. However, if only one component contains contrast, the test for con-

trast in that component alone will be a stronger test. Figure 5.1 shows that the test

for contrast in both signal components will yield significance where neither test for

contrast in one component alone reaches significance. However, the opposite can be

true as well. Of additional interest is the comparison between the magnitude/phase

contrast test with the other component restricted in one case but not the other (com-

parisons between Fig. 5.1b,g and c,h or between d,i and e,j). Few, if any differences

between the maps can be seen between the two cases in either case of the contrast be-

ing tested. One reason for this is the relatively high level of the significance threshold.
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Figure 5.2: Scatter plots representing the relative significance resulting from various
hypotheses tests. A point plotted at (x,y) in the scatter plot indicates a voxel that
tests at x = −log10(p) under the contrast hypothesis on the x-axis and at y =
−log10(p) under the hypothesis on the y-axis. The red diagonal line is the x = y
line. Points above the line test higher on the y-axis contrast than the x-axis contrast
and vice versa. The plots in (a) and (b) show how constraining the non-contrast
component (phase in (a), magnitude in (b)) can bias against voxels that contain
some response in those components. Plots in (c) and (c) show that a large number of
voxels are more significantly active in both magnitude and phase than only one or the
other (points above red line), while some contain only magnitude or phase response
(points below the red line).
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The bias towards or against the significance of the statistic due to (un)restriction of

the non-contrast covariates is dependent on how large the contrast is and how much

variance the non-contrast covariates can account for.

We continue to investigate the differences between the statistical test results by

making scatterplots of the −log10(p) of the test statistic in a voxel with 2 different

tests to compare on the x and y axes. These scatter plots are shown in Figure 5.2.

Figure 5.2a shows the magnitude contrast with restricted vs. unrestricted phase, 5.2b

shows phase contrast with unrestricted vs. restricted magnitude contrast, 5.2c shows

magnitude contrast vs. magnitude and phase contrast and 5.2d shows phase contrast

vs. magnitude and phase contrast. In Figures 5.2c and d, the magnitude and phase

contrasts have unrestricted phase and magnitude, respectively. The plotted points are

those from both data sets combined. What the scatter plots show quite conclusively

is what was just mentioned above. The difference between the statistics for tests of

contrast in a single component (Fig. 5.2a,b) vary only a little depending on whether

the non-component contrast is constrained or not. It is pretty clear that points bias

somewhat towards the unconstrained non-contrast covariate case, or rather biases

away from the constrained case, but most points show a small bias and thus only

those hovering near the threshold will be relevant. On the other hand, the difference

between the magnitude and phase contrast hypothesis test and a single component

contrast results in large differences. In plots of dual contrast versus only magnitude

and only phase contrast, the majority of the points are more significant using dual

contrast. This indicates that these points indeed contain some degree of response

in both the magnitude and phase. If this were not the case, they would instead fall
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into the strip of points that lie under the red line (representing the line where the

two statistics are equal), indicating that the single contrast test is more significant.

These are points that truly only have contrast in the one component. The width of

the strip of points below the red line is the statistical penalty paid when testing for

both magnitude and phase contrast when only single component contrast is present.

In addition to the test statistics, we also investigate the fitted response functions

in the magnitude and phase. Because we performed a deconvolution, we can estimate

arbitrary linear response to stimulus (although we gain this in exchange for statistical

power). In Figures 5.3–5.6, we present plots of the estimated response function in

both magnitude and phase over a 6×6 voxel square area in both data sets. The scales

on each plot within a single grid are consistent (for both red and black lines), but may

be different between grids. Each of the figures contains a map that indicates exactly

where the voxels being plotted are located. The plots in Fig. 5.3–5.5 are of voxels

around the area where cortical activity might be expected to occur. This is not to

say that all responses in these areas are directly related to said activity. The voxels

in Figure 5.6 are located in the posterior of the brain, distal from the expected area

of activity and near large vasculature. A large amount of information is presented in

these 4 figures, but it is provided so that two things are clear. First, the estimated

responses in each dataset (chewing and swallowing data sets), which are fitted com-

pletely independently of one another, match extraordinarily well in both magnitude

and phase. This is the case in many locations (nearly everywhere the response ap-

proaches significance), and we consider it to be important that substantial evidence

of this is given. That the responses match between data sets strongly suggests that
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the corrections are doing what we expect them to. We will take the opportunity to

mention here the importance of the different nuisance tasks performed during data

acquisition. The difference in the two nuisance tasks intentionally force the field fluc-

tuations to be different in each data set. Not only does this provide opportunity to

demonstrate that the correction can handle either case equally well, but in the event

that the TOAST correction itself is inducing artifacts into the time series, this makes

it very likely that the artifacts would be different in each data set. Similarly, the

physiologic state and bulk motion is different during each experiment and artifacts

of the nuisance regression would manifest differently in the two reconstructed time

series. Because the responses seem to match quite well, we can safely assume that if

the corrections induce artifacts of their own, they are very small.

The second reason we present such a large amount of data is that we want to

identify a wide range of responses that, although they may not reach significance

under the hypotheses which we tested, are present in both data sets and match

very closely across them. If very similar responses are found in both data sets, it

suggests that there may be something real behind the response, but it may be very

small or simply not being tested for appropriately. In terms of variations in response

waveforms, there are many. Some of it is certainly noise related variation, but certain

types of waveform characteristics are repeatedly present in both sets of data. For

example, the phase response in many of the voxels in Fig. 5.6, which shows voxels in

the posterior brain near large vessels, is quite different, for the most part, from the

response in and around the active cortex, as indicated by the plots in Fig 5.3-5.5.

Another other relatively interesting characteristic evident in the phase response of
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both data sets in many voxels shown in these figures is the presence of transients, or

spikes, that often occur about 4-8 seconds following stimulus onset (which coincides

with x = 0 in these plots), and then again approximately 15 s later. These timings

are coincidental with the typical delay to onset of hemodynamic response function

[96] and the time between them is the stimulus duration. All four figures show them

to some degree, but the best examples are probably in Fig. 5.4, and Fig. 5.3 shows

quite a few as well. Otherwise, the shape of the phase response seems to be quite

variable, but again, similar variability is seen in both data sets suggesting that it may

be somehow related to the stimulus as opposed being simply a results of noise. Of

course, in certain places the phase response is very similar to the typical magnitude

hemodynamic response function.

One final comparison is made in Figure 5.7 between the estimated response and

the measured response averaged over all 16 epochs in both data sets from voxels in

the same grid as shown in Figure 5.5. This is done to make sure that the deconvo-

lution itself is not inducing consistent errors in the estimated coefficients. The linear

regression with the lagged stimulus reference functions is about the only thing applied

to both data sets that is identical. It is simply prudent to check and make sure that

the measured and estimated response functions don’t differ drastically. Indeed, the

black (estimated) and red (epoch averaged measurement) lines plotted in Fig. 5.7 are

very similar, so the least squared fitting appears to be working very well.

There really are many potentially interesting details contained in the data pre-

sented in Figures 5.3-5.6, but it is beyond the scope of this work to probe their

underlying causes or the exact implications of certain types of response waveforms.
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Figure 5.7: Plots of voxel functional response. The voxels being plotted are the same
as those within the red box in Figure 5.5. The black lines are estimated functional
response and the red lines are the measured response averaged over all 16 epochs.
(a) shows the magnitude response in the chewing data set, (b) is the magnitude
response in the swallowing data set, (c) shows the estimated and epoch averaged
measured phase response in the chewing data set, and (d) show the same as (c) for
the swallowing data. Plot scale is constant over the cells in a matrix of plots, but
may vary between matrices. The time scale on the x-axis runs from 0 to 29 seconds,
where zero is the onset of stimulus.
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For this, extensive simulated data and well controlled and designed experimentation

will be required. However, we believe that what has been presented here provides

realistic experimental insight into testing for a variety of types of signal contrast in

addition to demonstrating that all of these tests are feasible now that the necessary

noise correction techniques have been developed and validated. Furthermore, we have

shown that accurate estimation of the complex-valued response to functional stimulus

is quite feasible. The similarity between the datasets, which is expected given that

they are acquired from the same subject performing the same functional task, is an

indication that our corrections and analysis are accurate, since there is little potential

for correlated noise to be induced in the data sets in any way that has not already

been ruled out. Not only can the response be estimated, but the evidence suggests

that it might be worthwhile to start doing so, since the initial statistical results in-

dicate that a large majority of voxels contain some degree of functional response in

both magnitude and phase, and the complex-valued functional response may become

a useful investigative tool.



Chapter 6

Conclusion

6.1 Summary of Presented Work

The research that has been presented here has followed a logical progression. From

the identification and characterization of the problems inherent to complex-valued

statistical analysis of fMRI time series, to development, application and verification

of complex-valued noise reducing techniques, and finally a demonstration of a variety

of the types of complex-valued analyses that can be applied to fMRI data sets when

noise has been corrected appropriately.

We began with work, presented in chapter 2, that first attempted to apply a

complex-valued constant phase model to fMRI data and showed that statistical power

was greatly reduced compared to a magnitude-only model. This suggested that the

problem was related to increased phase variance, as opposed to a magnitude-related

issue, and we thus endeavored to find a solution for the time variant magnetic field

fluctuations that were the most likely culprit for such large and spatially global phase

variance. The culmination of this effort was the TOAST dynamic field correction

137
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method. We rigorously tested the method through simulation, phantom and human

experimentation and characterized its performance. Most importantly, we showed

that after applying TOAST to the data, statistical power was restored to complex

constant phase model tests.

Because there is other noise in complex-valued time series that bulk dynamic

magnetic field corrections like TOAST aren’t intended to correct, we worked towards

building a reliable noise correction framework over chapters 3 and 4. This involved

using TOAST as a foundation for the correction and including nuisance covariates of

bulk motion, respiratory and cardiovascular effects in the linear model used to detect

functional activity. As the correction scheme was built upon, each of the components

were analyzed in detail, both individually and as a group. We found that the best

performance in terms of ideality of the corrected complex-valued time series was to

perform all together as a group. An indirect benefit of this analysis was that we were

able to simultaneously characterize the noise present in uncorrected acquired data.

We looked at normality and autocorrelation structure of the real and imaginary time

series in chapter 3, and focused more on the spectral signature of the phase, as well

as the relationship between phase variance and magnitude SNR in chapter 4. In

all cases, uncorrected data is very corrupted and the corrections work quite well at

providing a much more ideal time series.

This complex-valued noise correction framework is put to good use in the fifth

chapter. We no longer focus on the need for it or exactly what it accomplishes, as

this is very well established in the previous three chapters, and can just assume with

confidence that after being applied, data can be processed with complex-valued tech-
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niques as needed. We focus on showing the results of statistical tests for different

combinations of functionally related contrast in the magnitude and phase fMRI sig-

nal. Following these results is an analysis of the estimated complex-valued functional

response to stimulus. Two similar data sets are reconstructed, corrected and analyzed

to show that this response, especially in the phase, can assume a variety of differ-

ent forms, including that of a more traditional hemodynamic response function, that

are found consistently in the same locations in both data sets. The message is clear

that the complex-valued statistical tests are feasible in these corrected data sets and

contrast in fMRI data can be detected under a variety of different constraints. Ad-

ditionally, the functional phase response, which is not well understood and, frankly,

understudied is shown to be of potential interest. The final determination on this

matter is a potential avenue of future research.

6.2 Future Work

The stage now seems to be set for robust application of complex-valued techniques

in fMRI. This suggests quite a few opportunities for future research projects. First,

an effort to make complex-valued techniques standard in fMRI experimentation could

be advantageous. It would make use of all of the acquired data and even if contrast

in the phase is not tested for, appropriate models of its response would allow greater

statistical power for detecting contrast in the magnitude.

Of course, the key phrase here is “appropriate models of its response.” Work

to determine exactly what these models look like is required before complex-valued

analysis can become the standard. The dependence on the phase response on the

specific vascular morphology as well as the functional relationship between blood flow,
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blood volume and oxygen consumption makes this a potentially difficult task. Similar

statements can be said about the magnitude response, and even though extensive

efforts to determine precisely how these processes are manifested in the fMRI response,

thorough understanding is still evasive. However, experimentation and analysis in the

complex domain may provide the additional information and investigative techniques

required to make the desired advancements in understanding.

Other areas of study could possibly take advantage of the work we have presented

in this dissertation. One is the endeavor to directly detect neuronal currents using

fMRI. Our correction framework may provide the means to determine with some

degree of certainty whether neuronal current induced contrast is a feasible mechanism

for studying brain function. Another is functional connectivity MRI (fcMRI). It is

not certain whether complex-valued correlations are a useful way to analyze resting

state data, but given that we have shown that functionally related phase response is

quite prevalent and the noise reduction techniques are now available to make such

study a feasible reality, it would certainly seem to be worth the effort to find out.

These are certainly not the only research topics that could potentially make use

of the progress we have made through the work we have presented here. Complex-

valued analytical methods are only natural in MRI given that the acquired signal is

inherently complex-valued. The ability to control noise in the complex domain is an

important step in the process of making complex-valued analysis a reality.
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