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, often utilized in functional MRI (fMRI) experiments, is well known for its
vulnerability to inconsistencies in the static magnetic field (B0). Correction for these field inhomogeneities
usually involves measuring the magnetic field at a single time point, and using this static information to
correct a series of images collected over the course of one or multiple experiments. However, common
phenomena, such as respiration and motion, change the characteristics of the B0 field homogeneity in a time-
dependent and often unpredictable manner, rendering previous field measurements invalid. The effects of
these changes are particularly large in the image phase, due to its direct and sensitive relationship to the
magnetic field, and methods utilizing complex information can suffer enormously. This dependence can be
exploited to estimate the temporal dynamics of the B0 field. Use of this information to correct fMRI data can
provide more effective motion correction, reduce temporal “noise,” and can substantially restore statistically
significant power to complex fMRI data analysis. All of the necessary information is embedded in complex
EPI images, and results indicate this is a robust way to improve the quality of fMRI data, especially when used
with complex analysis.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Experiments in functional MRI (fMRI) often involve single-shot
gradient echo echo-planar imaging (GE-EPI) pulse sequences to
maximize acquisition speed and blood oxygenation level dependent
(BOLD) contrast (Ogawa et al. 1990). However, inhomogeneities in the
static magnetic field can result in severe artifacts, most notably image
warping and signal loss. Correcting these errors has been a consistent
field of research. In general, this correction is a two-step process,
involving estimation of the spatially dependent main field offsets
followed by image correction based on the estimated map. The field
map can be calculated in a variety of ways (Jezzard and Balaban, 1995;
Reber et al., 1998; Kannengiesser et al., 1999), often with two or more
reference images acquired at different echo time (TE) values (Jezzard
and Balaban, 1995). In practice, the field offsets are assumed to be
temporally invariant, justifying the correction of an entire time series
of images with a single map. Although large scale inhomogeneities are
generally constant over experimental time series, this assumption fails
when considering sensitive phase data due to the small scale changes
associated with the resonance offset caused by the breathing cycle
(Van de Moortele et al., 2002; Barry and Menon, 2005) and slight
changes in the orientation of tissue boundaries. The former is
unavoidable in vivo, and subject movement, whether inside or outside
rights reserved.
the field of view, can cause non-negligible changes in the magnetic
field due to reorientation of the aforementioned susceptibility profile.
When the field changes, so does the induced warping, which can have
significant consequences. For example, this warping and its associated
voxel intensity modulation can cause less reliable bulk motion
correction (Jezzard and Clare, 1999). In addition, spatial specificity is
sacrificed as the point spread function associated with the off-
resonance changes (Robson et al., 1997). These phenomena are well
known and often have non-negligible effects, most notably additional
temporal (non-white) “noise” that reduces strength and specificity of
activation statistics. Accompanying phase changes can have similar
detrimental impact on complex, or phase sensitive activation models
(Menon, 2002; Rowe and Logan, 2004). In depth performance analysis
of these methods and identification of their sensitivity to these
potentially large phase variations has resulted in the recognition of the
potential value of correcting for off-resonance dynamics (Nencka and
Rowe, 2007). An alternative method involves a model for magnitude
activation in complex data, and has been developed to account for
phase variations (Rowe, 2005). However, it can be difficult to provide
valid regressors for phase, and evenwhen properly modeled, dynamic
image warping artifacts still remain, currently making this a less
attractive solution.

Current methods to combat the problem of temporal field
variations include low resolution field mapping with a type of dual-
echo single-shot EPI (Roopchansingh et al., 2003), zero-order field
offset correction using only a pair of navigator echoes (Jesmanowicz et
al., 1993; Van de Moortele et al., 2002), and real-time magnetic field
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shimming based on a priori knowledge of the field changes resulting
from a regular phenomena (Van Gelderen et al., 2007). While each of
these provides certain benefits, issues exist preventing their wide-
spread use. Each method struggles to provide field maps with a
combination of high resolution, SNR and spatial order to be useful to
correct for commonly unpredictable and non-linear temporal field
dynamics. Alternatively, effects from certain field variations may be
removable without either field measurements or shimming by
monitoring physiologic phenomena that influence field changes,
such as breathing rate. Signal components at the measured frequen-
cies can then be retrospectively accounted for (Hu et al., 1995). This
method not only requires the acquisition of physiologic information
but may remove signal of interest aliased to the frequency of the
physiologic fluctuations while failing to remove “noise” due to field
changes arising from unmonitored sources.

One of the most common methods of field map estimation
involves acquiring images at different echo times and comparing the
difference in phase evolution between the two (Jezzard and Balaban,
1995). Given two images I1 and I2, with echo times TE1 and TE2
respectively, the general equation for the estimated resonance offset
in a voxel at location (m,n), denoted by Δ 1ω m;nð Þ (radians/sec), can
be written as

Δ 1ω m;nð Þ = arg I2 m;nð ÞI41 m;nð Þ� �
TE2−TE1ð Þ ð1:1Þ

where Ii(m,n) represents the complex value of the voxel with
coordinates (m,n) in image i=1,2 ⁎ denotes complex conjugation,
and the arg operator returns the phase angle of its argument. The
signal-to-noise ratio (SNR) of Δ 1ω m;nð Þ is proportional to the ratio
of TE2−TE1 (referred to as ΔTE) divided by the geometric mean of
the standard deviation of the phase noise in the two images. Thus,
increasing the difference in echo times decreases variation in the
field map, but with such an increase, complicated phase wrapping
can occur, along with an offsetting increase in phase variance
resulting from the longer TE. These issues require the echo time
difference be kept relatively short and multiple references are
sometimes acquired to achieve the necessary accuracy (Reber et al.,
1998), inherently requiring more time. For these reasons, it is not
surprising that previous evaluation of methods based on Eq (1.1) for
dynamic field mapping has not produced promising results (Hutton
et al., 2002).

The recent method of Lamberton et al. (2007) also utilizes Eq. (1.1)
but assumes invariance of the RF pulse phase (and thus the initial spin
phase, Φ0) from shot to shot to alleviate the need for two unique
images at each time point to calculate the corresponding field map.
Rather, because Φ0 is the same for all images, it can be used for
reference (as I1 is in Eq. (1.1)) as the image phase at TE=0. Additionally,
this method provides a maximum ΔTE without increasing the echo
time of each acquired image. However, because the static field will
likely cause the phase of each image to wrap many times over the
Table 1
Simulation parameters and results

ΔT2−⁎
(ms)

ΔB0
(nT)

CNR1,2 ΔΦ
(°)

Series A (control) Series B,

z-statistics1 β0
1 β 1

1

×107
β2
1

×102
σ1

×102
z-statistic

MO CP MO C

.432 0 1.24 0 4.09 4.12 .408 .49 2.68 1.08 3.71 1.

.216 9.17 .49 6 1.61 .941 .407 −1.88 1.06 1.08 1.64

.432 4.58 1.19 3 3.90 3.27 .408 1.99 2.56 1.08 3.63 1.
0 4.58 .07 3 −.25 −.24 .406 .84 −.15 1.08 −.16
.432 9.17 1.01 6 3.59 2.19 .408 −.67 2.38 1.08 3.48 1.
.216 4.58 .56 3 1.83 1.52 .407 −.92 1.20 1.08 1.75

1 Average value over all regions of interest.
2 CNR=β2 / (2⁎σ).
course of TE, complicated phase unwrapping procedures are necessary
to find the correct phase accumulation in reference to the initial phase.
In order to apply the method, an initial measurement of Φ0 is also
required before acquiring the image time series.

The method of Lamberton et al. (2007) can be extended to find
the difference, δ 1ω , between the resonance offset during acquisition
of the tth image, Δωt, and the average resonance offset during the
entire series acquisition, Δω , rather than attempting to directly
calculate the absolute resonance offset at each time point. Further
analysis yields

δ 1ω t m;nð Þ =
arg It m;nð Þ ∑

N

j = 1

I4j m;nð Þ
jIj m;nð Þj

( )

TE
ð1:2Þ

for a series of N images with identical TE. This provides two
significant advantages over the method as presented by Lamberton
et al. (2007). First, while ΔTE remains TE, the phase of It will not
normally differ by N2π from the average image phase (represented
by the summation in Eq. (1.2)), which removes the need for any
phase unwrapping. Second, correction for temporal variations in off-
resonance (using the δ 1ω t measurements) can be performed without
any reference at all, as δ 1ω t does not depend on Φ0. While a static
effect would remain in this case, a single measurement of Δω
(similarly to Lamberton et al. (2007)) provides the means to fully
correct every image in a series with no need to apply any phase
unwrapping. The benefit of the proposed method is mostly realized
through the convenience of avoiding phase unwrapping and the
ability to correct for field dynamics in the absence of any reference.
Performance of the methods, determined by the accuracy of the
measured fields, should be very similar, except when phase is
incorrectly unwrapped, as both otherwise share similar sources of
error.

Theory

The proposed method relies on the assumption that the initial
spin phase, Φ0, remains constant throughout the acquisition of a
series of images, although the value of Φ0 is inconsequential. The
validity of this assumption is a significant topic of Lamberton et al.
(2007), and is well addressed in the literature. It is also true that, in
general, any multi-shot imaging modality requires RF pulse consis-
tency from shot to shot and as a result, Φ0 is almost always neces-
sarily assumed to be constant through time. Other field mapping
methods making this assumption are commonly used with a great
degree of success (Reber et al., 1998; Zeng et al., 2004), further
illustrating its practical validity.

Let the value of Φ0 represent the phase of an image, I0, acquired
with TE=0. In other words, Φ0(m,n)=arg(I0(m,n)), where I0(m,n) is the
complex value of the voxel with coordinates (m,n). The value of Φ0 is
assumed to be unknown, but constant from acquisition to acquisition
static correction Series B, dynamic correction

s1 β0
1 β1

1

×107
β2
1

×102
σ1

×102
z-statistics1 β0

1 β1
1

×107
β2
1

×102
σ1

×102P MO CP

18 .406 −4.56 2.58 1.15 3.91 3.66 .410 4.77 2.72 1.14
.70 .405 −4.36 1.10 1.15 1.62 1.04 .408 4.92 1.14 1.14
14 .406 −4.70 2.51 1.15 3.73 3.11 .409 4.92 2.62 1.14
.38 .404 −4.29 −.14 1.15 −.14 −.12 .407 4.88 −.09 1.14
06 .406 −4.35 2.41 1.15 3.50 2.29 .409 4.76 2.47 1.14
.76 .405 −4.48 1.19 1.15 1.79 1.49 .408 4.92 1.25 1.14



Fig. 1. Spin density map, ρ, used for simulation (a). Regions of simulated activation are represented by black squares. The global, static field offset applied in simulation and the
variance of the simulated dynamic field used in simulation are shown in b and c, respectively.

744 A.D. Hahn et al. / NeuroImage 44 (2009) 742–752
in a series of N images, with each image in the series having echo time
TE. Then from Eq. (1.1), the estimated magnetic field offset in the voxel
with coordinates (m,n) in the tth image, represented as Δ 1ω t m;nð Þ
(radians/sec) can be written as

Δ 1ω t m;nð Þ = arg It m;nð ÞI40 m;nð Þ� �
TE

: ð2:1Þ

The average estimated magnetic field offset present during the
entire series acquisition in the voxel with coordinates (m,n),
represented as Δ 1ω m;nð Þ, (in radians/sec) can be similarly written
as

Δ 1ω m;nð Þ = arg
P
I m;nð ÞI40 m;nð Þ� �

TE
ð2:2Þ

I m;nð Þ = ∑
N

j = 1

Ij m;nð Þ
jIj m;nð Þj : ð2:3Þ
Fig. 2. fMRI statistics resulting from simulated activation. z-statistic maps shownwith an una
labeled a–h.
Given the unknown nature of I0, neither Eq. (2.1) nor Eq. (2.2) can be
calculated directly. However, by writing Δ 1ω t m;nð Þ in terms of
Δ 1ω m;nð Þ plus some offset, δ 1ω t m;nð Þ,

Δ 1ω t m;nð Þ =Δ 1ω m;nð Þ + δ 1ω t m;nð Þ ð2:4Þ

it is possible to solve for δ 1ω t m;nð Þ by combining Eq.(2.1–2.4), and
rearranging the variables to arrive at Eq. (1.2), which does not directly
depend on I0(m,n).

Materials and methods

Simulation

A computer simulation was designed in Matlab (The Mathworks,
Natick, MA, USA) to test the potential benefits of the time varying
magnetic field correction on an fMRI series. First, gradient waveforms
were generated for the given imaging parameters (GE-EPI, 96×96
matrix, TE=42.7 ms, BW=125 kHz, echo spacing=0.708 ms, and
djusted threshold of pb0.01. All power maps shownwith threshold of power≥5%. Rows
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FOV=24 cm). Maps of spin density, transverse relaxation time and
main magnetic field offset, denoted as ρ(x,y), T2⁎(x,y) and ΔB0(x,y)
respectively, were provided as input, and the k-space signal based on
these three input maps and the generated gradient waveforms, Gx and
Gy, was output according to

S mΔtð Þ = ∑
Nx=2−1

q = −Nx=2
∑

Ny=2−1

r = −Ny=2
ρ qΔx;rΔyð Þe

− mΔt
T*
2

qΔx;rΔyð Þ

� �

� e
iγΔt ∑

m

w = 0
Gx wΔtð ÞqΔx + Gy wΔtð ÞrΔyð Þ + ΔB0 qΔx;rΔyð Þm

� �
ð3:1Þ

where Nx and Ny are the number of discrete points in ρ along the x
and y dimensions. After acquisition of S, the samples are placed
accordingly in the 2D k-space matrix for image reconstruction. In Eq.
(3.1), Δt is not necessarily the sampling interval, but is the resolution
withwhich the summation in the exponential is computed. The values
of m at which samples are actually recorded are not necessarily
sequential, and will be determined by the gradient sequence and
other parameters. As Δx, Δy and Δt approach zero, the summations
become better estimations of the integral representing the theoretical
signal, but computation time grows quickly. With larger values, some
error is induced through inability to properly account for k-space
truncation and poorer modeling of the continuous image acquisition
process.

Two different series of 276 images were created in this way using
the same, temporally constant, ρ(x,y) map for each series. In each
series, identical magnitude and/or phase “activations”were simulated
by locallymodulating the value of T2⁎ formagnitude change andΔB0 for
phase change in a block design pattern (20 repetitions rest followed by
16 epochs of 8 repetitions active and 8 repetitions rest). Six different
combinations of activation types and sizes were considered, indicated
by pairs of T2⁎ andΔB0 changes in the first two columns of Table 1. Each
combination was simulated in 6 different 3 voxel by 3 voxel regions,
shown in Fig. 1(a). The use of the various locations is directed at
averaging out the influence of differences in spatial contrast, size of
field variations, and field gradients in the field offset.

The first of the two series (series A) was simulated under the
influence of an additional global, static, ΔB0 field, which is shown in
Fig. 1(b). The second series (series B) was simulated under the
influence of a global, time variant, δB0 field in addition to the
aforementioned static field, so that the total field present was
ΔB0+δB0. The variance of the time variant field is shown in Fig.1(c). All
fields used for simulationwere taken fromfieldsmodeleddirectly from
experimental data of a human subject performing a deep breathing
task at 0.167 Hz. The initial value of the δB0 map for series B was equal
to zero so that the initial field offsetwas identical for series A and B and
equal to ΔB0. In order to measure this initial field inhomogeneity, an
additional 10 images were simulated using this initial ΔB0 time point
only, and images 2, 4, 6, 8 and 10 had the TE increased to 47.2 ms.

The only difference between series A and series B is the time
varying portion of the magnetic field offset. As such, series A serves as
a control, allowing for determination of the effect of the time varying
field as well as the quality of the correction.

Series A was corrected for static field inhomogeneities using an
initial measurement of the field offset, Δ 1ω1, acquired with the first 5
pairs of simulated images using Eq. (1.1). Series B was corrected in two
different ways, firstly identically to the static correction for series A,
and secondly using a dynamic field correction, using maps of δ 1ω i

calculated with Eq. (3.1). Subsequently, Δ 1ω i was calculated for images
Fig. 3. Scatter plots of mean MO z-statistics for static correction vs. control (a) and
dynamic correction vs. control (b). Also shown, a scatter plot of mean CP z-statistics for
the dynamic correction vs. control (c). Points are color coded by the amount of variation
of the dependent variable from the control (small variation=dark blue, large
variation = red).
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11 through 286 (the first 10 images were discarded after being used to
find Δ 1ω i as described above), and a fourth order polynomial was fit to
each Δ 1ω i map, helping to eliminate spatially varying random noise.
Additionally, this process prevented the removal of the local high
spatial frequency ΔB0 modulations so that phase activations remained
in the corrected time series. As a final processing step, the polynomial
field models were allowed to smoothly fall to zero outside the object
area by applying a mask over the imaged object, which had been
previously dilated and smoothed by a Gaussian filter with FHWM of 4
voxels.

Once magnetic field estimations had been made using the
proposed method, the appropriate corrections were applied using
the Simulated Phase Rewinding (SPHERE) method (Kadah and Hu,
1997). In the static case, the initial Δ 1ω1 map was applied to each
image, while the Δ 1ω i map was used to correct the ith image in the
dynamic case. This provided a direct means to evaluate the effects of
dynamic correction.

Activation statistics were calculated for each corrected time series
using two different methods. The first method, most typically used,
analyzes only the magnitude of the image time series, and is thus
termed the magnitude-only (MO) method (Bandettini et al., 1993;
Rowe and Logan, 2005). This was implemented with a general linear
model (GLM) with regression for constant and linear trends, as well as
for the task reference function, which was equal to 1 during stimulus
and −1 during rest. The second method used was the complex
constant phase (CP) method (Rowe and Logan, 2004). This technique
Fig. 4. Histograms of static and dynamic mean MO z-statistic error, defined as difference fro
dynamic correction (c), and MO and CP power error after dynamic correction (d). Voxels w
(see Fig. 1(a)) by 2 voxels on each side.
has been shown to be biased against voxels containing phase changes,
and useful due to their likely association with venous macrovascu-
lature (Menon, 2002; Nencka and Rowe, 2007). Comparisons between
the activation statistics (z-statistics) from the different time series
were made in order to gain insight into (i) how temporal variations in
ΔB0 affect the activation statistics, and (ii) the effectiveness of the
dynamic field calculation (and subsequent correction) method in
restoring the original activation.

Phantom

A spherical phantom filled with SiO2 oil was imaged to evaluate
the potential of the proposed dynamic field mapping method to
correct for the effects of a time varying magnetic field offset in a
controlled environment. The experiment was performed using a GE
Signa LX 3T scanner (General Electric, Milwaukee, WI) with a GE-EPI
pulse sequence (8 axial slices, 64×64 matrix, TE=44.1 ms, TR=1 s,
flip angle=45°, BW=125 kHz, echo spacing=0.624 ms, FOV=24 cm,
slice thickness= 3.8 mm, and 276 repetitions). During the acquisi-
tion of the images, perturbations in the main field were induced
by manually moving a bottle filled with water along the Inferior–
Superior axis at a rate of 0.2 Hz. These field perturbations would
mimic those seen with motion outside of the field of view, such
as breathing. This is in contrast to motion within the field of view,
which would also cause field changes, but is not simulated here.
The perturbation frequency of 0.2 Hz was chosen to estimate the
m control (a), static and dynamic MO power error (b), MO and CP z-statistic error after
ere included in the analysis contained regions defined by expanding the active ROIs



Fig. 5.Maps of the temporal variance in the estimated magnetic field during the phantom, humanwith heavy breathing, and humanwith jaw motion experiments are shown in a, b
and c respectively.
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breathing rate, but perturbation rate should not affect the results,
as long as intra-acquisition effects remain small. The peak-to-peak
displacement of the bottle was approximately 20 cm, and it was
brought as close to the phantom as possible without entering the
field of view.

In this case, no initial reference of an absolute field offset map was
calculated, i.e. only the maps of δ 1ω i were estimated and applied, as
correction for δ 1ω i alone should reduce effects of the temporal
variations in Δω.

The raw estimated maps were processed in an identical fashion to
that described in the Simulation methods and the SPHERE method of
correction was used as well.

Human

Two separate experiments were performed with a human subject
to evaluate the dynamic field map corrections in vivo in two different
situations where temporal changes in themagnetic field were likely to
occur. Experiments were both performed using the same GE 3T
scanner as for the phantom experiment. A GE-EPI pulse sequence was
used for both experiments (9 axial slices, 96×96 matrix, TE=42.8 ms,
TR=1 s, flip angle=45°, BW=125 kHz, echo spacing=0.768 ms,
FOV=24 cm, slice thickness=2.5 mm, and 296 repetitions). Even
repetitions up to repetition 20 had an increased TE of 47.8 ms and
were used in Eq. (1.1) for calculation of Δ 1ω1. The first 20 repetitions
were subsequently discarded, leaving the last 276 repetitions for
further analysis. Smaller voxel size (and thus longer TE) was used to
increase the effect of the field variations, which are smaller in these
experiments than in the phantom.

Each experiment involved a combination of two tasks. The task
common to both was visually cued bilateral finger tapping (the
Fig. 6. Power spectra of a single voxel time series with and without corre
“functional” task), which followed a simple block design (20 s off,
16 epochs of 8 s on, 8 s off, for 0.0625 Hz task on/off frequency, starting
at repetition 21). In the first experiment, the second task was deep,
heavy breathing at a rate of 0.167 Hz. The second experiment replaced
the heavy breathing with opening and closing of the jaw at the same
rate. In each case, the timing of the second task was cued visually
along with the “functional” task cue. The purpose of the second, “field
modulating” task, was to modulate the main field at a known rate in
order to make the effects on the time series clear and to allow more
straightforward evaluation of the correction.

The experimental design provides an initial estimate of the field
offset, Δ 1ω1, and thus, both static and dynamic correction were
performed in the samemanner as described for the Simulation. Again,
the SPHERE method was used to apply the correction.

Following the correction for the magnetic field offset, each
corrected image series was motion corrected using the AFNI (Cox,
1996) 3dvolreg program. Motion correction was applied to the
magnitude images only, as is usually the case. Available motion
correction techniques are not optimized for complex valued data and
are thus not applied. The evaluation of such techniques, although
necessary, is beyond the scope of this manuscript.

The processing resulted in four time series for each experiment:
static field corrected with and without motion correction; and
dynamic field corrected with and without motion correction. Activa-
tion statistics using both the MO and CP methods were computed in
the samemanner as described for the Simulation, only in this case, the
first 10 images were discarded to allow the magnetization to reach
steady state and the task reference functionwas delayed 4 s to account
for hemodynamic delay. Because motion correction was applied only
to magnitude data, complex activation statistics were not calculated
after applying the motion correction.
ction. The same plot is shown full scale (a) and at reduced scale (b).



Fig. 7. Voxel-wise maps shown are amplitudes of the magnitude (row a) and phase (row
b) power spectra at 0.2 Hz, regression coefficients of a 0.2 Hz sine wave (row c) and
mean squared error of a regression fit of a constant and linear reference (row d). Row c
and row d shownwith threshold of 2 and 17.5 respectively. Images on the right and left
correspond to data with and without dynamic correction respectively.
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Results

Simulation

In order to analyze the effects of the time varying magnetic field as
well as the quality of the correction method, 100 iterations of each
image series were processed, each with the addition of random,
normally distributed noise added to both the real and imaginary
channels of the simulated k-space signal. The amplitude of the added
noise was such that the maximum contrast to noise ratio in the
magnitude signal was approximately 1. Because six different combi-
nations of magnitude and/or phase activations were used, a total of
600 iterations of each series were performed, with 100 iterations for
each of the different activation sizes in each region.

The statistics generated for Fig. 2 originate from images simulated
with a unique activation type from Table 1 in each region (iterated
100 times). The top left ROI (Fig. 1(a)) contains the combination from
the first row of Table 1 (no ΔB0 change) and the regions were
assigned the remaining combinations, down the rows of Table 1, in
clockwise order. The mean values (z-statistics, beta coefficients) are
computed from 100 samples, and the power being referred to is the
percentage of times a voxel was active above a p=0.01 unadjusted
threshold.

The nearly total lack of voxels with a mean CP z-statistic above
threshold (Fig. 2(d)) as well an almost complete loss of power (Fig. 2
(f)) after static correction alone is precisely the expected result in the
presence of the time variant field. Additionally, the losses appear
nearly completely recoverable after dynamic correction. The
observed detrimental effects, which are not accounted for by the
static correction, can be attributed to phase changes caused by the
variable field, which are greatly reduced by the dynamic corrections.
Such variations will result in abnormally high complex residuals,
reducing statistical significance in voxels that have no true physio-
logically related phase changes. Dynamic warping and shifting in the
image from field variations can be visualized through the regression
beta coefficients of the static images (Figs. 2(g) and (h)). The
regression attempts to model the signal changes due to these effects,
which are most apparent from elevated beta coefficients in areas of
high spatial contrast, such as the object boundaries. Again, these
undesirable signal components are largely diminished after dynamic
correction.

The effect on MO activations and power (Figs. 2(a) through (c)) is
not as clear, but comparison of the two correctionmethods against the
control suggests that the field variations reduce the precision and
accuracy of the calculated activations, with evidence provided in Figs.
3–4. The data displayed in these figures, as well as that used in the
following analysis, comes only from voxels within the six ROIs after
expanding the regions by 2 voxels on each side. The apparent tighter
clustering of points around a 45° line in Fig. 3 and narrower error
distributions in Fig. 4 with correction suggest that the statistics tend
more often toward the control (expected) value than without. To
confirm this, concordance correlation coefficients (Lin, 1989) between
the control and both the static and dynamic mean MO activation z-
statistics were computed to determine the reproducibility of the true
(control) activations in each, resulting in values of 0.902 (z=1.485, p=
0.069) and 0.919 (z=1.58, p=0.057) respectively. High coefficients
(low p-values) suggest the presence of a one-to-one relationship
between data sets, in contrast to the Pearson correlation coefficient,
which detects any linear relationship. These results provide evidence
for better reproducibility in dynamically corrected images. Addition-
ally, the variance of the meanMO z-statistic error (from the control) in
the static and dynamic results were σstat

2 =0.623 and σdyn
2 =0.512

respectively, with a hypothesis test of H0: σstat
2 ≤σstat

2 vs. Ha: σstat
2 N

σstat
2 resulting in p=0.0018 (F(899, 899)=1.215). Additionally, the

variances of the error in the power are σstat
2 = 199.74 and

σdyn
2 =174.91, and the same test results in p= .0233 (F(899, 899)=
1.142). It is also important to note that t-tests for non-zeromean of the
error in all of these cases is not significant. This evidence strongly
suggests that 1) on average, MO statistics in dynamically corrected
data will have less variation about the true value, and 2) with
correction, the probability that voxels will be above the threshold
chosen here will be closer to the probability of being above threshold
in the absence of any changing field.

Similar comparison can be made between the two statistical
models with dynamic correction. The dynamic and control mean CP
z-statistics have a concordance correlation coefficient of 0.911
(z=1.53, p=0.063), indicating reproducibility similar to that of the
MO statistics. A test of H0: σdyn,MO

2 ≤σdyn,CP
2 vs. Ha: σdyn,MO

2 Nσdyn,CP
2 ,

where σdyn,CP
2 and σdyn,MO

2 represent the CP and MO power error
variances, does not provide a significant result (σdyn,MO

2 =174.91,
σdyn,CP
2 =165.00, F(899, 899)=1.06, p=0.193). However, the same test

with σdyn,CP
2 and σdyn,MO

2 equal to the mean CP and MO z-statistic
error variances respectively, results in pb0.005 (σdyn,MO

2 =0.512,
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σdyn,CP
2 =0.390, F(899, 899)=1.312), providing evidence supporting a

reduction in statistical error variation across voxels for the CP model
when used in conjunction with the dynamic correction.

The validity of previous analysis using the F-test for difference
in variance between populations relies on normally distributed and
independent populations. The distributions in Fig. 4 appear normally
distributed and correlations between populations were moderate
(rb0.45) in all cases, with the exception of the final test between
the mean CP and MO z-statistic error variances after dynamic
correction (r=0.975). Correlation between populations will reduce
the significance of these tests, however the large sample sizes
used will diminish the effect. To appropriately qualify the sig-
nificance of the results, the null distribution of the random
variables was verified for every test case by Monte Carlo simulation
(10,000 iterations).

Phantom

The variance of the inducedfield perturbations is shown in Fig. 5(a).
The effect that these magnetic field dynamics have on the series of
phantom images can be visualized well through the voxel power
spectra. Fig. 6 displays the power spectrum of the magnitude signal
from a particularly affected voxel, emphasizing the large component at
approximately 0.2 Hz corresponding to the frequency of the field
perturbations. The voxel-wise amplitude of the power spectrum at
0.2 Hz (Figs. 7(a) and (b)) gives a good indication of the effect of the
time varying field in both the magnitude and the phase through time.
Two important things are made clear by these images. First, the most
affected voxels in the magnitude power spectra occur in areas of high
spatial contrast along the phase encoding direction (top to bottom), as
expected. Second, the stronger amplitude in the power spectra near
the bottom of the image reveals the origin of the applied field
perturbations.

Further evidence of the effect of the temporal field perturbations is
provided through two regression analyses. The first fit a 0.2 Hz
sinusoid, including regressors for a constant and linear trend. The
Fig. 8. Activation maps (z-statistic) corresponding to a finger tapping task in a single slice in e
a) or open and close their mouth at 0.167 Hz (row b). Voxels were considered active at a FD
sinusoid phasewas determined by the 0.2 Hz component in the image
phase time course. The sinusoid regression coefficients (Fig. 7(c)),
whose values indicate the effect of the field variations on the voxel
magnitude, are largest in areas of high spatial contrast, in agreement
with the previous data. In the second regression the sinusoid
reference was removed and the variance of the residuals (shown in
Fig. 7(d)) was used as the indicator of the size of the effect of the
changing field, with larger residuals implying larger effects. These
results are consistent with the previous evidence.

The desired consequence of the dynamic correction is reduced
signal characteristics correlating with applied field perturbations
while maintaining a similar level of noise. This is demonstrated by
reduction of the large 0.2 Hz peak in the power spectrum (Figs. 6–7(a)
and (b)), and Fig. 6 shows reduction in several smaller structural
components, while the noise floor appears consistent. The results of
the regression analyses are similar. Specifically, Fig. 7(d) further
suggests that no additional signal is induced by the correction, which
would increase the residuals shown here.

Human

The temporal variance in the estimatedmagnetic field is shown for
the heavy breathing and jaw motion experiments in Figs. 5(b) and (c).
The activation z-statistic maps computed for both the MO and CP
models (Fig. 8) show recovery of CP activation statistics after
correcting for the dynamic field as suggested by simulation. At a
false discovery rate (FDR) corrected threshold for multiple compar-
isons (Logan and Rowe, 2004) of pb0.05, practically all of the complex
activation is eliminated in the static case for both experiments. Also
corroborating simulated results, dynamic correction has a less obvious
impact on the MO activations. Activation maps (not shown) resulting
from the same finger-tapping task with no intentional field perturba-
tions showed similar results, although the change in the complex
activation was not quite as dramatic. Although the correction appears
to provide little at the provided threshold in this case, further analyses
gives evidence for a benefit of dynamic correction in the magnitude of
xperiments where the subject was asked to additionally breath heavily at 0.167 Hz (row
R corrected threshold of pb0.05.



Fig. 9. Maps of the 0.167 Hz peak amplitude in the voxel-wise magnitude power spectrum from experiments involving heavy subject breathing at 0.167 Hz (row a) or subject jaw
motion (open/close) at 0.167 Hz (row b) computed after various combinations of field and motion corrections.
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the image time series which could lead tomore significantly improved
activation statistics for tasks with less robust active response or
requiring motion nearer to the imaging field of view.

The power in the magnitude signal at 0.167 Hz (Fig. 9) illustrates
how the dynamic correction reduces the effect of the time varying
field. In both experiments, the dynamic correction alone reduces the
unwanted signal component. However, both field perturbation tasks
are likely accompanied by correlated head motion within the field of
view, which will not be removed by any field correction. Therefore, it's
Fig.10.Maps of the regression coefficients for 0.167 Hz sinewave from experiments involving
b) computed after various combinations of field and motion corrections.
not surprising that the best results in both cases result from
performing dynamic field correction followed by bulk motion
correction. Results of the heavy breathing experiment (Fig. 9(a))
suggest that field changes were relatively constant spatially, and a
very small amount of breathing related head motion occurred. The
slight improvement resulting from motion correction, indicated by
reduction in the 0.167 Hz signal power, even after dynamic correction,
is evidence for the presence of true motion. However, the ability of
motion correction alone to provide similar results is likely due to
heavy subject breathing at 0.167 Hz (row a) or jawmotion (open/close) at 0.167 Hz (row
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spatial constancy in field variations, which would manifest as
apparent bulk motion and is thus correctable as such. With jaw
motion (Fig. 9(b)), field changes predictably had more spatial
variability, preventing motion correction from performing as well
without the dynamic field correction.

A multiple regression analysis was performed as well, which fit a
0.167 Hz sinusoid in addition to the constant, linear and finger tapping
task reference functions used for the activationmodels (Figs.10(a) and
(b)). These results are in good agreement with the previous data, and
support the same conclusions.

Finally, quality of the bulk motion correction parameters
calculated by 3dvolreg was evaluated using the root mean square
(RMS) error between each volume repetition in the series and the
volume used as the base for alignment. A paired t-test of H0: μERR,dyn
vs. Ha: μERR,stat≠μERR,dyn, where μERR,stat and μERR,dyn are the mean
RMS error after static and dynamic correction respectively, resulted
in p «0.0001 (t=6.24) in the heavy breathing experiment and
p«0.0001 (t=12.73) in the jaw motion experiment. This significantly
supports the conclusion that dynamic correction improves subse-
quent motion correction and, predictably, benefit is increased as the
field changes become more spatially inconsistent.

Discussion

The results of our investigations consistently show how temporal
changes in the magnetic field can largely confound statistics that rely
on models of phase that do not account for these effects. More
interestingly, the strikingly positive results of dynamic correction for
complex data analysis are demonstrated with a similar consistency,
and similar benefits would be expected when using other phase
sensitive statistical models (Menon, 2002; Rowe et al., 2007).
Additionally, evidence suggests the dynamic correction improves the
ability to perform motion correction and can reduce temporal
magnitude signal components likely induced by temporal field
variations. This is especially true in areas most susceptible to these
changes, such as areas of high spatial contrast along the phase
encoding direction. However, the data shown reveals little change in
theMOactivations after performing the correction.When the variation
in the magnetic field is relatively constant over space, as often results
from breathing, motion correction alone provides comparable results
to the dynamic correction in themagnitude signal. However, when the
field changes with significant spatial variability, bulk motion correc-
tion alonewas not able to match the performance of the dynamic field
correction. In either case, however, motion correction was improved
when applied after the dynamic correction. Also, the indirect effect of
bulkmotion onphase cannot be removedwith bulkmotion correction,
but the dynamic correction accomplishes this as well.

Better results may be achievable by utilizing more effective
correction methods than SPHERE. The inverse approaches (Munger
et al., 2000; Liu and Ogawa, 2006) have shown the ability to provide
improved intensity correction, especially in the presence of large field
gradients. These techniques require field maps estimated in non-
warped space, which is not the case for this method, preventing their
use. However, investigation into methods of applying these or similar
techniques to dynamic field mapping is underway.

This straightforward method requires no additional reference
scan, specialized pulse sequences or hardware. In addition, it can be
applied to any previously acquired GE-EPI data set where complex
data is available. It is, however, only applicable to single shot GE-EPI
and can be applied retrospectively. Neglecting computation time,
the summation in Eq. (1.2), representing the average phase of all
images, could be computed from a subset, such as the first 25
images in a series, to enable pseudo-real-time application of the
corrections. Possibly the most important potential drawback is the
dependence on the temporal invariance in the phase of the radio
frequency pulse. However, nearly every multi-shot imaging method
relies on this invariance to hold true. However, extreme amounts of
movement within the transmit coil can alter its loading and thus
the homogeneity of the B1 field phase. This is unlikely to occur
within the range of routine scans (Lamberton et al., 2007), even
those requiring small amounts of head movement.

Conclusion

The proposed method for measuring and subsequent correction of
MRI time series for effects of temporal dynamics in the main (static)
magnetic field has shown impressive ability to restore statistical
power to the complex constant phase fMRI activation model.
Simulation results also indicate that the dynamic correction results
in more robust activation statistics, which more reliably represent
the true underlying activation. While it is difficult to directly
conclude this from experimental data, there is clear evidence
showing reduction in undesired signal components correlating
strongly with known temporal magnetic field variations, suggesting
this to be the case.
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