In fMRI a Dual Echo Time
EPI Pulse SequenceCOLLEGE
OF WISCONSINEPI Pulse SequenceCan Induce Sources of Error in
Dynamic Magnetic Field Maps

A. D. Hahn¹, A. S. Nencka¹ and D. B. Rowe^{2,1}

¹Medical College of Wisconsin, Milwaukee, WI, United States ²Marquette University, Milwaukee, WI, United States

Introduction

- Fast imaging sequences such as Echo Planar Imaging (EPI) expose imperfections in the magnetic environment
 - Long exposure, often 50, 60, 70+ milliseconds of nearcontinuous readout
 - Long delay between adjacent k-space points;
- Results of EPI acquisitions are generally the target for optimization due to
 - Low SNR
 - Artifact prone
 - Common target for statistical analysis (fMRI)

Introduction

• B₀ field off-resonance

(resonance frequency offset)

- Caused by spatially varying magnetic susceptibility
- Phase accrues over the readout time, leading to warping in the transformed image
- Difficult to register functional data to anatomical volumes
- Usually considered temporally invariant

Dynamic Implications

- In reality, variation occurs during a series of EPI data, such as in fMRI^{1,2}
 - Leads to variable warping, potentially confounding motion correction
 - variable phase accrual, thus increased temporal phase variance
 - Serious confound to complex-valued statistical analysis¹

¹AD Hahn et al., NIMG 44:742-52, 2009 ²PF Van de Moortele et al.: MRM 47:888-895, 2002.

Dual Echo Time EPI

• Resonance offset estimated from phase difference between images with different *TE*²

• Alternate *TE* over an entire series, as in Hutton, et. al¹, for Dynamic estimation

$$\Delta \hat{\omega}_{t} = \frac{\arg\left(e^{i\hat{\phi}}e^{-i\hat{\phi}_{-1}}\right)}{TE_{t} - TE_{t-1}}$$

 $\Delta \hat{\omega}_t$ = estimated frequency offset at time *t* $\hat{\phi}_t$ = estimated phase at time *t* t = 1, ..., N - 1

¹C Hutton et al., NIMG 16:217-240, 2002 ²PJ Reber et al., MRM 39:328-330, 1998

Dual Echo Time EPI

- Suffers from logical flaw as a dynamic method
 - Formula for field offset operates assuming this offset is equal during acquisition of each
 - If assumption holds,
 field can never change
 - Otherwise the estimated field will be erroneous

$$\Delta \hat{\omega}_{t} = \frac{\arg(e^{i\hat{\phi}_{t}}e^{-i\hat{\phi}_{t-1}})}{TE_{t} - TE_{t-1}}$$
$$\Delta \hat{\omega}_{t+1} = \frac{\arg(e^{i\hat{\phi}_{t+1}}e^{-i\hat{\phi}_{t}})}{TE_{t+1} - TE_{t}}$$

$$\Delta \hat{\omega}_t = \Delta \hat{\omega}_{t+1}$$

Moving Racetrack Trajectory

- Modified EPI retracing multiple k-space lines at a constant ΔTE within a single RF shot
- Red paths indicate the first pass and green the second acquisitions of the line
- Generally low resolution $\Delta \hat{\omega}_{t} = \frac{\arg \left(e^{i\hat{\phi}_{,pass^{2}}} e^{-i\hat{\phi}_{,pass^{1}}} \right)}{nt_{esp}}$

¹V Roopchansingh et al., MRM 50:839-843, 2003

 $\Delta \hat{\omega}_t$ = estimated frequency offset at time t $\phi_{t, pass N}$ = estimated phase at time t for pass N t_{esp} = echo spacing time *t*=1,...,N-1

Expected Accuracy

- Image phase measurement includes N(0, σ^2) noise, η_1 , η_2
- $\phi_{\rm e}$ represents all other phase errors
 - Change in ϕ_0 between images
 - Any response to variable accumulation, such as intraacquisition motion
 - Any difference in the field during acquisition of both images
- Difference between *TEs* is important as noise amplifies with decreasing difference

$$\Delta \hat{\omega} = \frac{\arg(e^{i(\phi_2 + \eta_2)}e^{-i(\phi_1 + \eta_1)}e^{i\phi_e})}{TE_2 - TE_1}$$

Methods

- Test performance of dual echo time EPI against MRTT, which is not susceptible to the same errors
- Two scans performed, one with phantom and the other human
 - MRTT acquired at full resolution
 - (all k-space acquired twice)
 - -TE also increased by 1.872ms on every other image

Methods

- Scan parameters
 - -64×64
 - 24cm FOV
 - S1. Thickness = 3.8cm
 - -TE = 44.3
 - -TR = 1
 - Flip angle = 45 degrees
 - Reps = 276;

* ΔTE was equal in both scans to preserve equal SNR

- Phantom scanning (spherical agar phantom) involved no involvement beyond scanner operation
- A single time series in a single human subject was acquired. Subject was told only to lay still and rest
- After estimation of raw field maps, each was fit using a 7th order polynomial to reduce noise

Results

Average power spectrum of voxel time series in a 5×5 voxel region for phantom (left) and human (right). Results of Dual Echo Time EPI data shown in blue and MRTT in red.

• Both plots show elevated power in the dual *TE* case, even at specific frequencies in the phantom.

-Likely scanner instability or variable RF pulse phase.

• Human results are elevated across the whole spectrum, with the greatest difference at lower frequencies where expected physiologic response is likely being amplified.

Results

- Shows disparity between MRTT and dual TE maps
- Disparities more apparent & significant in human data
 - Suggests that violating the assumption of field equality has severe consequences

Maps of t-statistics from a paireddifference test between field maps estimated using MRTT and the dual echo time methods. Statistics for phantom maps shown left and human maps right

Discussion

- The dual echo technique produces different results than the MRTT, but correctness of either is uncertain
- Appropriateness of dynamic field correction
 - If correction may be error prone, must weigh cost to benefit
 - Most valuable for complex analysis
 - Newer, more robust techniques

Final Thought

- The dual echo EPI method should still be robust for creating static estimations, especially when averaging
 - Probably the easiest technique to implement
- Acknowledgements:
 - This work was supported in part by NIH EB00215 and EB007827