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Abstract: Functional magnetic resonance imaging (fMRI) time series analysis is typically performed
using only the magnitude portion of the data. The phase information remains unused largely due
to its sensitivity to temporal variations in the magnetic field unrelated to the functional response of
interest. These phase changes are commonly the result of physiologic processes such as breathing
or motion either inside or outside the imaging field of view. As a result, although the functional
phase response carries pertinent physiological information concerning the vasculature, one aspect
of which is the location of large draining veins, the full hemodynamic phase response is under-
studied and is poorly understood, especially in comparison with the magnitude response. It is
likely that the magnitude and phase contain disjoint information, which could be used in tandem
to better characterize functional hemodynamics. In this work, simulated and human fMRI experi-
mental data are used to demonstrate how statistical analysis of complex-valued fMRI time series
can be problematic, and how robust analysis using these powerful and flexible complex-valued sta-
tistics is possible through postprocessing with correction for dynamic magnetic field fluctuations in
conjunction with estimated motion parameters. These techniques require no special pulse sequence
modifications and can be applied to any complex-valued echo planar imaging data set. This analy-
sis shows that the phase component appears to contain information complementary to that in the
magnitude and that processing and analysis techniques are available to investigate it in a robust
and flexible manner. Hum Brain Mapp 33:288–306, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The state of the spin system and the magnetic environ-
ment in MRI has unique effects on the magnitude and
phase portions of the complex-valued reconstructed image.
Accordingly, in a functional magnetic resonance imaging
(fMRI) time series, each signal component may contain dif-
ferent information pertaining to the changing system
and environment encoded in its temporal response, which
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can then be used to infer certain physiology and/or physi-
ologic function. Analysis of only the magnitude is stand-
ard in traditional blood oxygenation level-dependent
(BOLD) [Bandettini et al., 1993; Ogawa et al., 1990] fMRI,
but the potential value of the phase signal for the study of
brain function and physiology may be substantial.

For example, the hemodynamic phase response can pro-
vide useful information in BOLD fMRI. The phase offset
caused by a change in blood oxygenation, flow, and/or
volume is dependent on the vascular morphology [Hoo-
genraad et al., 1998; Menon, 2002] much more so than is
the magnitude. The theory presented suggests that voxels
containing relatively small, randomly oriented vessels will
show little phase change as opposed to voxels with larger,
more coherently oriented vessels where significant phase
change is expected. This distinction could be used to dis-
tinguish voxels more likely to contain cortical neurons
from a delocalized area with draining veins [Menon, 2002;
Nencka and Rowe, 2007]. Recent findings indicate, how-
ever, that hemodynamic phase response occurs in areas of
microvasculature as well, suggesting a bulk magnetization
effect leading to a net-phase change [Feng et al., 2009;
Zhao et al., 2007]. Although this could confound identifica-
tion of large vessels, it also presents an opportunity to use
this response to further the understanding of hemody-
namic biophysics.

Phase may be even more useful in neuronal current
MRI (ncMRI) for the direct detection of action potentials
[Bandettini et al., 2005]. The induced magnetic field
expected from such an event is small, but potentially large
enough to noticeably disturb the system and be detected.
Simulations have shown that a larger phase than magni-
tude effect is expected [Heller et al., 2007], and phantom
studies have come to similar conclusion [Bodurka and
Bandettini, 2002; Bodurka et al., 1999]. Although an in vitro
experiment showed promising results suggesting a detect-
able ncMRI signal [Petridou et al., 2006], much of the
work published in the literature to this point has failed to
demonstrate robust or undeniable detections in vivo
[Chow et al., 2006; Konn et al., 2004]. However, recent
results reported by Sundaram et al. [2010] appear more
promising.

The lack of complex-valued BOLD fMRI used in practice
and the lack of firm success or failure with ncMRI can be
partially attributed to phase instability, which has been
recently investigated by Hagberg et al. [2008]. Their results
indicate that the presence of physiological noise tends to
be more detrimental to phase than magnitude in terms of
temporal standard deviation of phase (tSDU) and magni-
tude temporal signal-to-noise ratio (SNR). Although physi-
ologic noise is certainly detrimental in both magnitude
and phase, the particularly sensitive nature of the phase to
these phenomena often renders it of little use in statistical
analysis.

Using the sensitivity of the phase robustly and repeat-
ably as an investigative tool requires improved signal
quality through reduction of the effects of noise described

earlier. This ideal signal would consist of the smallest in-
dependently and identically distributed white Gaussian
noise as well as the largest evoked signal response possi-
ble. Any other structured signal confounds detection of
the desired response unless properly modeled. Identifying
the ideal pulse sequence parameters and using multiple
receiver coils can help minimize noise and maximize
response, while applying postacquisition modeling techni-
ques can either provide direct stabilization or attempt to
compensate for nuisance signals. A recently developed
dynamic magnetic field map estimation and correction
postprocess [Hahn et al., 2009] appears to be capable of
compensating for signal likely caused by larger spatial
scale temporal fluctuations in magnetic field. This was
shown to significantly reduce phase variance and magni-
tude signal correlated with the field dynamics. By restrict-
ing the spatial variability of the estimated field, spatially
local changes remain unaffected, only removing dynamics
on larger spatial scales.

Appropriate statistical modeling is also important for
the detection of functional response. A line of research
involving complex-valued regression models has been
described in the literature [Lai and Glover, 1997; Lee
et al., 2007; Nan and Nowak, 1999; Rowe and Logan,
2004, 2005; Rowe, 2005a,b, 2009], and each is appropriate
in certain situations. In general, these models fall into
two separate categories: the magnitude and phase sig-
nals are either uncoupled, as in the case of Lai and
Glover [1997] as well as in Lee et al. [2007], or coupled
appropriately as in Nan and Nowak [1999], Rowe and
Logan [2004, 2005], and Rowe [2005b, 2009]. These mod-
els are only appropriate whenever the phase data repre-
sent relevant information, that is, is dependent on the
state of an input of interest. Examples of situations
where phase has a relevant response are discussed ear-
lier, and results will be presented below supporting a
physiological relationship between the phase and task
performance. When used appropriately, complex-valued
regression models provide the inherent benefit of
increasing statistical power simply by using twice as
many data values as a scalar alternative [Rowe, 2005a].
Inappropriate tests with irrelevant phase data will in
fact be less powerful than if phase was excluded alto-
gether. The complex-valued model can be designed to
detect task-related phase changes in addition to task-
related magnitude changes [Rowe, 2005b], thereby
increasing the possible circumstances under which acti-
vation is detected for a given SNR and contrast-to-noise
ratio [Hernandez-Garcia et al., 2009]. Furthermore, by
operating on real and imaginary data, the potential
problems with magnitude and phase distributions at low
SNR, which approach Raleigh and uniform distributions,
respectively [Rowe and Logan, 2004; Zhu et al., 2009],
are avoided. Data analysis was performed with the
model from Rowe [2005b] in this work. It is the most
flexible, allowing separate, arbitrary design matrices for
the magnitude and phase; however, it is also more
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computationally intensive. This computational complex-
ity can be spared in certain, more restricted situations. It
is worth emphasizing that using a complex-valued
approach requires an expected response reference for
both magnitude and phase, and very poorly chosen
phase responses can limit its usefulness. When this is
the case, it may be appropriate to analyze only the mag-
nitude data [Bandettini et al., 1993; Rowe and Logan,
2005; Rowe, 2005a] using a general linear model (GLM).
Analysis of only the phase might also be appropriate, ei-
ther with the same technique (in the absence of wrap-
around) or with a more advanced angular regression
model [Rowe et al., 2007]. Clearly, the statistical advan-
tages of the joint magnitude and phase complex-valued
methods would be sacrificed.

As an alternative to using a GLM for complex-valued
statistical analysis, a method for independent component
analysis (ICA) of complex-valued data has been provided
by Calhoun et al. [2002]. Like all ICA techniques, the algo-
rithm does not require regressors a priori like the GLM,
but rather generates them from the signal itself under linear
independence constraints. This provides certain advantages,
most notably that the response to input can be unknown,
which is not feasible with a GLM. For the purposes of this
work, ICA is not appropriate for this precise reason. The
need to include or exclude certain regresssors such as esti-
mated motion parameters led to the choice of a GLM.

The work reported in Hahn et al. [2009] presented the
framework for the temporal off-resonance alignment of sin-
gle-echo time series (TOAST) method and showed its use-
fulness with regard to phase stabilization and use with the
complex constant phase-statistical model [Rowe and
Logan, 2004]. The results presented here aim to extend that
work in two ways: (1) by evaluating the addition of nui-
sance regression using estimated motion parameters [John-
stone et al., 2006] to the complex-valued postprocessing
pipeline, and (2) by demonstrating the potential to repeat-
ably provide access to physiologic information embedded
in the phase of the complex-valued fMRI signal that may
be otherwise practically undetectable, rather than simply
the ability to provide phase stabilization. Specifically, the
most general complex-valued statistical model of Rowe
[2005b] is used to show improved detection ability in both
magnitude and phase as opposed to simply demonstrating
improved detection in magnitude assuming temporally
constant phase. This is accomplished by first demonstrat-
ing this ability in human experimental fMRI time series.
Additionally, the effect of the dynamic field corrections
and nuisance regression on the magnitude and phase sta-
bility in terms of the variance, autocorrelation, and distri-
bution of the residuals after regression is presented. This is
followed by similar analysis of simulated fMRI data to pro-
vide verification of the experimental results. The reliability
provided by these techniques makes complex-valued anal-
ysis more applicable to general studies, presents greater
opportunity to measure, and uses all the fMRI data
acquired to investigate various physiologic processes.

MATERIALS AND METHODS

Data Acquisition

All experimental fMRI data were acquired using a GE
Signa LX 3T scanner (General Electric, Milwaukee, WI)
using the stock quadrature head receiver coil, and func-
tional images were collected with a single-shot echo planar
imaging (EPI) pulse sequence. Three separate fMRI experi-
ments were performed and will be referred to as EXPB,
EXPJ, and EXPC. The pulse sequence parameters for each
experiment are shown in Table I. The first two experi-
ments were performed during the same scanning session,
while the third was collected at a later date with typical
parameters.

The human subject was scanned after providing
informed consent using a protocol approved by the Medi-
cal College of Wisconsin Institutional Review Board. Dur-
ing all the experiments, the subject performed a bilateral
finger tapping task in a block design pattern, and on/off
signaling was provided with a visual cue. For experiments
EXPB and EXPJ, the block design pattern consisted of 16
blocks of 8 s of stimulus and 8 s rest, all following a 20-s
initial rest, while EXPC had only 10 blocks of 8 s of stimu-
lus and 8 s rest, all following a 20-s initial rest. EXPB and
EXPJ also introduced intentionally suboptimal conditions
to emphasize the types of often occurring phenomena that

TABLE I. Pulse sequence parameters and tasks for each

fMRI experiment

EXPB EXPJ EXPC

No. of slices 9 9 9
Matrix size 96 � 96 96 � 96 64 � 64
TE (ms) 42.8 42.8 26.0
TR (s) 1.0 1.0 1.0
Flip angle 45� 45� 45�

Bandwidth
(kHz)

125 125 125

Echo
spacing
(ms)

0.768 0.768 0.680

Field of
view (cm)

24 24 24

Slice
thickness
(mm)

2.5 2.5 3.8

Repetitions 296 296 180
No. of a

lternating
TEsa

20 20 0

Functional
task

Finger tap Finger tap Finger tap

Nuisance
taskb

Deep breath Jaw motion None

aOdd-numbered images have a 5-ms longer TE.
bTask performed at 0.167 Hz rate.
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can confound statistical analysis. This was accomplished
using a secondary ‘‘nuisance’’ task, intended to induce an
elevated yet reasonable amount of signal instability, and
performed simultaneously with the finger tapping task. In
EXPB, the same subject was instructed to breath deeply at
a 0.167 Hz rate for the duration of the experiment, and a
timing reference indicating when to inhale and exhale was
provided visually along with the finger tapping cue.
Experiment EXPJ replaced the heavy breathing with peri-
odic jaw movement at the same frequency. Specifically,
the subject was given the same timing cue as provided to
keep breathing consistent, but with breath in/out replaced
by open/close mouth. For experiment EXPC, the subject
was asked to perform the stimulus task only, with no nui-
sance task, and to remain as still as possible otherwise.

It is also important to note that, for experiments EXPB
and EXPJ, the TE was lengthened by 5 ms on odd-num-
bered repetitions during acquisition of the first 20 repeti-
tions to provide an initial absolute magnetic field map
reference, Dx0, to be used as described below. These addi-
tional images were discarded before statistical activation
analysis. This was not done for EXPC.

The results to follow are focused on analysis of EXPB
and EXPJ to provide consistency of sequence parameters
and experimental design (other than the nuisance task)
across the data from which conclusions may be drawn.
However, it is worthwhile to similarly investigate a situa-
tion representing more typical fMRI experimental condi-
tions, and this purpose is served by EXPC. The results of
this analysis are left for the Discussion section of this
document and are thus considered for the purposes of dis-
cussion only.

Reconstruction and Dynamic

Magnetic Field Correction

All acquired image data were reconstructed offline from
raw GE p-files. Data processing required for image recon-
struction and correction of magnetic field dynamics was
done with a custom program written in C and designed
in-house. The process flow involved image generation
from k-space by inverse Fourier transform, Nyquist ghost
removal [Jesmanowicz et al., 1993], estimation of the
dynamic field using TOAST [Hahn et al., 2009], and finally
correction of the images with field maps calculated from
the first 20 repetitions.

The method for estimating the main magnetic field off-
set at each time point t, Dxt, from time variant portion of
the main magnetic field off-resonance, dxt, and an initial
absolute reference, Dx0, is described by Hahn et al. [2009]
and is applicable to single-shot gradient echo EPI (GE-EPI)
pulse sequences. The calculation can be written as

Dxt ¼
arg It

PN�1

k¼1

I�
k

jIkj

� �
� arg I0

PN�1

j¼1

I�
j

jIj j

( )

TE
þ Dx0 (1)

For a series of N images where It is the reconstructed
complex-valued image at time t, TE is the echo time, *
denotes complex conjugation, and the arg operator returns
the phase angle of its argument. It is worth noting that
Dx0 is not required to correct the field dynamics, but with-
out it, absolute field correction is not possible, and thus
registration of the functional data to T1-weighted anatomi-
cal images is not reliable.

The raw field maps were processed to reduce noise, con-
trol nonactivation related high-spatial frequency informa-
tion captured by the field map, and reduce estimation
artifacts at the image boundaries before being applied in
the correction. This was accomplished by using a locally
weighted least squares regression [Cleveland and Devlin,
1988]. The first step in this process was to censor voxels to
be used in the fitting procedure. A binary mask of voxels
above 7% of the maximum voxel magnitude was gener-
ated, representing voxels within the brain. Voxels well out-
side the brain were selected by dilating the original mask
by 10 voxels and then inverting it. These voxels had the
value of the estimated field (originally only noise) set to
zero. This caused the fit of the raw estimated field to fall
to zero outside the brain. The voxels not contained within
either of these two masks were censored and not used in
the fitting procedure.

The next step involved moving voxel-by-voxel over the
entire image and fitting a weighted two-dimensional poly-
nomial using the 20% of all noncensored voxels, which are
closest (by Euclidean distance) to the current voxel. After
selecting the closest 20% of voxels, a tri-cube weight func-
tion is used to weight each point according to its distance
from the current point. The weight for the jth point, wj, is
found using

wj ¼ 1� dj

dmax

� �3
 !3

; (2)

where dj is the Euclidean distance between the current
voxel and the jth voxel, and dmax is the maximum Euclid-
ean distance between the current voxel and a voxel within
the closest 20% of noncensored voxels. The two-dimen-
sional polynomial coefficients were fit using weighted
least-squares according to

P ¼ XTWX
� ��1

XTWY: (3a)

The jth row of X is xj, and dx,j and dy,j are the distance
from the current voxel in the x-direction and y-direction of
the jth voxel, respectively.

xj ¼ 1 dx;j d2x;j dy;j d2y;j

h i
(3b)

where W is a diagonal matrix, the jth diagonal element of
which is wj from Eq. (2). P is a five-element vector contain-
ing the polynomial coefficients.
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Once the coefficients for the fit were computed at a specific
point, the value of the processed estimated field at that point
was calculated. It should be noted that the estimated value of
the voxel of interest is simply the first element of P, because
the distance from itself is clearly zero in each direction (i.e.,
designed to be located at position x ¼ y ¼ 0).

Once this processing has been carried out, the field
maps were applied using the one-dimensional (phase-
encoding direction) simulated phase rewinding [Kadah
and Hu, 1997] correction method to remove their effects
from the original images.

As a final processing step, the angular mean [Rowe et al.,
2007] of each voxel time series following the dynamic field
correction was subtracted out to prevent phase wrapping
within the imaged object. No voxels inside the object drifted
more than 2p radians over the length of the experiment, espe-
cially after being corrected for the field dynamics, and zero-
ing that the mean was sufficient in all cases to prevent
wraparound in voxels within the head.

Simulation

Simulations were performed to supplement and verify
the results obtained from the human fMRI experiments
described earlier. The simulator is designed to emulate the
acquisition of k-space as would occur in an actual scan ses-
sion. Generation of a single image (slice) requires two con-
ceptually separate configuration specifications. First,
certain properties of both the object to be ‘‘scanned,’’ and
the magnetic environment within the space occupied by
the object must be provided. These include two-dimen-
sional spatial maps of spin density, q(x,y), tissue trans-
verse relaxation T�

2 (x,y), and the magnetic field offset from
resonance (resonance defined as 3.0 T), DB0 (x,y). The sec-
ond configuration concerns the scanning parameters for
the k-space acquisition itself (limited to GE-EPI), which

include echo time, field of view, image matrix size, and
sampling bandwidth. These parameters provide the neces-
sary information for the simulator to create x and y gradi-
ent waveforms (150 mT/m/s peak slew rate and 40 mT/
m peak amplitude), Gx and Gy, emulating those which
would be generated by an actual scanner given the
specified input. Finally, sampling times, mkx,ky Dt, are asso-
ciated with each sampled k-space point and the ‘‘acquired’’
signal for the jth image in a time series, Sj, is produced
according to

SjðmDtÞ ¼
XNx

2 �1

q¼�Nx

2

XNy

2 �1

r¼�Ny

2

q ðqDx; rDyÞe
mDt

T�
2;j

ðqDx;rDyÞ

� �
� � �

� e
icDt

Pm
w¼0

GxðwDtÞDxþGyðwDtÞDyð ÞþmDB0ðqDx;rDyÞ
� � (4)

In the above equation, Dx and Dy are the spatial dimen-

sions represented by a single point in the Nx � Ny point

input parameter maps q, T2
*, and DB. The simulations pre-

sented in this work used Dx ¼ Dy ¼ 468.75 lm and Nx ¼
Ny ¼ 512. The variable Dt represents the timing resolution of

the gradient waveforms (not the sampling rate). The value of

Dt can be any divisor of the sample rate, and the smaller its

value, the closer the gradient sum over m approximates the

continuous integral over time mDt (0.1 ls used here).
Three separate series of 296 (0 � j < 296) single-slice

images were simulated containing areas of locally induced

temporal signal change designed to mimic a functional

response and will be referred to as SIMB, SIMJ, and SIMC.

The SIMB and SIMJ series were created using a temporally

variant DB field and simulated motion in an attempt to emu-

late similar effects in EXPB and EXPJ, while the SIMC series

contained neither and is intended to serve as a control.
The q(x,y) parameter map, shown in Figure 1a, was the

same for all three series and was created using a slice
from the reconstructed images from EXPB after it had
been corrected for magnetic field inhomegeneity. The mag-
nitude of the original image was sinc interpolated to
dimensions of 512 � 512 and then masked to zero every-
where outside of the brain. The simulated functional
responses, also identical in each, were induced by increas-
ing the value of T�

2 and either increasing or decreasing the
value of DB during task to elicit magnitude and phase
changes, respectively. The variations were applied in a
block design pattern identical to that used for the finger-
tapping task in EXPB and EXPJ. The map of q and the
locations containing these local variations are shown in
Figure 1b, and each active area is a 13 3 13 square, meas-
uring 6.1 mm on a side. The values of T�

2 and the portion
of DB associated with local activity at each location are
shown for task ‘‘off’’ and task ‘‘on’’ periods in Table II.
During task ‘‘off’’ periods and everywhere outside of the
active locations, T�

2 is equal to 35 ms and the local DB is
equal to 0.

Figure 1.

The q map used as input to the simulation (a). The same map is

shown in (b), overlaid by the locations where activation was

simulated in either magnitude, phase, or both. The type and size

of the simulated activity can be found for each numbered loca-

tion in Table II. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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The SIMB and SIMJ series were generated with simu-
lated bulk motion. The amount of motion to apply was
determined directly from the estimations of the motion
made with the AFNI [Cox, 1996] plug-in 2dImReg from
EXPB for SIMB and EXPJ for SIMJ. The simulated motion
was implemented by shifting and rotating the q, T�

2, and
local activation related DB maps, discussed above, by the
appropriate amount at each time point, j, before applying
Eq. (3).

In addition to the DB map for inducing phase activa-
tion-related response, each simulated image series con-
tained an additional magnetic field offset representing
bulk field inhomogeneity. In SIMC, a temporally static
field was applied, and it was generated using the static
field (Dx0) estimated for EXPB following interpolation to
dimensions of 512 � 512, similarly to the q map. SIMB
and SIMJ were generated using the sum of the same map
used for SIMC, and the series of dynamic reference field
maps (dxt from Hahn et al. [2009] estimated for EXPB and
EXPJ, respectively, also interpolated to 512 � 512. It
should be noted that this portion of the DB was not
included in the motion simulation process, because it was
assumed that it already contained the changes, which
occurred due to any motion that occurred. The full DB
map that was finally applied in Eq. (3) was the sum of this
bulk field inhomogeneity map and the local activation
field map (after having motion applied, if applicable).

A static magnetic field offset was applied to all three se-
ries as well. This field was simply the static field estima-
tion from EXPB (nearly identical to that in EXPJ) following
interpolation to dimensions of 512 � 512, similarly to the
q(x,y) map. The additional temporally dynamic fields used
for SIMB and SIMJ were generated directly from those
estimated in EXPB and EXPJ, respectively, again interpo-
lated to a 512 � 512 matrix.

Besides the already specified parameters, each series
was simulated with identical scan parameters to EXPB
and EXPJ above, with the exception of the echo spacing,
which was 759 ls in the simulation. This includes the
images with extended echo time during the initial 20 rep-
etitions. The difference in echo spacing from that in the
actual experimental data (768 ls) was due to round-off
errors in the calculation method of the simulated gra-
dients. This small 9-ls difference should not be of any
consequence.

Finally, once all three of the simulated image series
were generated, each was duplicated 100 times and inde-

pendently, and identically distributed Gaussian random
noise was added to the real and imaginary channels of
the k-space samples. The variance of the added noise,
equal to 10, was scaled such that the SNR of the recon-
structed images was similar to that in EXPB and EXPJ,
which were �20 within the brain. Each image series was
then processed in an identical manner to the human
results.

Statistical Modeling and Analysis

The complex-valued generalized likelihood ratio detec-
tion model used is described in detail in Rowe [2005b],
but will be summarized for clarity. The general form of
the complex-valued multiple regression model, assuming
a series of n complex-valued images and using notation
similar to the original work, is

yt ¼ pt cos ht þ gRt½ � þ pt sin ht þ gIt½ � i (5a)

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2Rt þ y2It

q
; /t ¼ arctan yIt

yRt


 �
(5b)

h ¼ Uc: q ¼ Xb (5c)

where (gRT, gRT)’ � N(0,R), R ¼ r2I, and qt and yt are the
true magnitude and phase elements of q and y at time t,
and yt is the observed complex-valued signal at time t, also
represented as magnitude, rt, and phase, ut. Additionally,
assuming that s slices are acquired, and each image has
dimensions h � w, r, and u are n � (hws) matrices contain-
ing the magnitude (former) and phase (latter) measure-
ments from an individual voxel in each column. The n �
(q1 þ 1) matrix X and the n � (q2 þ 1) matrix U contain
magnitude and phase regressors (besides a mean regres-
sor) column-wise, and the corresponding coefficients in
each voxel fill the columns of the (q1 þ 1) � (hws) matrix
b and the (q2 þ 1) � (hws) matrix c.

Four hypothesis conditions are described by Rowe
[2005b], which can be used to formulate a variety of
statistical tests on the regression coefficients. The afore-
mentioned hypotheses are Ha: Cb = 0, Dc = 0, Hb: Cb
¼ 0, Dc = 0, Hc: Cb ¼ 0, Dc = 0, and Hd: Cb ¼ 0, Dc
¼ 0 with linear constraint matrices for magnitude, C (r1

TABLE II. Local values of T�
2 and DB during both task ‘‘off ’’ and task ‘‘on’’ periods at locations one through eight

Location 1 2 3 4 5 6 7 8

T�
2 (ms), task ‘‘off’’ 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0

T�
2 (ms), task ‘‘on’’ 35.35 35.7 35.0 35.35 35.7 36.05 35.35 36.05

DB (nT), task ‘‘off’’ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DB (nT), task ‘‘on’’ 2.83 �4.25 2.83 0.0 1.42 �2.83 4.25 1.42

The area to which each refers is shown in Figure 1b.
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� (q1 þ 1)), and phase, D (r2 � (q2 þ 1)). Using these in
proper combination of null and alternative hypotheses
makes tests for arbitrary magnitude or phase response
either with, without, or regardless of a response (also
arbitrary) in the other signal component possible and
provides all necessary capabilities for the analysis to
follow.

After estimating the regression coefficients under
both the null and alternative hypothesis, a distributed
general likelihood ratio test statistic, �2 log(k), can be
computed using the variance of the residual error of the
least squares fit for the null, ~r2, and alternative, r̂2,
hypotheses as

r2 ¼ 1

2n
ðr� XbÞTðr� XbÞ þ 2ðr� r�ÞTXb
h i

�2 logðkÞ ¼ 2n log
~r2

r̂2

� �
ð6Þ

The degrees of freedom, r, in the test statistic is depend-
ent on the specific hypotheses being tested. A comparison
of either Hb versus Ha or Hd versus Hc gives r equal to r1,
the full row rank of C, while Hc versus Ha or Hd versus Hc

tests yield r equal to r2, the full row rank of D. If compar-
ing the Hd and Ha hypotheses, the test statistic has r1 þ r2
degrees of freedom.

The stimulus reference function, fstim (t), was modeled
here by a function that is simply �1 during task-off peri-
ods and 1 during task-on periods, shifted by an amount
dth ¼ 4 s to account for hemodynamic delay. The shifted
boxcar was chosen as opposed to a more elaborate refer-
ence curve, for example, the boxcar convolved with a
gamma function, for the sake of simplicity and consis-
tency. The relative accuracy of a boxcar and an alternative
model function is not well known with respect to the
phase response and will likely vary with location. Unless
otherwise stated, the design matrices X and U were the
same, with a column of 1s (mean regressor), a column
with a linear ramp from �1 to 1 (linear trend regressor),
and a column containing fstim (t � dth), effectively treated
as the response model in this case. The test contrast matri-
ces C and D have a single row of 0s with a single 1 in the
column of X or U, respectively, containing fstim (t � dth) (C
¼ D).

Regression analysis of both magnitude-only and phase-
only data was also used for the purposes of comparison,
both of which are special cases of the model described
above. To test the magnitude-only hypothesis, X remains
as described earlier, and the phase is left unconstrained
under both null and alternative hypotheses (Hb vs. Ha),
with U equal to an n � n identity matrix In. (The con-
straint matrix D is not used in the computation, because
phase is unconstrained under Hb and Ha.) Similarly, allow-
ing unconstrained magnitude under both hypotheses (Hb

vs. Ha) with X equal to In performs a test of the phase-
only with U unchanged (the constraint matrix C is unused
in this case).

RESULTS

Human

Regression analysis using the complex-valued model
was performed on both fMRI time series after correction
of only a static magnetic field inhomogeneity using Dx0 as
well as dynamic magnetic field errors using Dxt. Estimates
of the motion in two axes of translation and one of rota-
tion were made using the AFNI plug-in 2dImReg, also
before and after each type of field correction. Motion com-
pensation, when used, was applied by including the tem-
poral motion estimates as additional regressors in the
design matrices X and U. Specifically, motion estimates
made before applying field correction were used as regres-
sors in X and U when computing activation in the time se-
ries of images that was not corrected for temporal
magnetic field variations (motion correction only case). On
the other hand, estimates of motion made after field cor-
rection were used to compute activation in the images that
were corrected for temporal magnetic field variations
(motion and field correction case). The series of images
were not shifted or rotated at all using the motion esti-
mates. The motivation for this analysis method will be dis-
cussed in the Discussion section to follow. The term
motion correction or motion compensation will be used in
the remainder of this analysis to refer to the inclusion of
the motion estimates as additional regressors as described
here and not as rigid body rotation and translation. This
process yields the results of four processing types: none,
motion compensation only, dynamic field correction only,
and dynamic field correction and motion compensation.
Static magnetic field correction is implied in the all four
types.

Maps of �log10 P where P is the P-value associated with
the test statistic at a unadjusted threshold [Logan and
Rowe, 2004; Logan et al., 2008] in a single slice from EXPB
and EXPJ after each combination of processing steps are
shown for tests of the magnitude-only, phase-only, and
magnitude-and-or-phase in Figure 2. The anatomic under-
lay in each of these figures, and in the figures to follow, is
the first image in the functional EPI time series. The
hypotheses for the test of magnitude-and-or-phase are,
and all other parameters for each test, described in the
Methods section of this document.

The different postprocesses appear to have only a slight
impact on the magnitude-only activation detection, as evi-
dent from Figure 2a,b, which show a single slice from
EXPB and EXPJ with the processing combinations along
the columns. This is not unexpected, and is in agreement
with previous results reported by Hahn et al. [2009],
which analyzed the effect of the dynamic field correction
and motion on the magnitude signal component and mag-
nitude-only activations in some detail. This is especially
true of the results of EXPB (Fig. 2a), which involves the
heavy breathing nuisance task and shows very little differ-
ence between the four different processing cases. The
results of EXPJ (Fig. 2b) show somewhat more significant
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Figure 2.

Maps of �log10(P) where P is the P-value associated with the v2

statistics for magnitude-only (a,b), phase-only (c,d), and magni-

tude-and-or-phase (e,f) activation. The results of EXPB (a,c,e)

and EXPJ (b,d,f) are shown for each activation model. From left

to right, columns show results after no postprocessing, motion

compensation only, dynamic field correction only, and both

motion and field correction. Active voxels shown above a

threshold of P < 5 � 10�4 (unadjusted). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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differences, especially in the cases including motion com-
pensation. Including motion correction appears to reduce
the amount of detected activity, although there are a few
areas where activity may be increased with its inclusion.

The phase-only activations clearly show that the differ-
ent postprocessing steps affect the detection of activation
response in the phase signal (Fig. 2c,d). In both experi-
ments, the number of active voxels and their relative sig-
nificance is elevated following any postprocessing
compared to none at all, with the exception of using
motion compensation alone in EXPJ. This is significant in
that the applied corrections not only stabilize the phase
signal by removing spatially global variation, as was dem-
onstrated by Hahn et al. [2009], but additionally preserve
spatially local variations and increase the detection power
of task related signal of potential interest. In EXPB, results
indicate that TOAST correction alone appears to allow for
better activity detection than only motion compensation;
however, it is difficult to discern whether the application
of both provides additional improvement or not due to the
relative similarity between the activated regions when
using the field only and when using both the field and
motion in the correction.

The analysis of EXPJ (Fig. 2d) indicates similar benefit
from using only the field correction as in EXPB, but per-
forming motion compensation in this case yields some-
what different results. As previously mentioned, motion
correction alone has very little effect on the phase-only ac-
tivity. However, when applied in conjunction with
TOAST, an activation pattern results, which is different in
certain respects from what is shown using just TOAST.
Specifically, when both corrections are applied, significant
activity is detected in the skull region on both the left and
right sides, and some additional activity is detected within
the brain as well on the left side. The uniqueness and
questionable anatomical relevance of this detected activity
with respect to the finger tapping functional task suggest
that it is of an artifactual nature. This artifact may be
related to the jaw motion occurring during acquisition,
due to its location above the jaw bone, and the affect of
this motion on the main magnetic field [Birn et al., 1998].
Detection of false-positive activity has been described by
Soltysik and Hyde [2006] in the presence of similar jaw
motion associated with chewing. In that case, however, the
jaw motion was directly related to the task of interest,
opposed to this case where the functional task and jaw
motion occur at different frequencies. However, an addi-
tional factor could potentially be instability of the motion
compensation regression model resulting from multicolli-
nearity of the design matrix columns, which include
motion parameters.

The degree of multicollinearity in the independent varia-
bles of the linear model including the motion estimates in
EXPJ was evaluated by using the condition number of the
matrix. This value is defined as the square root of the ratio
of its largest to smallest singular values and provides in-
formation about the linear independence of the matrix’s

columns. An orthogonal matrix has a condition number of
one and a matrix containing one or more columns, which
are a perfect linear combination of the other columns, has
a condition number of infinity. The condition number
without including motion parameters is 3.46, while includ-
ing motion yields a condition number of 30.33 and 23.02.
The literature states that a condition number of 10 repre-
sents the low end of where collinearity starts to affect the
solution, while a condition number of 100 indicates serious
effects of collinearity [Belsley et al., 1980]. The model
including motion is well into this range; thus, multicolli-
nearity may be causing instability.

The results provided in Figure 2e,f present little surprise
given the magnitude-only and phase-only activations in
Figure 2a–d. However, it is apparent that the activated
locations are understandably not simply a combination of
the magnitude-only and phase-only activations. The differ-
ences arise from the fact that the uncertainty of the overall
fit in this case involves a combination of the uncertainty in
both the magnitude and phase [Rowe and Nencka, 2006].
Intuitively, in the unprocessed data, the large phase varia-
tions cause increased uncertainty nearly uniformly, result-
ing in a loss of significance where activations in the
magnitude were previously apparent. This ‘‘grouped’’ var-
iation can become beneficial; however, if both magnitude
and phase are properly modeled. In this case, the overall
variation of both magnitude and phase is less than either
alone, due to the increased number of data values, thus
leading to significant detection of response which other-
wise is too small. As a result, the magnitude-and-or-phase
activations can be a superset of the magnitude-only and
phase-only activations and have greater significance where
overlap occurs.

One notable characteristic of these results is the apparent
difference between the activity detected in EXPB and EXPJ,
given that the only difference between the two is the type
of nuisance task being performed. Specifically, the size and
significance of the activation seems greater in EXPB in both
magnitude and phase even after full correction. The most
likely reason for this are differences in the amount and
type of motion present during each experiment. First, main-
taining head position when opening and closing the mouth
is a greater challenge than doing so during heavy breath-
ing, and this was represented in the computed motion pa-
rameters in all three axes. The variance of the displacement
in EXPB (for repetitions 31–296, the same set used for
regression analysis) was millimeter left-to-right, millimeter
anterior-to-posterior, and degrees rotation around the infe-
rior–superior axis, compared to millimeter, millimeter and
degrees in EXPJ, each of which is significantly larger than
the corresponding variance in EXPB when using an F-test
(P < 0.001). Besides containing greater amounts of bulk
motion, the close proximity of the jaw motion in EXPJ to
the imaging plane results in variable subvoxel field gra-
dients and thus variable signal dropout. This is not correct-
able using TOAST and is not necessarily associated with
bulk motion, although there is likely a correlation between
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the two. Regardless, this phenomenon almost certainly
decreases sensitivity of activation detection.

The data presented so far indicates that statistical tests
for the presence of a task-related signal component in the
magnitude, phase, or both has significantly more power
after applying the processing. It is somewhat apparent by
comparison of the statistics in Figure 2a,b with those in
and 2c,d that there is a different pattern of activation in

magnitude and phase and thus potentially different phys-
iologic information. However, the complex-valued regres-
sion more appropriately models the two components in
tandem, as described by Rowe [2005b] as well as Statisti-
cal Modeling and Analysis Section of this document and
thus theoretically presents a better representation of the
joint response through more accurate coefficient esti-
mates. The individual response characteristics of the mag-
nitude and phase, in addition to the relationship between
them, can be visualized with more clarity in Figure 3.
Here, all slices from the fully postprocessed experiment
EXPB data set are shown with overlay maps of bref (Fig.
3a) and cref (Fig. 3b), the coefficients of the task reference
regressor in the magnitude and phase, respectively. These
coefficients are shown only where the overall test (v2)
was significant to (unadjusted). Using this display
method, locations with only magnitude activation are
located where the phase coefficients displayed are nearly
0 and vice versa for locations with only phase activation.
The fact that each contains unique information is appa-
rent, and the most notable pattern seems to be the
increasing strength of the phase response in the superior
direction. Thorough and conclusive interpretation of
these results is not the focus of this work, and this infor-
mation is provided here as further evidence that such
results are accessible and potentially meaningful.

To supplement the regression analysis, time series
modeling of the real and imaginary regression residuals
was performed to determine both the initial characteris-
tics of voxel time series and the temporal stabilizing
effects of the dynamic field mapping and nuisance signal
regression. In an ideal situation, as assumed by the linear
regression model, residual errors in the real and imagi-
nary channels are temporally independent and normally
distributed. The degree to which these assumptions are
violated influences the interpretation of the significance
of the test statistic and coefficient estimators [Luo and
Nichols, 2003].

Voxel-wise tests for temporal independence of both real
and imaginary residuals of the complex-valued regression
after the different postprocessing steps are displayed for a
single slice (the same slice as used for previous analysis)
from each experiment in Figure 4. These figures show
maps of �log10 P, where P is the P-value associated with
the statistic of a Breusch–Godfrey test [Breusch, 1979; God-
frey, 1978] for the presence of autocorrelations at a time
lag of one, with voxels shown as significant above a
threshold of P < 0.001 (unadjusted). The Breusch–Godfrey
test is used instead of the Durbin–Watson test [Durbin
and Watson, 1971], which is the test used by Luo and
Nichols [2003] because of its insensitivity to deviations
from normality of the samples. Results of these tests indi-
cate that the presence of motion and a temporally dynamic
magnetic field offset both influence the temporal inde-
pendence of the residuals to varying degrees, which is an
expected result. This is evident from the fact that neither
the field nor motion correction alone is generally sufficient

Figure 3.

All slices from EXPB after dynamic field and motion correction

are shown with overlays of bref (a) and cref (b), calculated from

the complex-valued regression test. The coefficients are shown

where the v2 of the overall test was significant with P < 5 �
10�4 (unadjusted). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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for removing the sample autocorrelation, while application
of both consistently provides the minimum autocorrela-
tion. It is worth noting that in the data from EXPJ remains
significantly autocorrelated in part of the area above the
jaw, even after full correction.

Voxel-wise analysis of the normality of the real and
imaginary residuals from the complex-valued regression
after the different postprocessing steps is displayed in Fig-
ure 5. Specifically shown are the results of an Anderson–
Darling test [Anderson and Darling, 1952] in EXPB and
EXPJ, which tests for deviations in the error from a normal
distribution. In these images, voxels colored red represent
those which reject the null hypothesis that the residuals
belong to a normal distribution with probability P < 0.01.
The Anderson–Darling test is used, because it has been
shown to be one of the most powerful tests for deviations
from normality [Stevens, 1974] and is on par with the Sha-
piro–Wilk test [Shapiro and Wilk, 1965], which is the test

employed by Luo and Nichols [2003]. Similar to the auto-
correlations, it seems that application of both motion com-
pensation and dynamic field correction provides the most
desirable signal characteristics. However, in this case, ei-
ther motion correction or field correction alone seem to
provide nearly the same performance as the two com-
bined, except in the case of the imaginary residuals from
EXPJ. In that case, deviations from normality were the
most severe, and the relative normality in the other cases
may be the reason either correction alone performs as well
as both together.

In EXPJ, there are a few areas that contain significantly
autocorrelated and to a lesser extent non-normal resid-
uals even after full correction. The greatest example of
this can be seen in the real autocorrelations in Figure 4c.
The failure to completely restore temporal independence
and normality is likely twofold. First, the spatial variation
in the field is very large in these areas and may not be

Figure 4.

Maps of the v2 statistics resulting from voxel-wise Breusch–Godfrey tests for autocorrelations in

the real (a,b) and imaginary (c,d) residuals of complex-valued regression at a lag of 1 after differ-

ent postprocessing steps. Significant voxels shown above a threshold of P < 0.001 (unadjusted).

Results are shown for both EXPB (a,c) and EXPJ (b,d). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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fully captured by the model, thus leaving it partially
uncorrected. Additionally, because of these large spatial
variations, significant intravoxel effects are likely to be
present, and this is not correctable with the TOAST
method and is likely unrelated to bulk motion. It is inter-
esting to note that the areas previously mentioned,
which become active in EXPJ in the test of magnitude-
and-or-phase after applying both corrections (Fig. 2f),
coincide with locations where the autocorrelations and
departures from normality are not fully removed. This
combined with the relatively poor conditioning of the
design matrix could explain why these areas become
active in this case.

Simulation

Each of the 100 iterations of the simulated experiments
SIMB and SIMJ were analyzed in exactly the same fashion

as the human experiments, EXPB and EXPJ. The SIMC
iterations were only processed corresponding to the
‘‘none’’ case of the human experiments as no dynamic
field offset nor motion was present. The results were ana-
lyzed by quantifying the detection power, which is defined
as the number of iterations out of 100 in which a test sta-
tistic was significant at a specified threshold [Logan and
Rowe, 2004; Logan et al., 2008]. For each set of tests, the
threshold for each individual test matched that used in the
human data analysis. Only voxels meeting this threshold
in at least 5 of the 100 tests are shown in the images,
masking away the others. This choice of thresholding was
used to provide optimal comparability with the human
results. Each of the images resulting from simulation rep-
resent voxels where the true mean of the distribution is
shifted such that at least 5% of its area lies over the per-
centage corresponding to the specific single test threshold
of the area under the null distribution curve. This way, the
probability that an unmasked voxel would be significant

Figure 5.

Maps of the results from voxel-wise Anderson–Darling tests for

deviations from normality in the distributions of the real (a,b) and

imaginary (c,d) residuals of complex-valued regression after differ-

ent postprocessing steps. Voxels that are colored red are those in

which the null hypothesis is rejected with probability P < 0.01

(unadjusted). Results are shown for both EXPB (a,c) and EXPJ

(b,d). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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in a single trial at its single trial threshold is the same
regardless of that threshold.

The results of magnitude-only, phase-only, and magni-
tude-and-or-phase activation detection are shown in Fig-
ure 6 for the SIMC series and Figure 7 for SIMB and SIMJ.
The results shown in Figure 7 present characteristics that
appear to corroborate what was seen in the human data.
First, magnitude-only activity (Fig. 7a,b) is not drastically
different between various postprocessing steps, which is
similar to the behavior of the experimental data, and it is
arguable that the degree of variation in both simulated
and acquired data is somewhat similar. Second, phase-
only detection power in SIMB and SIMJ, shown in Figure
7c,d, is significantly reduced without dynamic field correc-
tion and reaches power levels near the control with the
field correction applied. The relative effect of the motion
compensation alone corresponds to some degree with the
acquired data; in that, a small amount of power is recov-
ered from the unprocessed case. It is of interest to note
that the previously mentioned area, which becomes active
outside of the motor cortex in EXPJ after applying both
corrections, is not reproduced in SIMJ. This may be caused
by the imperfect representation of the exact field changes
or motion that occurred the lack of through plane field
gradients in the simulation, or some other signal source
present in the experimental data that was not included in
the simulation. Finally, the magnitude-and-or-phase power
in SIMB and SIMJ (Fig. 7e,f) show responses to postpro-
cessing similar to those observed in experimental data in
the majority of cases as well.

It should be noted that the detection power shown for
SIMC is not expected to be achievable in either SIMB or SIMJ.
The motion applied to both SIMB and SIMJ shifts the active
locations around through time, and the motion compensation
applied will not account for this. The correction for motion,
which is applied, will simply remove variance in the signal
that is correlated with the estimated motion. Achieving the
smallest difference between the control and the test cases is
still obviously the goal, however.

The temporal autocorrelations and distribution normal-
ity of the real and imaginary residuals following complex-
valued regression after the different postprocessing steps
in SIMB and SIMJ were investigated in the same manner
as done for EXPB and EXPJ previously. The results of the
voxel-wise Breusch–Godfrey test of temporal independ-
ence and the Andreson–Darling test of deviations from
normality are shown in Figures 8 and 9, respectively. The
same tests for SIMC resulted in no significance for either
test beyond the expected type 1 errors and are not shown
here.

The images in Figures 8 and 9 show that the simulated
motion and magnetic field variations cause significant
autocorrelation and deviations from normality as seen in
experimental data. Additionally, the autocorrelations
appear to be more problematic than non-normality in this
case as well. The corrections also seem to have a similar
impact in the simulated data as they do experimentally. In
the autocorrelations, neither motion nor TOAST correction
alone generally provide as good a result as the two to-
gether. The deviations from normality, when not very
strong, appear to be corrected equally well by either
motion or field correction alone, but across the board, the
best results are achieved by applying both in tandem.

Beyond the similarities between simulated and experi-
mental data in terms of how the corrections affect the tem-
poral signal characteristics, there also seem to be
similarities between the two with respect to the pattern of
autocorrelation and non-normality. Connections between
them can be seen in many cases, and this helps to support
the validity of the simulation and the repeatability of the
corrections.

DISCUSSION

The experimental and simulated data presented thus far
have demonstrated the improvements that can be achieved
with complex-valued fMRI analysis using TOAST and
motion correction in situations containing known nuisance
signals that are likely exaggerated compared to what will
usually occur during a common fMRI experimental acqui-
sition. Although this shows that this methodology can be
beneficial in more extreme and difficult cases, it does not
necessarily indicate the expected benefit in more common
environments. As previously mentioned, a more typical
fMRI acquisition was not included in the Results section
above, so that the argument presented there relied on con-
sistent, comparable data. Rather, a quick inspection of the
complex-valued activation statistics after performing
TOAST and motion correction in a fMRI time series
acquired with more common parameters and without any
nuisance task is presented here for the purposes of
discussion.

Figure 10 shows the activations detected using the
model for magnitude-only (Fig. 10a), phase-only (Fig. 10b),
and magnitude-and-or-phase (Fig. 10c) in EXPC. The

Figure 6.

Maps of the detection power for magnitude-only (a), phase only

(b), and magnitude-and-or-phase (c) in the SIMC simulation.

Voxels are shown when detection power is 5% or greater.

Detection power is defined as the percentage of iterations a

voxel tested significant at P < 5 � 10�4 (unadjusted). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 7.

Maps of the detection power for magnitude-only (a,b), phase-

only (c,d), and magnitude-and-or-phase (e,f) activation. The

results of SIMB (a,c,e) and SIMJ (b,d,f) are shown for each activa-

tion model. From left to right, columns show results after no

postprocessing, motion compensation only, dynamic field correc-

tion only, and both motion and field correction. Voxels are

shown when detection power is 5% or greater. Detection

power is defined as the percentage of iterations a voxel tested

significant at P < 5 � 10�4 (unadjusted). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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details of the acquisition of EXPC can be found in Table I
and the Methods section above. The results of the magni-
tude-only statistics show behavior similar to what was
observed in EXPB and EXPJ, that is, little difference
between each case. Phase-only results are slightly more
interesting. Around the motor cortex, the results are the
same as those previous in that little to no activity is pres-
ent without correction and applying TOAST and TOAST
with motion correction yields activations in that area.
However, without any correction, a large area of activity
is detected in the anterior part of the brain that appears
artifactual in nature. In this case, applying the corrections
removes the significant activity in this area. Finally, the
magnitude-and-or-phase activity is what is expected
given the magnitude-only and phase-only data. Most
importantly, the significance of activations in the
expected areas, that is, motor cortex, is increased by the

corrections, while the activity in the anterior brain is
reduced by them. In these final results, the activity in the
motor cortex, although diminished, is present with no
correction at all.

Two things can be said of these results. First, it
appears that, some improvement, in terms of phase-only
and complex-valued detection power, is possible using
the two correction methods in this case. However, the
degree of improvement, especially in the magnitude-
and-or-phase activations, is diminished compared to that
seen in EXPB and EXPJ, which is not unexpected. Sec-
ond, the corrections seem to be beneficial with respect
to removal of artifactual activity in this case, which was
not necessarily the case in EXPB and EXPJ. It is hard to
predict the occurrence of such artifacts, but it seems rea-
sonable to think that these corrections could reduce their
effects.

Figure 8.

Maps of the detection power for voxel-wise Breusch–Godfrey

tests of autocorrelations in the real (a,b) and imaginary (c,d)

residuals of complex-valued regression at a lag of 1 after differ-

ent postprocessing steps. Voxels are shown when detection

power is 5% or greater. Detection power is defined as the per-

centage of iterations a voxel tested significant at P < 0.001

(unadjusted). Results are shown for both SIMB (a,c) and SIMJ

(b,d). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Rather than reduce artifacts, the use of both motion cor-
rection and field correction as opposed to simply field cor-
rection alone seemed to induce an artifact in EXPJ in the
phase-only and magnitude-and-or-phase activations as
previously mentioned, and it was suggested that ill-condi-
tioning of the design matrix when including motion esti-
mations as regressors may be a contributing factor. This
potential ill-conditioning is a weakness associated with
performing motion compensation in this way. Addition-
ally, certain signal components may not arise due to
motion, but motion regressors can, in certain situations,
account for some of the signal, reducing the significance of
the task reference regressor and thus the detection of true
activation. It is possible that this problem may be elimi-
nated through use of a motion correction scheme tailored
for complex-valued fMRI data, and further work is neces-
sary to determine whether this is feasible. However, the
data seems to show in the other cases that even this

imperfect motion compensation seems to be beneficial in a
general sense, and including it as a postprocessing correc-
tion still provides the best results. This certainly seems to
be true with regard to residual temporal autocorrelations
and non-normality.

The processing techniques used to enhance the complex-
valued fMRI statistical analysis presented here represent
only two of the potentially useful methods. The dynamic
magnetic field correction appears to provide the founda-
tion for the demonstrated improvements, and motion cor-
rection was included because of its common use in many
fMRI experiments. Additionally, these two methods alone
provide a significantly more optimal and robust time
series, can be used without any special pulse sequence
modifications or physiologic monitoring during experi-
mentation, and thus may be applied to any EPI fMRI data
set previously collected if the complex-valued images are
available.

Figure 9.

Maps of the detection power for voxel-wise Anderson–Darling

tests for deviations from normality in the distributions of the

real (a,b) and imaginary (c,d) residuals of complex-valued

regression after different postprocessing steps. Voxels are shown

when detection power is 5% or greater. Detection power is

defined as the percentage of iterations a voxel tested significant

at P < 0.01 (unadjusted). Results are shown for both SIMB (a,c)

and SIMJ (b,d). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Additional benefit may be realized by using time series
representing unwanted signal components other than
motion as nuisance regressors during statistical analysis.
These may be based on respiration, heart rate, or any other
physiologic process monitored during an experiment
[Glover et al., 2000], or can be derived directly from the
acquired data itself along with a short reference scan
[Bianciardi et al., 2009; de Zwart et al., 2008]. Although the
work of Glover et al. [2000], de Zwart et al. [2008], and
Bianciardi et al. [2009] discuss application for magnitude-
only data, extension to complex-valued data is possible in
the same manner used for motion parameter regression in
this work. This type of technique would likely comple-
ment the field correction well, providing the capability to
compensate for detrimental signal, which is more spatially
localized and often not associated with a bulk magnetiza-
tion shift, such as cardiac-induced pulsatile blood flow or
modulated blood oxygenation with respiration.

The complex-valued regression analysis used in this
work is only applied in a very rudimentary and straight-
forward manner as a means of demonstrating the initial
challenges facing the technique and its potential utility fol-
lowing the correction processes. Further work is necessary

to focus more on utilizing its flexibility to apply more
appropriate complex-valued functional response models
and investigate the complex-valued functional impulse
response now that a foundation exists to consistently
achieve a robust complex-valued time series.

CONCLUSION

The investigation of the practical utility of a complex-
valued statistical model in fMRI data presented here is
motivated by growing interest in both phase-only and
magnitude and phase analysis. Results were presented
from both human fMRI time series and simulated data
demonstrating that phase-only and complex-valued regres-
sion analysis of raw fMRI time series is generally challeng-
ing and certainly suboptimal, due to large nuisance signal
components in the phase. This does not imply that all
complex-valued analysis of raw data is expected to be
unreasonable or highly flawed, but that these issues exist
and can potentially cause significant problems.

The results went on to demonstrate that applying
dynamic magnetic field correction can significantly reduce

Figure 10.

Maps of �log10P, where P is the P-value associated with the v2 statistics for magnitude-only (a),

phase-only (b), and magnitude-and-or-phase (c) activation in EXPC after different postprocessing

corrections. Active voxels shown above a threshold of P < 5 � 10�4 (unadjusted). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the effect of the unwanted signals, and motion correction
can further improve the normality and temporal autocorre-
lation of the complex-valued time series. As a result, the
complex-valued regression is much more powerful, and
the simple tests and analysis provided in this work appear
to indicate that valid and potentially valuable physiologic
information is contained in the complex-valued fMRI
signal.
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