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Abstract

This paper explores statistical and dimension reduction methodology in the

context of detecting and parametrizing gravitational wave signal from core collapse

supernovae. Gravitational wave interferometer signals are simulated using a noise

model which seeks to match the true detector noise. Using template matching, these

noisy signals are tested to see if the underlying waveform can be detected. Then,

using PCR the locations of interest within the signals are reconstructed and hypothesis

tests for significance of coefficients are performed. While parameter estimation by way

of hypothesis tests on significance of constituent waveforms shows limited usefulness,

template matching is shown to be a useful and efficient method even within this context.
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1 Introduction

Recently in physics, Einstein’s general theory of relativity has been experimentally verified

via the detection of gravity waves traveling through the fabric of the universe by the Laser

Interferometer Gravitational Wave Observatory (LIGO). Creation and implementation of

statistical methodology for the purposes of detecting gravitational waves has long been a fo-

cus of the LIGO scientific collaborative. While inspiral signals, those created by the mergers

of compact binaries such as black holes and neutron stars have been detected, burst signals

from core collapse supernova have yet to be discovered. I will summarize the problem and re-

view methods that have been useful in detecting signature gravity waveforms. Subsequently,

I will generate noisy simulated core collapse supernovae data streams with embedded signa-

ture waveforms. Template matching will be used to detect candidate locations of interest in

noisy data streams. Once candidate locations of interest are identified, principal component

regression (PCR) will be used to test the likelihood that these locations are signal from

specific core collapse supernovae subtypes. Once PCR has been performed, the underlying

signals can be reconstructed. Then, these reconstructions will be tested for similarity with

understood simulations.
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2 Background

2.1 Gravitational Wave Astronomy

2.1.1 Gravitational Waves

In 1916 Albert Einstein published his general theory of relativity, a geometrical theory of

gravity.[Einstein, 1916] This theory posits that gravity arises from a curvature in a four

dimensional manifold called space-time and conversely that space-time is curved in the pres-

ence of mass, energy, pressure and angular momentum. Like a bowling ball on a rubber

sheet, a massive object like the sun deforms space-time. A smaller object, like the Earth,

will move in orbit around the massive object in a geodesic along curved space-time, follow-

ing the shortest path. In the words of physicist John Wheeler, mass tells space-time how to

curve, and space-time tells mass how to move.[Misner et al., 1973]

Gravitational waves arise as a consequence of Einstein’s theory. Gravitational waves are

ripples in space time caused by the acceleration of massive objects which propagate through

the universe at the speed of light. They stretch and compress space-time orthogonal to the

direction of propagation. Their units are called strain, which is a dimensionless combination

of two polarizations: a plus (+)-polarization and a cross (×)-polarization. Gravitational

waves are also very weakly interacting. This is beneficial because they travel through the

universe unobscured by intervening matter and remain a pure source of astrophysical infor-

mation. By the time they reach the Earth, they have very small strain on space and only

signals from hugely massive events are large enough for detection. Sources are expected

to produce a strain of order h≈ 10−21 which corresponds a displacement of approximately

10−18, much smaller than the width of a proton, in the ground-based laser interferometers.

This distance, relative to the length of the interferometers, is akin to the width of a human

hair placed between the Earth and the moon. It is an amazing feat of engineering that

the detectors are sensitive enough to directly detect gravitational waves from even the most

massive events, inspiral events from coalescing black holes and neutron stars. GW150914,

the first direct observation of gravitational waves, was an event of this type, but inspiral

events are not the only source of gravitational waves.[Abbott et al., 2016b]

Gravitational waves are classified into four groups: inspiral, continuous, burst, and

stochastic. Inspiral signals occur when two massive objects, black holes or neutron stars,

fall into orbit. As the two massive objects orbit each other, they emit gravitational waves

and lose energy. As they lose energy their orbital distance decreases which increases or-
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bital and gravitational wave frequency as well as gravitational wave amplitude. This type

of signal is the best understood and most well-modeled source of gravitational waves. Con-

tinuous gravitational waves are generated by single massive objects like pulsars (slightly

aspherical, rapidly rotating neutron stars). These signals will generally be relatively weak,

long-duration, and with near constant amplitude and frequency. Burst gravitational waves

are high amplitude, short-duration events. Burst signals are expected to come from many

sources, including: core collapse supernovae, cosmic string cusps, pulsar glitches, starquakes

from magnetar flares, as well as yet unknown sources.[Edwards, 2017] Finally, Stochastic

gravitational waves are the sum of small unresolved gravitational wave signals. Like the

microwave background, the stochastic gravitational wave background could be left over from

the Big Bang.[Romano and Cornish, 2017] Direct measurement of the stochastic gravita-

tional wave background will allow researchers to see back to seconds after the Big Bang

which will help constrain cosmological models of the early universe. Unfortunately, the

stochastic gravitational wave background has the smallest strain and will be very difficult to

detect.

Detection of inspiral signals is now, for the most part, a solved problem. Optimal pa-

rameter estimation in a Bayesian framework and template matching based search methods

are well-defined for compact binary coalescence (CBC) signals.[Abbott et al., 2016a] On the

other hand, it is most likely infeasible to detect continuous and stochastic gravitational wave

signal using ground based detectors due to high levels of terrestrial noise. This leaves only

the possibility of detecting burst signals. The most promising source of burst gravitational

wave signals are core collapse supenovae. This would be scientifically interesting because,

unlike electromagnetic observations which can only directly probe the envelope of a star,

gravitational waves are emitted deep in the core of a collapsing star and travel unobscured

across the Universe. Observation and measurement of gravitational waves from stellar core

collapse will allow for insights about the core collapse dynamics and supernova mechanisms

which could lead to theoretical developments.

2.1.2 Core Collapse Supernovae

Main Sequence stars, such as our Sun, convert hydrogen to helium through nuclear fusion

in the core and release energy. When a star is much more massive than our Sun gravity

causes the core to heat up enough to fuse heavier elements in the order: carbon, oxygen,

neon, magnesium and finally iron. As elements fuse and release energy there is an outward
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thermal pressure that balances the inward pull of gravity, like the air in a balloon. This

outward push and inward pull in all directions is why stars have a spherical shape.

The lives of stars larger than eight solar masses come to an end when iron is formed in

their core. Iron absorbs energy and does not fuse into heavier elements, it also does not

release energy by fission. Thus, the inward pull of gravity overcomes the outward thermal

pressure and the star collapses in on itself. At the core of the collapsing star the force of

gravity overcomes electron degeneracy pressure and protons and electrons come together to

form neutrons, over-riding the weak nuclear force. Due to conservation laws, neutrinos are

released during this process causing the core to cool and compress even more until the inner

core reaches nuclear density. At this point the strong nuclear force, which is the force that

keeps the nuclei of atoms together against the repulsive force between neutrons, takes over

and causes the core to bounce, as if a wall was formed at the interior, creating a shock

wave which travels out through the in-falling outer core. If the shock wave stalls, collapse

continues, overriding the strong nuclear force, and a black hole is formed. However, it is

possible that the shock wave is regenerated by some underlying mechanism which heats up

the star and produces new elements. If this occurs, or the shock wave is not stalled and

reaches the surface, the star explodes in a supernova leaving either a black hole or neutron

star.

The mechanism causing shock wave revival is debated by theorists. The two front-running

theories are the neutrino mechanism and the magnetorotational mechanism.[Bethe and Wilson, 1985],

[Shibata et al., 2006] The neutrino mechanism is based on the idea that high-energy neu-

trinos are trapped behind the stalled shock wave and that they somehow regenerate it.

The magnetorotational mechanism suggests that the shock wave is regenerated by strong

differential rotation in the outer protoneutron star.

2.2 Statistical Methods

2.2.1 Principal Component Analysis

Principal component analysis is a multivariate dimension reduction technique that trans-

forms a set of potentially correlated variables into a set of orthogonal principal components.

As described in Rencher and Christensen, given some data, the aim of principal compo-

nent analysis is to sequentially maximize the variance of an orthogonal combination of the

variables.[Rencher and Christensen, 2002] The first principal component is the linear com-

bination with maximal variance; the dimension along which the observations are maximally
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separated or spread out. The second principal component is the linear combination with

maximal variance in a direction orthogonal to the first principal component, and so on.

Principal components have a simple geometric intuition. Principal component analysis

deals with a sample of n observation vectors each of length p y1,y2, . . .yn. These obser-

vations form a swarm of points in p-dimensional space. For simplicity, although it is not

required for principal component analysis, it helps to visualize this swarm as ellipsoidal. If

the observations are correlated, the ellipsoidal swarm will not be oriented along the axes

represented by y1, y2, . . . , yp. Our goal is to find the natural axes of the ellipsoid with origin

located at ȳ. This is done by translating the origin to ȳ and rotating the axes. Once the

axes are rotated to be along the natural axes of the ellipsoid, the new variables (principal

components) will be orthogonal and therefore uncorrelated. This can be done by finding the

eigenvectors of the covariance matrix of the data.

Following the presentation in Heng 2009, and keeping with the context of this paper,

we arrange the waveforms from the catalog {H1, H2, . . . , HM} into a matrix such that each

column corresponds to one of the waveforms.[Heng, 2009] For M waveforms of length N,

the matrix H has dimensions N×M. First, Ψ, a matrix of mean-subtracted waveforms is

constructed such that the columns, Ψi, are determined by.

Ψi = Hi −
1

M

M∑
i=1

Hi

The covariance matrix is then calculated by

C =
1

M
ΨΨT

where C is the covariance matrix with dimensions N×N.

The normalized eigenvectors of C form a basis set of vectors that span the parameter

space defined by the waveforms in H. The eigenvalues of the covariance matrix, λi, indicate

how well their corresponding eigenvector spans the space of the waveform catalog. They are

constructed so that a proportion,
∑k

i=1 λ
2
i /
∑M

i=1 λi, of the total variation of the waveforms

is explained by the selected k eigenvectors. See figure ?? below for a visual representation

of these normalized eigenvalues.

2.2.2 Principal Component Regression

Principal Component Regression (PCR) is a linear regression with the principal component

basis vectors treated as explanatory variables. Dimension is reduced by only considering the
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Figure 1: Common graphical methods for selecting number of principal components.
Created using 136 simulated Core Collapse Supernova Signals from Dimmelmeier et al.
[Dimmelmeier et al., 2008]

first d basis vectors with the highest eigenvalues, which conserve as much of the information

about the original data as possible. Choosing the number of basis vectors to retain is a non-

trivial problem. This is generally done heuristically although cross-validation methods may

also be employed. Rencher and Christensen propose the following guidelines for selecting

the number of principal components to retain.[Rencher and Christensen, 2002]

1. Retain sufficient components to account for a specified percentage of the total variance,

say 80%. An example of this decision criterion being used to select a number of

principal components for the Dimmelmeier et al waveform catalog is displayed in Figure

1.[Dimmelmeier et al., 2008]

2. Retain the components whose eigenvalues are greater that the average of the eigenval-

ues,
∑p

i=1 λi/p. For a correlation matrix, this average is 1.

3. Use the scree graph, a plot of λ1, verses i, and look for a natural break between the
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“large” eigenvalues and the “small” eigenvalues. An example of a scree graph for the

same Dimmelmeier et al. waveform catalog is displayed in Figure 1

4. Test the significance of the “larger” components, that is, the components corresponding

to the larger eigenvalues using a liklihood ratio test.

2.2.3 Time Series

Gravitational waves are finite duration discrete time series. An important simplifying as-

sumption of the analysis done is that the time series are stationary. The basic idea of sta-

tionarity is that the probability laws that govern the behavior of the process do not change

over time. Mathematically, a weakly stationary time series {Xt} has constant and finite

mean and variance over time, and an autocovariance function γ(t, t − h) = Cov(Xt, Xt−h)

that depends only on the time lag h. Thus, a time series is second order stationary if

E[Xt] = µ <∞, for all time t

V ar[Xt] = σ2 <∞, for all time t

γ(t, t− h) = γ(0, h), for all time t and lag h

Stationary time series are often modeled using the autoregressive moving average (ARMA)

model. As its name suggests, the ARMA model is made up of two parts: an autoregressive

component and a moving average component. Assuming a mean-centered time series {Xt},
an ARMA(p, q) model is formulated as follows,

Xt −
p∑
i=1

φiXt−i = εt +

q∑
t=1

θiεt−1

where p is the number of autoregressive terms, q is the number of moving average terms and

εt is white noise with zero mean and constant variance. If p = 0, the ARMA model reduces

to a moving average (MA) model of order q . If q = 0, it reduces to an autoregressive (AR)

model of order p. If p = q = 0, the model reduces to white noise.

2.2.4 Fourier Transform

The Fourier transform maps a function of time to a function of frequency using complex

sinusoids. The Fourier transform is immensly useful in time series analysis because many

problems are naturally solved in the frequency domain instead of the time domain. Formally,

following the presentation in Edwards let h : R→ R be a continuous real valued time series,
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then it’s continuous Fourier transform h̃ : R→ C is the continuous complex-valued function

defined as

h̃(λ) =

∫ ∞
−∞

h(t)e−iλtdt

where λ = 2πν is angular frequency with ν measured in cycles per unit time.[Edwards, 2017]

The operation that reverses the transformation is called the continuous inverse Fourier

transform, and is defined as

h(t) =
1

2π

∫ ∞
−∞

h̃(λ)eiλtdλ

The Fourier transform and its inverse may be thought of as a Fourier transform pair, given

by

h(t) 
 h̃(λ)

2.2.5 Properties of the Fourier Transform

Because h is a real-valued function, the inverse transform h̃ is Hermitian symmetric.

h̃(−λ) = h̃(λ)

where h̃(λ) is the complex conjugate of h̃(λ).

The Fourier transform is linear. Let h(t) 
 h̃(λ) and g(t) 
 g̃(λ) be Fourier transform

pairs, then

ah(t) + bg(t) 
 aλ̃+ bg̃(λ),

for any real numbers a and b By the convolution theorem, a convolution in the time domain

forms a Fourier transform pair with multiplication in the frequency domain. That is, the

inverse Fourier transform of the product of two continuous Fourier transformed series is their

convolution. Mathematically,

h(t) ∗ g(t) 
 h̃(λ)g̃(λ)

where

h(t) ∗ g(t) =

∫ ∞
−∞

h(t− τ)g(τ)dτ

is the convolution of h and g. The same is true in reverse. Multiplication in the time domain

forms a Fourier transform pair with a convolution in the frequency domain. The Fourier

transform has the following time-shifting property,

h(t− T ) 
 e−iλT h̃(λ),

for any time lag T. That is, shifting a time series h by lag T can be done in the frequency

domain by multiplying the Fourier transform of the series by e−iλt.
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2.2.6 Discrete Fourier Transform

The discrete Fourier transform (DFT) converts a finite sequence of discrete time values to a

finite set of Fourier coefficients in the frequency domain. Formally, following the presentation

in Rowe 2016, the one dimensional discrete Fourier transform F (q∆v) of a time series y(t)

sampled at N times ∆t apart is defined as,

f(q∆ν) =
N∑
p=1

y(p∆t)e−i2π(p−1)(q−1)/N

for p, q = 1, . . . , N , and ∆ν = 1/(N∆t).[Rowe, 2016] Like the continuous Fourier transform,

the DFT is made up of both real and imaginary parts. The DFT and inverse DFT are

efficiently computed using the fast Fourier transform (FFT).[Cooley and Tukey, 1965] Like

the Fourier transform, the DFT also has Hermitian symmetry if h is real-valued. If N is

even, then there are N
2

+ 1 non-redundant DFT elements. Also, h̃(0) and h̃(N
2
λ) are always

real valued. This means that there are N
2

+ 1 real parts and N
2
− 1 imaginary parts.

2.2.7 Template Matching

Template matching is a technique used in signal and image processing for locating small

parts in an image that match a given template. Facial recognition is a common problem

that relies on template matching. Template matching based on feature extraction methods

is often performed using Neural Networks and Deep Learning classifiers but at its core it is

a simple approach which can be applied rapidly and with computational efficiency.

A simple approach to template matching is to calculate the correlation between the

template and the signal or image. This calculation is then repeated, moving the template

over each pixel or lag value in the signal. This process returns a series or matrix of correlations

between template and signal which is the same size as the signal. In the context of this paper

we are examining time series which are encoded as 1-dimensional vectors. The mathematics

will be presented in these terms.

Let X and Y be two time series of equal length n. Recall Pearson’s Correlation coefficient,

Corr[X, Y ] =
Cov[X, Y ]√
V ar[X]V ar[Y ]

assuming that the two time series are mean centered this becomes,

Corr[X, Y ] =
E[XY ]√

V ar[X]V ar[Y ]
=

1
n
Sxy√

V ar[X]V ar[Y ]
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where,

Sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

The two variances in the denominator are easily calculated for discrete time series. Calcula-

tion of the numerator can be done using the convolution theorem discussed in section 2.2.4

above as,

Sxy = F−1[F [X]F [Y ]]

Where, F is the Fourier transform. Thus we have that,

Corr[X, Y ] =
1
n
F−1[F [X]F [Y ]]√
V ar[X]V ar[Y ]

Remark : Note that F−1[F [X]F [Y ]] is commonly referred to as the cross-correlation in signal

processing. Formulating the problem in this way allows us to use the FFT which signifi-

cantly speeds up calculations. Additionally, performing these calculations in the frequency

domain allows all correlations to be calculated at once. Instead of calculating n individual

correlations at each lag, all correlations are calculated at once with the cross-correlation.

2.2.8 Interpolating Splines

Interpolation between measured points is a common problem in time series analysis. For a

time series of length n it is infeasable to interpolate using a polynomial of degree n, which,

while it will perfectly fit all n points, will be poorly conditioned and highly variable to small

changes in the input. Instead of globally overfitting the data it is possible to fit a piecewise

polynomial function, known as a spline, formed by n − 1 low degree polynomials. This

polynomial can be additionally constrained by requiring its derivatives to exist so that it

must be continuous and smooth.

Let S(x) be a piecewise polynomial spline and let Pi(x) be the ith polynomial piece of

S(x). Then, for S(x) to be continuous we must have,

Pi(xi) = Pi+1(xi) = yi

for each i, or that each consecutive polynomial is joined with the previous one at their

endpoint. For S(x) to be smooth the consecutive polynomials must have the same derivative

at their joint. Thus,

P
(k)
i (xi) = P

(k)
i+1(xi)

must hold for some order k. The spline becomes more smooth for higher values of k.
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Cubic Splines, where the piecewise polynomials are third order, provide a good middle

ground between flexibility and overfitting. Cubic splines also have the benefit of being easy

to obtain. Requiring that the second derivative of each polynomial is zero at their endpoints

provides a boundary condition which leads to a tridiagonal system which can be easily solved

for the polynomial coefficients. This is known as the “natural” cubic spline.
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3 Analysis

3.1 Outline

The analysis performed for this paper followed these steps.

1. The waveforms created by Abdikamalov et al. were smoothed and resampled at the

LIGO sampling rate 214 Hz.

2. The waveforms were injected into noisy samples of length 215 with signal-to-noise ratios

(SNRs) 10 and 20

3. Locations of interest were selected out of the noisy data stream using template match-

ing, where the signals in training set from the waveform catalog were used as templates.

4. Using PCR, the locations of interest were reconstructed and coefficients for the original

test catalog were found for each.

5. Hypothesis tests on the significance of the test signals were applied.

3.2 Waveform Catalog

The gravitational wave waveforms used in this analysis come from two-dimensional numerical

axisymmetric general-relativistic hydrodynamic rotating core collapse and bounce surper-

nova simulations.[Abdikamalov et al., 2014] A single presupernova progenitor model (the

12 solar mass at zero age main sequence solar-metallicity progenitor model from Woosley

and Heger was assumed. It has been shown that gravitational wave signals from core col-

lapse supernova are essentially independent of the zero age main sequence of the progenitor

star.[Woosley and Heger, 2007]

The waveform catalog was partitioned into training and test sets. The training set

contains 92 signals with varying parameters. The training set is partitioned by five lev-

els of precollapse differential rotation A where higher levels of A correspond with weaker

differential rotation. At each level A, simulations were run over a grid of values for ini-

tial central angular velocity Ωc, and then for a grid of values for the ratio of rotational

kinetic energy of gravitational energy of the inner core at bounce βic,b. Each signal in

the training set was generated using the microphysical Lattimer-Swesty (LS) equation of

state (EOS) [Lattimer and Swesty, 1991], the parametrized deleptonization scheme from
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[Dimmelmeier et al., 2008], and the neutrino leakage scheme from [Ott et al., 2012]. In ad-

dition to varying underlying values of A,Ωc, and βic,b, the test set contains 47 signals with

differing EOS and deleptonization parametrizations. Specifically, some of the signals in the

test catalog were created using the Shen EOS [Shen et al., 1998] and by increasing/decreasing

the deleptonization parametrization by ∼ 5%. The values of Ωc and βic,b in the test set were

generated over a different grid, but in the same parameter space as the training set. The

object of our analysis is to to detect and reconstruct waveforms from the test set embedded

in simulated detector noise and infer their physical parameters.

Preparing the signals in the catalog for analysis required them to be resampled. The sig-

nals were initially sampled at 100 kHz and were downsampled to 16384 Hz (the sampling rate

of the Advanced LIGO detectors) using cubic spline interpolation. The resampled data was

then zero-buffered to insure that each signal was the same length, n = 16384, corresponding

to a length of 1 s of data collected by Advanced LIGO. The waveforms are all initially of

mean zero, so zero-buffering has no effect on the overall mean. After this, each signal was

aligned so that their minima, which corresponds to the location of the core bounce, was

located at the center of the time series. This follows the setup of [Röver et al., 2009] In this

analysis, the source of a gravitational wave emission is assumed to be oriented perpendicular

to a single interferometer. Each signal is linearly polarized with zero cross-polarization.

The general shape of the waveforms are displayed in Figure 2. During core collapse,

there is a slow increase in gravitational wave strain until the first local maximum is reached.

Then there is an abrupt decrease toward a local minima, located at 0.5 s, at core bounce.

The minimum achieved corresponds with the expansion of the inner core during bounce.

Following this is a period of ring down oscillations as the proto-neutron star core settles.

Immediately noticeable is the variability in magnitude of the initial drop and following peak.

These differences are driven by the initial differential rotation of the progenitor star. For

slowly rotating progenitor stars, βic,b ∼ 0.03, the pre- and post-bounce peaks are of similar

size and the minimum at bounce is relatively small, an example of which is displayed in the

second panel above. For rapidly rotating progenitors, βic,b ∼ 0.09, like those displayed in the

first and third panel above, The pre-bounce maximum is much smaller than the post-bounce

maximum, and the intermediate minimum is greater in magnitude than for slowly rotating

progenitors.
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Figure 2: General waveform morphology for Abdikamalov et al. Catalog

3.3 Principal Component Analysis

To reduce dimension, principal component analysis was applied to the base catalog of wave-

forms. Each training waveform is represented as a linear combination of orthonormal basis

vectors. The projection of the data onto the first basis vector has maximal variance, the

projection on to the second basis vector has the second highest variance, and so on. By con-

sidering only the projections onto a beginning subset of the 92 basis vectors, a parsimonious

representations of the signals that preserves as much information as possible is achieved. The

first four principal components of the base catalog are depicted in Figure 3. [Note that the

first two PCs captures the essential pre- and post-bounce maxima on a large scale, whereas

the later PCs capture the post-bounce variation that is common in all waveforms in the

catalog.] In this analysis, PCA was performed by taking the singular value decomposition

(SVD) of the base catalog using the base R SVD command. This approach was significantly
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faster than computing the spectral decomposition of the catalog. It also allows for easy

reconstruction of a reweighted waveform matrix by saving the right singular vectors V for

right multiplication after principal component regression (PCR) is performed.
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Figure 3: First Four Principal Components

15



3.4 Simulation of Gravitational Wave Data

Data obtained by Advanced LIGO is contaminated with noise covering the entire range

of the detectors bandwidth. The detectors are incredibly sensitive, as they must be, and

measure noiseplo from many sources. From shot noise in photon intensity readings and

impurities in the reflective mirrors, to terrestrial noise from trucks passing nearby on the

highway or, reportedly for the detector in Washington, from waves crashing on the shores of

California.[Abbott et al., 2016a] The detection frequency band for Advanced LIGO covers

the whole gamut of noise sources including seismic, thermal and quantum noise. Accurate

astrophysical inference relies on an honest characterization of background and detector noise

sources. As such, proper statistical reconstruction of detector noise is an open and active

area of research for the gravitational wave community.

A common assumption in gravitational wave data analysis is that the noise is essen-

tially stationary and Gaussian distributed, with a known phase spectral density (PSD)

that can be estimated using off-source signal. Unfortunately, this has been shown to be

false.[Cornish and Littenberg, 2015] Non-Gaussian glitches due to terrestrial disturbances

pervade the data stream, and the noise exhibits behavior of a fatter tailed than Gaussian

process. These inconsistencies with assumption can lead to misleading inferences and predic-

tions about underlying signal. To capture this non-Gaussian behavior, noise is modeled as

an autoregressive (AR) process with Student-t innovations with νdf = 3 degrees of freedom.

The effect of using Student-t innovations with νdf = 3 is the introduction of transient, high-

amplitude, non-Gaussian events. These are a result of the fat-tailed nature of the Student-t

density which is amplified by the choice of νdf = 3 which is the lowest degrees of freedom for

which the Student-t density has non-infinite variance. This choice of noise model reasonably

matches the PSD of the LIGO data stream as well as being easily generated.

To generate signals with a given Signal-to-Noise Ratio (SNR) the following process is

applied. Add together a signal from the waveform catalog and some generated noise process

such that the sum has the desired SNR. SNR may be defined as,

SNR =
µ

σ

using this definition we may generate signals with desired SNR. The resampled signals in

the waveform catalogs have mean zero. By adding 100 to each element in the time series the

mean is moved to µ = 100. This allows us vary σ to obtain non-zero SNR. The AR1(−0.9)

process is stationary, so it is generated with constant mean µnoise = 0 and σ2
noise =

√
3

1−(−0.9)2 .

16



Using these pieces we calculate the value of the constant c = µ
σnoiseSNR

that when multiplied

by the original noise time series shifts it such that the sum of the original waveform and the

new noise have the desired SNR. Figure 4 displays an identical true waveform in red encased

in noise with SNR values 20 and 10.
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Figure 4: Identical waveform injected into sample with SNR 20 and 10

Data is simulated at both both SNR 10 and 20 for each waveform in both the base and

test catalogs. In total 278 simulated signals were created. For simplicity, each of these signals

were injected with waveforms around the center of the time series. voided problems with

wrap-around and allowed for easy verification of correct detection.

3.5 Template Matching

The problem of detecting signals in a noisy sample can be solved in many ways. One

method used by LIGO scientists is cross-correlation of sections of the data stream taken
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at the same time from the Livingston and Hanford detectors. Assuming independent noise

sources, which is generally true, excluding tectonic noise, high cross-correlation indicates

that the same signal was detected by both interferometers at the same time, differing only

by the time it takes light to travel from Washington to Louisiana (∼ 10 ms), which would be

a likely candidate for an astrophysical event. For inspiral gravitational wave signals detection

and inference are performed at the same time using template matching. In the case of black

hole-black hole binaries, only four parameters, the mass and spin of the two black holes,

are needed to cover the parameter space of events. Thus, it is possible to test a catalog of

templates which sufficiently spans the parameter space against the signal which, in the case

of detection, also parametrizes the source all very quickly due to use of the FFT. Generally,

for burst signals template matching is not used because the signals are poorly modeled, or

the sources are entirely unknown. For signal from core collapse supernovae, inference using

template matching is impossible due to the high dimension of the parameter space. It would

be computationally infeasible to run enough simulations to obtain templates which even

moderately cover this space. This does not mean that template matching is useless, as due

to the similarity in general waveform morphology, it can still be used to help with detection

of likely candidates in the data stream.

The detection criterion used in template matching is Pearson’s correlation coefficient

ρ which is a simple measure of linear dependence between two random values or random

vectors. The correlation, ρ, is a unitless quantity which takes on values, −1 ≤ ρ ≤ 1,

where −1 indicates perfect negative linear dependence and 1 indicates perfect positive linear

dependence. Calculation of the correlation between a template time series from the waveform

catalog and a simulated signal for each pixel in the signal can be performed quickly using

the Fast Fourier Transform (FFT) as discussed in section 2.2.7 above. Figure 5 displays the

results of this computation for one template-signal pair. The top panel shows the correlation

time series whose elements are the correlations between the signal in the bottom panel and the

template, displayed in the middle panel, centered on that time. This process can be imagined

as overlapping the Template and Signal panels, calculating the correlation and storing it,

sliding the template one time-step while holding the signal in place and calculating a the

new correlation, and so on. Again and again until cross-correlation has been calculated at

all time steps

Figure 5 displays the correlation between the template corresponding to the first wave-

form in the catalog, and a simulated signal with SNR = 10 generated using the same wave-
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Figure 5: Correlation between Template and Simulated Signal

form. It is not always the case that the template which obtains a high correlation and the

underlying waveform injected into the signal match. Additionally, setting the threshold for

what is considered a “high” correlation at too large a value increases the number of false neg-

atives or failures to correctly detect a signal. Thus, it is important to have some statistical

criteria for choosing a threshold.

One such criterion is to find the critical values for correlation between two time se-

ries at which we have confidence that the similarity between the two signals cannot be

due to random fluctuation. Following the appendix in Rowe 2003 we find that the 0.1%

critical value for correlation between two random time series with 200 degrees of freedom

is 0.2183.[Rowe et al., 2003] The degrees of freedom of the waveforms in this analysis is

214 = 16384. This is much greater than 200, and consequently, the 0.1% critical value will be

smaller still than the already low correlation value required for a highly confident match in

the smaller sample case. Figure 6 displays the distributions of correlations for all template

19



Figure 6: Histograms of Correlations between Templates and Waveforms

matching runs on each of the signal catalogs. Figure 6 gives some indication of the rarity of

high correlation values.

Core collapse supernova are extremely rare events. The expected number of events in

the Milky Way Galaxy is on the of order one per century. Thus it is important that no

potential signals are overlooked. Stated differently, in this analysis, false negatives are much

worse than false positives. Setting the correlation threshold value at 0.3 led to many false

negatives. All but a small number of the waveforms were left with no matches. Lowering the

threshold to 0.21 and 0.1 ameliorated the problem of false negatives and but introduced false

positives. Figure 7 displays an example from the test catalog of signals where a template

which did not match the underlying waveform was counted as a match.

After performing template matching using all combinations of templates and signals

and selecting a correlation threshold, locations of interest in each signal were selected and

recorded. The one second pieces of the signals indicated by these addresses of locations of

interest are then analyzed using a principal component regression and a reconstruction of

the underlying waveform is generated.
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Figure 7: Positive result for ρthreshold = 0.2183 where the template and underlying waveform
do not match.

3.6 Signal Reconstruction

As discussed in Section 2.2.2 above, an important step in running a PCR is to select a

reasonable number of principal components. Using all 92 principal components obtained

from the base catalog as regressors would defeat their stated purpose, to reduce dimension.

Following the suggestions in Rencher and Christensen the plots displayed in Figure 8 were

constructed and analyzed.[Rencher and Christensen, 2002] The scree plot in the right panel

is not helpful with regard to selecting the number of components. The elbow-like bend

occuring between components number two and three is indicates that the first component

does the best job of explaining the variability in the catalog by a wide margin. Returning

to Figure 3 we see that the first principal component captures the pre- and post- bounce

maxima, and the large negative peak at bounce. This matches with our intuition as it is the

essential behavior visible in all of the waveforms as shown in Figure 2.
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Figure 8: Graphical Methods used to help selecting number of Principal Components

The left plot in Figure 8 is more useful for our purpose. By only considering 10 of

the 92 principal components almost 90% of the variability in the data is explained. The

exact values for the two proportions of variance when 5 and 10 principal components are

considered are 78% and 87.25% respectively. After examining these plots the decision was

made to use 10 principal components in the regression. This is slightly lower than the number

of principal components shown by Edwards to minimize the deviance information criterion,

a generalization of the Akaike information criterion useful in Bayesian model selection, while

minimizing the number of components. Once a number of components was chosen, regression

was performed as follows.[Edwards, 2017]

Let W be the matrix of principal components arranged as columns and let yi be the

vector of length 214 corresponding to the ith match indicated by template matching. The

vector of regression coefficients γ̂i is obtained in the usual way by,

γ̂i = (W TW )−1W Tyi,

Using these coefficients we obtain an estimate ŷi of the underlying signal by,

ŷi = Wγ̂i.
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One such reconstruction is displayed in figure 9. This process can be performed for all ŷi at

once. Let Y be a matrix with columns yi. Then, Γ̂ the matrix with γ̂i as columns is obtained

by,

Γ̂ = (W TW )−1W TY

in this way, reconstructions of all of the matched signals were obtained.

Figure 9: Noisy Signal Reconstruction with Original Waveform using 10 Principal Compo-
nents

Principal component regression allows for swift reconstruction of all matched signals but

presents a problem for statistical inference. The issue lies in the fact that the coefficients

obtained correspond to the principal components of the waveform catalog and not the catalog

itself. The principal components capture the essence of the data set, they do not correspond

with any specific physical event but rather to all simulated CCSN signals used in their

construction. To obtain information about the underlying physical parameters we must find

a way to change the vector of PCR coefficients γ̂i to the vector of regression coefficients β̂i
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in terms of the original waveform catalog. These vectors are easily obtained using the right

singular vector V obtained in the Singular Value Decomposition of the waveform catalog.

Let γ̂∗i be the vector gamma with zeros appended so that it has length 92 (the number of

waveforms in the catalog). Then, β̂i, the corresponding vector of regression coefficients for

the waveform catalog is given by,

β̂i = V γ̂∗i

or, in terms of matrices,

β̂ = V Γ̂∗

where Γ̂∗ is the matrix with γ̂∗i as columns. These coefficients may now be used for hypothesis

testing.

Figure 10: Residual Plot corresponding to Figure 9
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3.7 Hypothesis Testing

We now seek to find which, if any, of the catalog signals best describe the reconstructed wave-

forms. Hypothesis tests for significance of multivariate regression coefficients are performed.

The procedure for testing coefficients in a single equation from Press is applied.[Press, 2005]

Under the assumption that the vector of coefficients for a single waveform are distributed as

multivariate normal,

L(β̂i) = N(βi, σii(X
TX)−1)

where X is the waveform catalog. To test if the coefficients in the ith equation for significant,

or check equality to some value, Student t-tests should be used. To test H : βij = β∗ij, where

β∗ij is a known value, and βi = (βi1, βi2, . . . , βiq)
′ and β̂i = (β̂i1, β̂i2, . . . , β̂iq)

′, we use that

under H,

L
[
(β̂ij − β∗ij)/

√
(wjjσ̂ii)

]
= tN−q,

where

σ̂ii =
1

N − q
(yi −Xβ̂i)T (yi −Xβ̂i)

and i = 1, . . . , p is the number of coefficients, j = 1, . . . , q is the number of columns and, wjj

is the jth diagonal element of (XTX)−1

Thus, for any element β̂ij we obtain the t-statistic for its deviation from β∗ij = 0 by

evaluating,

tij = β̂ij/
√

(wjjσ̂ii)

Due to the high value of N = 214 ' N − q, the the Student-t distribution is approximately

normal. P-values are calculated by finding the are under the standard normal curve to the

right of the calculated tij. This is easily performed in R using the pnorm command, although

a more efficient routine could become necessary when calculating large numbers of p-values.

25



4 Results

Template matching between the base catalog and simulated waveforms with base and test

catalog waveforms injected were performed at the ρthreshold = 0.3, 0.218, and 0.1 levels. The

total number of template-signal combinations are 92× 92 = 8464, for sets created using the

base catalog, and 92× 47 = 4324 for sets created using the test catalog. Cross correlations

are calculated for each of the 215 time steps for each of these combinations at both SNR

levels. Formulating the problem in the frequency domain and using the FFT to calculate

cross-correlation allows this computation to run astonishingly quickly. 215 × 92 × 92 cross

correlations were calculated on a laptop computer in 4.7 seconds. The number of matches

obtained at the different correlation thresholds for each set of simulated signals are given

in Table 1. Clearly, decreasing the threshold value by small amounts in this low range has

an increasingly large effect. This is visible in Figure 6 as well. Table 2 gives the number of

unique injected waveforms for which matches were obtained at the different SNR levels.

Base Catalog Test Catalog

Correlation Threshold

SNR 10 20 10 20
0.3 2029 21382 1779 15208
0.2 14645 62153 11075 38339
0.1 88219 302661 55072 166923

Table 1: Total Number of Matches Recorded

Base Catalog Test Catalog

Correlation Threshold

SNR 10 20 10 20
0.3 45 92 27 42
0.2 85 92 39 47
0.1 92 92 47 47

Table 2: Number of Unique Underlying Waveforms Selected

In this analysis, false negatives should be considered much worse than false positives as

we are looking for events which occur only a couple of times per century. Thus, we desire

to use the lowest correlation threshold possible that maintains computational feasibility and

does not trigger for simple noise glitches. In all cases presented above, the location of interest

detected was close to the location at which the signal was injected (around the halfway point

of the time series). It is likely that a correlation threshold between 0.2 and 0.1 is optimal

but due to computational limitations signal reconstruction and hypothesis testing were only

performed on the locations of interest selected out by the 0.3 correlation threshold level.
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Principal Component Regression with 10 principal components was performed on the

locations of interest selected by the template matching and reconstructed waveforms are

generated. Using the methods described above, the coefficients from the PCR were trans-

formed into coefficients on the base waveform catalog. Hypothesis testing for significant

deviation from zero was then performed on these coefficients. P-values for these coefficients

were not found to be significant at any common levels. For signals formed from waveforms

from the base catalog the most significant. Thus, inferences on the importance of con-

stituent waveforms could not be performed in the usual way. Instead of testing at levels such

as α = 0.5 or α = 0.1, the waveform corresponding to the most significant coefficient was

compared with the true underlying waveform. It was found that the correct waveform was

assigned highest significance 73% for the signals with SNR 20 and 89% for signals with SNR

10. This seemingly contradictory result is likely due to the fact that only the waveforms with

the most extreme features, large pre- and post- bounce deviation, were selected out by the

template matching for SNR 10 at the high correlation threshold. Excluding the waveforms

which were only picked out in the SNR 20 case, the correct SNR 20 match rate moves up to

near 100%.
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5 Conclusion and Future Work

Hypothesis testing of the coefficients recovered after PCR to find the waveforms with greatest

importance and descriptive power has proven to be frustrating and disappointing and is

likely a misguided approach. Fortunately, template matching as a method for detection

of signals from core collapse supernovae has been shown to be both efficient and accurate.

For situations where the signal is not completely swamped by the noise, template matching

using the entire catalog of known waveforms efficiently detects underlying signals with a

high degree of significance. This is to say, we may be confident that some signal similar to

simulated CCSN signal is there but, using the methods presented in this paper, we cannot

be certain about the underlying physical parameters which drove the event. Thus, template

matching still may have a place in searches for CCSN as a detection method in a detection-

parametrization scheme.

The issues with the statistical inference performed have many sources. One likely source

of difficulty is the reliance on principal component analysis. This technique was first ap-

plied to gravitational wave astronomy by Heng (2009) as a method of speeding up signal

reconstruction.[Heng, 2009] For this purpose, PCA has proven useful, but I believe it is likely

unnecessary. The original catalog of waveforms is of full rank and is not particularly poorly

conditioned. Its condition number is κ = 130.9082 and multiplication by its pseudo-inverse

yields a matrix very close to the identity. Thus, multivariate regression with the base cata-

log as the data matrix could be performed. In fact, this is already essentially accomplished

during template matching with each vector regressing one at a time.

In addition to applying multivariate regression, future directions would include applying

some measure of similarity to the reconstructed waveform and the original underlying signal.

This would allow for goodness of fit to be assessed.
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