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ABSTRACT
DIFFUSION WEIGHTED IMAGE RECONSTRUCTION:

A BAYESIAN APPROACH

by

Mustafa Farrah

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Chiu Law

Diffusion weighted imaging (DWI) is a form of Magnetic Resonance Imag-

ing (MRI) based upon measuring the random Brownian motion of water molecules

within a voxel of tissue. Recently, DWI has become an important modality in the

diagnostic work-up of early identification of ischemic stroke, differentiation of acute

stroke from other conditions that mimic it, differentiation of epidermoid cyst from

arachnoid cyst, assessment of cortical lesions in Creutzfeldt Jakob disease(CJD),

assessment of active demyelination and many others.

Diffusion MRI suffers from the a low Signal to Noise Ratio (SNR) due

to the presence of noise from the measurement process. Many techniques have

been proposed to increase the SNR of the images. Some of these are averaging

several acquisitions in order to reduce the noise variance, but these techniques

require more time. Other denoising techniques that work on the DWI images are

Principal Component Analysis (PCA), Non local-means algorithm, and Discrete

Cosine Transform (DCT).
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In this thesis we propose a Bayesian approach to denoise the DWI images.

DWI images are acquired at certain b-value, which is a factor of diffusion weighted

sequences. A higher b-value leads to a stronger diffusion weighting. When acquir-

ing DWI images, we always get an image with no diffusion, known as the b0 image.

This image has less noise than the other DWI images and hence can be used to

improve the quality of those images. The Bayesian approach has been applied

successfully in many medical applications. In this thesis, we will use the entropy

between the DWI and the b0 image as a measure of similarity between the two

images, i.e. lower joint entropy for closely matching images.
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Chapter 1

Introduction:

Diffusion-weighted imaging (DWI) has been used to help detect early stroke and

abscess, epidermic, cellular tumors and other neurological diseases [16]. The use

of faster magnetic resonance imaging (MRI) technique made it possible to acquire

diffusion weighted images of the whole-body. These techniques include multi-

channel coils, echo planar imaging, and stronger gradients [4]. Diffusion-weighted

imaging finds applications in oncologist imaging of the liver [12], prostate gland

[11], and breast, as well as whole-body imaging [13]. Unfortunately, DWI images

are corrupted with noise. Many algorithms have been proposed to denoise DWI

images. In the first Section of this chapter, we will explain the principles of DWI.

In the second Section, we will discuss the noise distribution in MRI. In the third

Section, we will explain some denoising techniques that have been applied to DWI

images.

1.1 Introduction to Diffusion Weighted Imaging:

In this Section, we explain the principles of DWI by considering first the diffusion

phenomenon of water molecules, and then discussing the use of MRI to measure
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diffusion in the body. We will examine the difference between diffusion weighted

imaging and apparent diffusion coefficient (ADC) mapping. Finally, we will define

the b-value and its relation to the image quality.

1.1.1 What is Diffusion

Water molecules are in constant motion. This motion depends on the thermal

energy and the change of the concentration. When there is a change in the con-

centration of molecules, then the molecules will move from the high concentration

to the low concentration. This flow depends on the change of concentration in the

x direction and can be described by:

F = −DdC
dx

(1.1)

where F is the diffusion flux which is the amount of substance per unit area per

unit time, and diffusion coefficient D controls the amount of substance that will

flow through a small area during a small time interval, C is the concentration or

the amount of substance per unit volume, and x is the position

The ideal diffusion is described by Brownian motion and is given by:

C = C0exp[−
x2

2σ2 ] (1.2)

where C0 is the concentration at t=0 and σ is the standard deviation of

a Gaussian function. This concentration takes a Gaussian distribution in space.

Diffusion is a random process of movement of molecules; it can also be

defined as the microscopic movement of atoms or molecules in a solution or gas.

In living tissues, molecules of water and other chemical flow freely through the

various tissue of the body. However in certain pathological conditions such as the
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tightly packed cells of tumors, the movement of molecules is restricted and MRI

can be used to evaluate diffusion restriction [14].

The movement of molecules in most fluid is homogeneous and moves in all

spatial directions, so called isotopic diffusion. Cell membranes, vascular structures,

axon cylinders, and fibers, are highly structured and further restrict the diffusion

of molecules. Since the movement will not be the same in different directions in

these cases, this type of diffusion is described as anisotropic [3].

1.1.2 Using MRI to Measure Diffusion

Stejskal and Tanner [26] described an MR experiment that could be applied to

the detection and quantification of water diffusion in vivo [12]. They applied a

symmetric pair of diffusion-sensitizing pulses around the 180° refocusing pulse.

Figure 1.1 described this experiment. A spin echo pulse is made of a 90° radio

frequency (RF) pulse followed by 180° refocusing pulse.

Figure 1.1: Restricted Diffusion Vs Free Diffusion 1

To acquire a DWI image, two diffusion gradient pulses are applied around

the 180° pulse. The first one introduces a phase shift that is dependent on the

1http://Principles and Applications of Diffusion-weighted Imaging in Cancer Detection, Stag-
ing, and Treatment Follow-up Ashkan A. Malayeri, Riham H. El Khouli, Atif Zaheer, Michael
A. Jacobs, Celia P. Corona-Villalobos, Ihab R. Kamel, and Katarzyna J. Macura Radio-
Graphics 2011 31:6 , 1773-1791
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strength of the gradient at the position of the spin at t = 0. Then a 180° RF pulse is

applied, this pulse will reverse the phase shift induced by the first gradient pulse.

Then a second diffusion gradient pulse will be applied. The diffusion gradient

causes the field intensity to vary with position. In the case of restricted diffusion,

as shown on the left hand-side of Figure 1.1, the movement of the water molecules

will be restricted. So after the second diffusion gradients, all molecules will be

at the same location resulting in high signal intensity. However in the case of

the free diffusion, as shown on the right hand-side of Figure 1.1, water molecules

will not be at the same location when applying the second diffusion gradient

pulse. This will cause the molecules to acquire different phase information from

the first gradient. The molecules signals will not be completely rephased by the

second gradient, which will lead to a loss in the acquired signal. The degree of

the molecule diffusion can be inferred by measuring the attenuation of the signal

intensity at DWI.

One application of DWI is in the early detection of stroke. Figure 1.2

shows diffusion MRI images of a brain that was taken for a patient who had a

stoke. The bright area on the left hand-side of the brain indicates high diffusion

signal, which indicates restricted diffusion due to stroke [12].

Figure 1.2: Diffusion MRI Brain Image during Stroke: The bright areas of the left
side of the brain indicate restricted diffusion due to a stroke. 2

2 Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radi-
ology 2000; 217:331-345.
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1.1.3 Diffusion Gradients and the b-value:

In this Section, we explain a pulse sequence that was proposed by Stejskal and

Tanner to detect and quantify the diffusion of water [26][1]. The pulse sequence

that they proposed is shown in Figure 1.3, where RF is the RF pulse, GS is the

slice selective pulse, GP is the phase encoding pulse, and GM is the readout

direction pulse.

Figure 1.3: Diffusion Weighted Images Pulse Sequence 3

This pulse sequence is a spin echo pulse with two diffusion gradient pulses

added around the 180° pulse. The diffusion gradient pulse duration is δ, and the

time between the start of the two pulses is 4.

The phase shift of a single static spin in the presence of a magnetic field

gradient is given by:

φ(t) = γB0t+ γ

ˆ t

0
G(τ).x(τ)dτ (1.3)

where γ is the gyromagnetic ratio, B0 is the strength of the external magnetic

field, and G(τ) is the strength of the diffusion gradient.

3Bammer, Roland, "Basic principles of diffusion-weighted imaging", European journal of radi-
ology (2003), 169–184.
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This phase shift depends on the strength of the Gradient that is applied,

the time duration that the gradient will be applied and the spatial location of the

spin.

At the echo time TE, which represents the time in milliseconds between

the application of the 90° pulse and the peak of the echo signal, this phase will be

given by:

φ(TE) = γ

ˆ t1+δ

t1

G(τ).x(τ)dτ − γ
ˆ t1+4+δ

t1+4
G(τ).x(τ)dτ (1.4)

where d is the duration of each sensitizing gradients and4 is time between

the start of the two pulses.

The diffusion weighted signal at time TE is given by:

DWI(b, TE) = I0exp(−
TE

T2
)exp(−bD) (1.5)

where I0 is the signal intensity in the b0 image which is a non-diffusion MRI image,

and T2 is the transverse relaxation time which determines the rate at which excited

molecules go out of phase with each other.

This signal depends on the apparent diffusion coefficient (ADC), which is a

measure of the magnitude of diffusion within tissue, and a sensitization parameter

known as the b-value which is given by:

b = γ2G2δ2(4− δ

3) (1.6)

and is measured in s/mm2. The b-value can be set by changing the
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duration of the pulse, the time interval between the two pulses or the strength

of the gradient. In practice, on clinical MR scanners, the diffusion sensitivity is

varied by changing the strength of the sensitization gradient.

1.1.4 Diffusion weighted Images Vs Apparent Diffusion Coefficients:

The DWI signal DWI(b, TE) = I0exp(−TE
T2

)exp(−bD) has two terms, T2 signal

(exp(−TE
T2

) ), and diffusion (exp(−bD)) . In some cases, it is not obvious if a bright

area in an image is due to restricted diffusion or due to the T2 image. Figure 1.4

illustrates this situation. The bright bulbs on the left-hand side of the graph can

indicate restricted area. The left-hand side of the graph is a T2 image. It shows

bright bulbs on the left-hand side. The middle image is from DWI. It also has the

same bright bulbs which makes it hard to distinguish if these two bulbs are due

to restricted diffusion or the T2 images. The graph on the right is the ADC where

the bright bulbs correspond to regions without restricted diffusion.

Figure 1.4: T2 shine through. Left image is T2 image, middle image is DWI, right
is ADC. 4

To eliminate the T2 factor, two images can be taken; the first one will

be T2 image with no diffusion. This can be done by setting the b-value = 0, so

4Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiol-
ogy 2000; 217:331-345.
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Equation 1.5 becomes:

DWI(TE) = I0exp(−
TE

T2
) (1.7)

A second image at the desired b-value can be taken. If the equation 1.5 is divided

by the equation 1.7, we get:

DWI(b, TE)
DWI(TE) = exp(−bD) (1.8)

This division is calculated pixel by pixel in the two images. The apparent

diffusion coefficient (ADC) can be computed by:

D = −1
b
log(DWI(b, TE)

DWI(TE) ) (1.9)

In Figure 1.5 a diffusion weighted image is shown in the left side and the

corresponding ADC image is shown in the right. The DWI image shows a bright

bulb on the right side of the brain which can be due to restricted diffusion, ADC

image shows the bulb dark, which indicates restricted diffusion is not caused by

the T2 effect.

Figure 1.5: Diffusion Weighted Image vs Apparent Diffusion Coefficient. 5
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1.1.5 Optimum b-value and Its Relation to the Signal Intensity:

The sensitivity of the DWI sequence to water motion can be varied by changing the

b-value which is proportional to the three factors mentioned before. If the b-value

is increased, the contrast between different tissues will become more apparent;

however the image will have more noise. Figure 1.6 illustrates the logarithm of

relative signal intensity (SI) versus the b-value for tumor and normal tissue. The

slope of the “tumor line” is less than that of the line representing normal tissue,

which translates into a lower signal on the ADC map [12]. If we increase the b-

value, the contrast between the tumor and the normal cells will also be increased,

however, this decreases the SNR value, so there is a trade-off between the SNR

and the contrast in the image.

Figure 1.6: Effect of b-value 6

If the b-value is more pronounced, then the contrast between the normal

tissue and the tumor will be increased, but the strength of the signals will be

decreased as shown in Figure 1.1. Since the noise remains the same, increasing

the b-value will decrease the signal intensity and hence lower the signal to noise

ratio (SNR).
5Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiol-
ogy 2000; 217:331-345.

6Malayeri, Ashkan A., et al. "Principles and applications of diffusion-weighted imaging in
cancer detection, staging, and treatment follow-up." Radiographics 31.6 (2011): 1773-1791.
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1.2 Noise in MRI

Signals in MRI images are measured using quadrature detectors which measure

the MRI signal from two orthogonal directions. These detectors give the real

and imaginary part of the signals. The measured signals are contaminated with

Gaussian noise. MRI images are formed by taking the Fourier transform of the

measured signals. Therefore, the MRI image will be a complex image. The noise

distribution of the real part as well as the imaginary part of the complex image,

are Gaussian. The magnitude image is then formed by a nonlinear mapping. It

has been shown by many studies that noise distribution in the magnitude image

is Rician [8].

The Rician distribution has probability density function (pdf) given by:

f(x | ν, σ) = x

σ2 exp
(
−(x2 + ν2)

2σ2

)
I0

(
xν

σ2

)
(1.10)

where Iα (x) is the modified Bessel function of the first kind given by:

Iα(x) = 1
π

ˆ π

0
exp(x cos(θ)) cos(αθ) dθ − sin(απ)

π

ˆ ∞
0

exp(−x cosh t− αt) dt,

(1.11)

and non-centrality parameter v ≥ 0 and scale parameter σ > 0. The noise

distribution in MRI has the modified Bessel function of the first kind and zeroth

order, which is given by
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I0(x) = 1
π

ˆ π

0
exp(x cos(θ)) cos(0θ) dθ − sin(0π)

π

ˆ ∞
0

exp(−x cosh t− 0t) dt,

I0(x) = 1
π

ˆ π

0
exp(x cos(θ)) dθ (1.12)

In Figure 1.7 we show the Rician distribution for different values of v = N
σ

where N is the mean of the signal and σ is the standard deviation.

Figure 1.7: The Rician Distribution for Several Signal to Noise Ratios, N/sv.

The graph shows that when the SNR is greater than 3 (N/σ ≥ 3) the

Rician distribution can be approximated by the Gaussian distribution.
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1.3 Contemporary Denoising Methods:

In this Section, we review 3 contemporary methods that have been applied to

denoise DWI. These methods include the Discrete Cosine Transform (DCT) [18],

the non local-means algorithm (NLM) [30], and the Overcomplete Local Principal

Components Analysis(PCA) [17].

1.3.1 Discrete Cosine Transform:

1.3.1.1 Introduction

The first denoising method is the local 3D Discrete Cosine Transform (DCT)

proposed by Guleryuz (2007) [9]. This method makes use of the sparness of DWI.

Sparness means that an image can be represented by a small number of basis

functions. This happens if the representation of the image in another domain

or bases, such as the DCT, has many zero coefficients that can be disregarded

without affecting the image itself.

1.3.1.2 Description of the Method:

The 3D discrete cosine transform is given by:

Xk1,k2,k3 =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

xn1,n2,n3 cos
[
π

N1

(
n1 + 1

2

)
k1

]

cos
[
π

N2

(
n2 + 1

2

)
k2

]
cos

[
π

N3

(
n3 + 1

2

)
k3

]
.

where k1, k2, k3 are the new basis of the signal and vary from 0 to N1, N2, and

N3 respectively. Guzzler assumes that an image x is corrupted with white noise
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n such that the observed image y is given by:

y = x+ n. (1.13)

For 2D as example, the estimated x̂ can be obtained by using a hard

thresholding method. A set of 8× 8 DCT blocks is used. In the case of voxels, a

set of 4× 4× 4 blocks is used.

A local denoised estimate of the image at block j can be computed by:

x̂j = H−1(ĉj). (1.14)

where H−1 is the inverse 3D cosine transform given by:

xn1,n2,n3 =
N1−1∑
k1=0

N2−1∑
k2=0

N3−1∑
k3=0

Xk1,k2,k3 cos
[
π

N1

(
n1 + 1

2

)
k1

]

cos
[
π

N2

(
n2 + 1

2

)
k2

]
cos

[
π

N3

(
n3 + 1

2

)
k3

]
.

and ĉj are the transform coefficients of the j block. These coefficients are given

by:

ĉj = T (cj, τ) (1.15)

where T is a thresholding operator with threshold τ , and cj is the DCT transform

coefficients at block j. The estimation of x at position i, x̂(i) is computed by the

weighted average rule given by:
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x̂(i) =
∑V
j=1 θjx̂j(i)∑v

j θj
(1.16)

where θj relates to ĉj by:

θj = 1
1 + ||ĉj||0

(1.17)

V is the number of overlapping blocks contributing to x̂(i) and ||ĉj||0 is the L0

norm which corresponds to the number of non-zero elements in ĉj.

1.3.2 Non-Local Means Filter:

1.3.2.1 Introduction

Non-local means filter is proposed by Buades [4]. It differs from the local means

filter in the way that it computes the mean of each pixel. In local means filters,

the mean value of pixels around a target pixel is computed to denoise the image.

However in non-local means algorithm, it is assumed that the image has many

similarities as shown in Figure 1.8 with many squares in red, yellow, blue and

green. The squares that have the same color are similar to each other.

The estimation of a pixel will be based on the weight of the contribution

from similarity blocks. This results in less loss in image fine details. When apply-

ing the filter to this image in Figure 1.8, pixels in similar boxes (with the same

color) will contribute more than those in different boxes.
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Figure 1.8: Image Similarity in Non-Local means Algorithm. The boxes with the
same colors are similar to each others. 7

Figure 1.9 shows example of assigning weight of a target pixel p. q1 will

have a large weight w(p, q1) because its similarity window matches that of p. q2

will have small weight w(p, q2) because its similarity window mismatches that of

p.

Figure 1.9: Weight Assignment in Non-Local means Algorithm. 8

7A. Buades, B. Coll, and J. Morel. On image denoising methods. Technical Report 2004-15,
CMLA, 2004

8A. Buades, B. Coll, and J. Morel. On image denoising methods. Technical Report 2004-15,
CMLA, 2004
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1.3.2.2 NL-Means Algorithm

The image v is assumed to be distorted with noise. The non-local means ( NL-

means) can be used to estimate the true value for each pixel i using the formula:

NL[v](i) =
∑
j∈I

w(i, j)v(j) (1.18)

where w(i, j) is the weight between pixel i and pixel j and depends on the similarity

between the two pixels, and I is the image domain. This similarity depends on

the similarity of the two gray vectors v(Ni) and v(Nj) where Ni,j is the nearest

neighborhood of pixel i and j. The similarity of Ni and Nj can be measured

by weighted Euclidean distance d(Ni, Nj) = ||v(Ni) − v(Nj)||2,a where a is the

standard deviation of a Gaussian Kernel.

The Euclidean distance between two vectors x and y with length J is

defined as dx,y =
√∑J

j=1(xj − yj)2. The weighted Euclidean distance is given by

dx,y =
√∑J

j=1(
xj
aj
− yj

aj
)2; where aj is the standard deviation of the jth variable.

The weights can be computed by:

w(i, j) = 1
Z(i)e

−
d(vi,vj)2

h2 (1.19)

where Z(i) is normalization constant computed as:

Z(i) =
∑
j

e−
d(vi,vj)2

h2 (1.20)

and h is a parameter that controls the decay rate of the exponential function.
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1.3.3 Overcomplete Local Principal Component Analysis:

Principal Component Analysis (PCA) has been used for reducing noise in images

[28]. In this context, noise can be removed by decomposing the signal into principal

components, then disregarding the least significant ones, and finally reconstructing

the signal back. PCA is an orthogonal linear transformation that maps the data

into a new coordinate system such that the direction with the greatest variance, by

any projection of the data, comes to lie on the first axis (called the first principal

component), the direction of the second greatest variance on the second coordinate

axis, and so on. PCA will ensure the second axis is perpendicular to the first

variance and the same enforcement is applied to other axes.

When using PCA to decompose a signal that is distorted with noise into

its principal components, the noise will be spread out over all components while the

magnitude of the signal itself will be having the most significant component with

the largest magnitude along the first direction, and the second largest component

in the second direction and so on. Hence disregarding some principal components

with small values will reduce noise and use the major principal components of the

signal for reconstruction.

Figure 1.10 shows example of a 2D data which can be approximated by a

1D data set.

Figure 1.10: Principal Component Analysis in 2-D

The left-hand side of Figure 1.10 shows the 2D data set presented in the
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x-y plane. The PCA will find the best coordinate u-v plane which will have the

largest variance of the data along the u-axis, and the second largest along the

v-axis. The right-hand side of Figure 1.10 shows the approximate representation

of the data in 1D along the u-axis.

José V. Manjón [17] used PCA to denoise DWI images. In his method,

instead of dividing each image into patches and composing a matrix from these

patches, he made use of the idea that corresponding pixels in a series of k DWI

images in k direction are very similar and hence these patches can be used to

reconstruct a matrix that will be filtered.

Figure 1.11: Example of local matrix X formation from a DW image series 9

9Manjón JV, Coupé P, Concha L, Buades A, Collins DL, et al. (2013) Diffusion
Weighted Image Denoising Using Overcomplete Local PCA. PLoS ONE 8(9): e73021.
doi:10.1371/journal.pone.0073021
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Figure 1.11 explains this idea. For a series of k images, a block of 4×4×4

voxels is converted into a column of matrix X. Hence, the size of matrix X will

be 64× k. Then the PCA algorithm will be applied to matrix X, to compute its

approximation X̂ from which the patches can be reconstructed. The bottom-right

of Figure 1.11 shows matrix X and its filtered version X̂ to highlight the high

level of the profile signal redundancy in the local matrix X.

In the second chapter of this thesis, we propose a new method for recon-

structing DWI based on a Bayesian approach, this method will be called Entropy

Bayesian Approach (EBA). Bayesian approach method relies on another image

with low noise level to denoise the DWI. Since joint entropy will be used as a

measure of similarity, we will explain the Bayesian approach and the joint entropy

concept.

In the third chapter, we will compare the EBA with the three contem-

porary denoising methods discussed here. In the fourth chapter, we will show

simulations and experimental results of our work. Finally, we will provide our

conclusion and future work.
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Chapter 2

Diffusion Weighted Imaging Reconstruction Using

Bayesian Approach:

In the previous chapter, we explained the principle of DWI and the limitation that

the noise imposed. We also discussed three methods that have been applied to

denoise DWI.

In this chapter, we propose a new method to reconstruct DWI. This

method uses Bayesian approach to reconstruct the DWI. In this approach [23],

the joint entropy between the DWI image and the prior image is used as a mea-

sure of similarity. Since the proposed method is based on the Bayesian approach

and the joint entropy, we call it Entropy Bayesian Approach (EBA). The EBA

algorithm is independent on the noise level in the image, i.e. no matter how much

noise the image has, the algorithm can improve it. This will make it possible to use

this method with very high b-values where other methods are limited. If complex

images are available, EBA can be readily applied and should be more accurate

since the approximation on the noise can be removed. The EBA method can work

on only one DWI and its prior while other methods, such as the PCA, depend on

a sequence of images. We will explain the Bayesian approach in the next Section,
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the image entropy in the next Section and then the EBA algorithm.

2.1 Image Entropy

Entropy is a measure of the uncertainty in a distribution of a random variable.

Shannon defined the entropy H(x) of a discrete random variable X with possible

values x1, ..., xn and probability mass function P (X) as:

H(X) = −
∑
i

P (xi) logb P (xi) (2.1)

where b is the number of bits used to represent the outcome of the ex-

periment. The joint entropy H(X, Y ) of a pair of discrete random variables with

a joint distribution p(x, y) is a simple extension that measures the uncertainty in

the joint distribution of a pair of random variables [5]. Joint entropy H(X, Y ) is

defined as:

H(X, Y ) = −
∑
i,j

p(xij, yij).ln p(xij, yij) (2.2)

For digital images, the joint entropy of two images can be computed using

the joint histogram of the two images. The joint histogram is computed using the

intensities of the corresponding pixels of the two images, and the value in the

histogram represents the number of occurrences of intensity value pairs [7][22].
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(a) Joint histogram of aligned
images

(b) Joint histogram of slightly
misaligned images

(c) Joint histogram of two im-
ages that are misaligned

Figure 2.1: Joint Entropy of Images.

Figure 2.1 shows an example of the joint histogram of two images and the

corresponding joint entropy. When the two images are the same and aligned with

each others, the joint histogram will not be spread out and it has the least entropy.

In Figure 2.1 (b) and (c), the joint histograms of misaligned images are shown,

the more two images are misaligned or different, the more the joint histogram will

be spread out and the joint entropy will be higher.

2.2 Bayes’ Theorem

Bayes’ theorem [27][8] allows us to write p(x | y) = p(y | x)p(x)/p(y) where the

likelihood, p(y | x), describes the data formation process for a particular underly-

ing image while the prior, p(x), encodes any prior beliefs about the properties of

such underlying images. In this thesis, we propose a new method to reconstruct

DWI using Bayesian approach by incorporating prior information from another

image that has high SNR. The prior image can be a T2 weighted image or it can

be another DWI with lower b-value that has higher SNR.

While the Bayesian approach has been used in many applications such

as image registration [24][15][33], it has not been successfully used in DWI yet.
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Unlike other applications with real images, DWI has complex data which require

a different approach. Numerous solutions have been proposed to solve functions

with complex variables [2] [25]. Here, we treats the complex image as two real

images, one corresponds to its real part, and another corresponds to its imaginary

part.

Joint entropy has previously been used in many applications such as im-

age registration [32][20][29] [10]. In EBA, it is applied as a measure to quantify

similarity. We assume that the DWI is corrupted with Gaussian noise. A typical

model of a signal corrupted by noise is

yij = xij + ε (2.3)

where yij is the observed image pixel, xij is the true image pixel, and ε is a Gaussian

noise with 0 mean. A valid assumption about the observed image is that the

real and imaginary parts of each pixel obey independent Gaussian distributions

with identical standard deviation. This assumption is valid because they are

measured by quadrature coils which constituent two pairs of identical coils oriented

perpendicular to each other. As these coils are identical and uncoupled, the real

signal from one pair of coils will not interfere the imaginary signal from the second

pair of coils.

The distribution of the intensity of each image can be described by:

p(yij | xij) = 1
(2πσ2) 1

2
e

−1
2σ2 (yij−xij)2 (2.4)

Using Bayes theorem, the posterior distribution can be found as:

p(xij | yij)p(yij) = p(yij | xij).p(xij) (2.5)
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where p(yij/xij) is the likelihood function, and p(xij) is the prior density. We

assume the prior density follows a Gibbs distribution of the form:

p(xij) = 1
w
e−βh(xij ,gij) (2.6)

where h(xij, gij) is the joint entropy between xij, gij:

h(xij, gij) = p(xij, gij). ln p(xij, gij) (2.7)

and w is a normalization constant. The prior image is the b0 image with pixel gij.

Substituting equations 2.4, 2.6, 2.7, in equation 2.5 we get

p(xij | yij) = 1
(2πσ2) 1

2
e

−1
2σ2 (yij−xij)2 1

w′
e−βp(xij ,gij). ln p(xij ,gij) (2.8)

where β is a parameter that controls the joint entropy term. If β = 0, the recon-

structed image will be the same as the DWI. As β increases, the reconstructed

image will become similar to the prior image or the b0 image.

Since the distribution of each pixel is identically independently distributed,

we can write p(xij | yij) as the product of 1
(2πσ2)

1
2
e

−1
2σ2 (yij−xij)2 1

w
e−βp(xij ,gij). ln p(xij ,gij)

for all possible values of i and j.

If we take the log of equation 2.7 we get

ln(p(xij | yij) = ln( 1
(2πσ2) 1

2
) + 1

w
−
∑
ij

1
2σ2 (yij − xij)2 − βp(xij, gij). ln p(xij, gij)

(2.9)

The solution of this equation x̂ = argmax
x

p(x | y) where argmax
x

is the set of

points x for which p(x | y) attains its largest value, can be found using nonlinear

optimization technique like the nonlinear conjugate gradient [6][31]. We used

Matlab built-in function fminunc to find the solution of equation 2.9. The first

two terms in equation 2.9 are constants and the solution of equation does not



25

depend on them. Hence, they can be dropped without affecting its solution.

The inputs of the program are as follows:

y: the DWI image.

g: the b0 image

σ: the standard deviation of the DWI image which is computed by con-

verting the DWI into a vector and calculating its standard deviation of the vec-

tor.

β: is the control parameter that is fixed for each image in the range of .01

to 0.5

xo : the initial guess of the reconstructed image, which is the average of

the DWI image and the b0 image.

The output of the program is x which is the new reconstructed DWI

image.

We use the default values from Matlab for the input parameters below:

DiffMinChange: the minimum change in variables for finite-difference

gradients with the default of 10−8

MaxIter : the maximum number of iterations with the default value of

400.
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Chapter 3

Experimental Comparison between the Entropy

Bayesian Approach and Contemporary Methods:

The performance of the EBA algorithm has been compared to the three denoising

methods discussed in chapter 1. The data for comparisions are obtained from

Laboratoire Bordelais de Recherche en Informatique1. There are 21 slices with

each slice having 21 directions. The comparisons have been performed with laptop

computer, 8-core 2GHz i7 processor with 8 Giga Bytes Memory. The performance

of the algorithms is evaluated basing on the processing time, the mean squared

error of difference between the DWI and the filtered image, and on fidelity in

preserving the fine details or the edges in the image. For each algorithm, three

slices are used for evaluation. The first denoising method to compare is the DCT

algorithm.

1http://www.labri.fr
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3.1 EBA Comparison with DCT:

To compare the EBA method to the DCT method, three slices (slices 3,5 and 20)

of a DWI are used. Figures 3.1, 3.2, and 3.3 show the results.

In these figures, images (a) and (d) are the noisy DWI, image (b) is the

denoised image with EBA algorithm, and image (c) is the difference between (a)

and (b). Image (c) has some areas where the anatomy of the image can be seen.

They appear when the prior and the DWI image are not totally aligned. The

mean squared errors (mse) are 8.58× 10−4 for the slice 3, 7.39× 10−4 for slice 5,

and 7.325 × 10−4 for slice 20. The difference image in (c) shows that the noise

was suppressed from all areas of the image. Image (e) in Figures 3.1, 3.2, and 3.3

are the denoised DWI images with DCT algorithm. Areas in (e) look noisier than

those of the EBA.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.1: EBA ( (b) and (c)) and DCT ((e) and (f)) Comparison, Slice 3.
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(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.2: EBA ( (b) and (c)) and DCT ((e) and (f)) Comparison, Slice 5.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.3: EBA ( (b) and (c)) and DCT ((e) and (f)) Comparison, Slice 20.
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The difference between the DWI image and the denoised image with DCT

techniques is shown in image (f). The mses of the DCT algorithm are 9.06× 10−4

for slice 3, 9.63×10−4 for slice 5, and 9.26×10−4 for slice 20. Consistently, the mse

of the DCT slices is higher than the mse of the EBA slices. The difference images

(f) in Figures 3.1, 3.2, and 3.3 show some dark areas in the middle, which indicate

that there is no difference between the DWI image and the denoised image, i.e.

the denoising algorithm is ineffective in these areas. The computation time of the

DCT was 4 times higher than the computation time of the EBA.
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3.2 EBA Comparison with NLM:

Next we compare the performance of the EBA method to the NLM algorithm.

In NLM, noise is reduced according to the similarity in the image. The NLM

algorithm is applied to the same slices in Section 3.1 and the results are compared

to the EBA methods. Figures 3.4, 3.5, and 3.6 show the results for comparing

EBA to NLM.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.4: EBA ( (b) and (c)) and NLM ((e) and (f)) Comparison, Slice 3.
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(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.5: EBA ( (b) and (c)) and NLM ((e) and (f)) Comparison, Slice 5.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.6: EBA ( (b) and (c)) and NLM ((e) and (f)) Comparison, Slice 20.
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The first three images in these figures, images (b) and (c), are the results

of the EBA algorithm discussed in Chapter 2. Images (e) show the filtered images

using the NLM algorithm. These images show that the noise is removed and the

fine details are preserved in the image except in boundary areas.

Images (f) show the differences between images (d) and (e). They show

that the noise is removed from all parts of the image which is not the same case

when the NLM algorithm is used. The mses for the NLM algorithm are 13× 10−4

for slice 3, 12 × 10−4 for slice 5, and 13 × 10−4 for slice 20. These numbers are

higher than the EBA numbers.

Finally, the processing time for the NLM algorithm was about 30 s, which

is the same as that of the EBA algorithm.
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3.3 EBA Comparison with PCA:

Finally, we compared the EBA method to the PCA. Again the same DWI images

in Section 3.1 were used. The results are shown in Figures 3.7, 3.8 and 3.9. The

images in (a) and (d) show the DWI before denoising. Images (b) and (c) are the

same ones shown in the previous Section. The denoised image using PCA is shown

in (e). It does not show the details in the middle as that of the EBA algorithm in

image (b). PCA acts like a low pass filter in some areas of the image.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.7: EBA ( (b) and (c)) and PCA ((e) and (f)) Comparison, Slice 3.
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(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.8: EBA ( (b) and (c)) and PCA ((e) and (f)) Comparison, Slice 5.

(a) DWI Image (b) Denoised Image (c) Difference Image

(d) DWI Image (e) Denoised Image (f) Difference Image

Figure 3.9: EBA ( (b) and (c)) and PCA ((e) and (f)) Comparison, Slice 20.
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The differences between images (d) and (e) are shown in images (f). It

appears that the noise is removed from the image without affecting its details.

The mses for all the three slices are 13× 10−4, which are higher than that of EBA

algorithm. The processing time for this algorithm was about 30 sec which is the

same as the processing time for the EBA algorithm.
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3.4 Comparison Summary:

Here, we summarize our comparisons of the EBA algorithm to three different de-

noising methods in Table 3.1.

Method Mean Squared Error Processing TimeSlice 3 Slice 5 Slice 20
EBA 8.58× 10−4 7.39× 10−4 7.325× 10−4 ~30 Sec
DCT 9.06× 10−4 9.63× 10−4 9.26× 10−4 ~120 Sec
NLM 13× 10−4 12× 10−4 13× 10−4 ~30 Sec
PCA 13× 10−4 13× 10−4 13× 10−4 ~30 Sec

Table 3.1: Comparison Results.

The processing time of the EBA is about the same as that of the DCT and

PCA. However, the processing time for the DCT algorithm is 4 times more than

those of the other methods. The mse of the EBA algorithm is the least among

all the denoising methods. The EBA and the PCA perform better in keeping the

fine details of the image, the NLM comes next and the DCT is the last. We can

conclude that the EBA method is very competitive with the most predominant

denoising methods for DWI.
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Chapter 4

Simulation and Experimental Results

In this chapter, we present more intensive testing results for EBA. The first part

shows the results of simulation experiments in which noise is added to a clean

image and then the clean image is used as a prior. Part two shows the results of

phantom images were acquired at a local GE facility. The images are acquired us-

ing GE standard Head RF coil and GE 3.0T 750W GEM, 32ch MRI system. The

scan parameters are as follows: Matrix Size= 256x256, TE=20msec, TR=500msec,

NEX=1, BW=15.16KHz, Slice Thickness=10mm, Number of Slices:1, Slice Spac-

ing: 0, Slice Orientation: Axial, sagittal, and coronal. FOV: 240mm, PSD: DWI-

Propeller.

Two different phantoms are used to acquire the images; GE large sphere

NiCl phantom and GE standard Head coil NiCL cylindrical phantom with RF

coil loader. Prior to scanning, the phantoms are placed inside the GE Head coil

and slice location is land-marked at the center of the phantoms. DICOM and raw

data are saved for post-processing. A proprietary GE software program is used to

convert the DICOM and raw data to a readable matrix for processing in Matlab.

Part three shows the results using in-vivo anatomical DWI of the brain
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with Propeller acquisition. The images are obtained using GE standard DWI-

Propeller protocol. This chapter also addresses the noise distribution of MRI

images.

4.1 Simulation Results

This Section shows the results of the simulation work. Gaussian noise with vari-

ance of .025 is added to a clean image, and the clean image is used as the prior

image. The EBA algorithm is tested using different Beta values. The results are

compared visually for cleaniless with the SNR as a measure to quantify the im-

age quality. The SNR is computed by selecting the most homogenous area in the

image and is defined as the ratio of the mean and the standard deviation of pixel

value in the selected area.

Figure 4.1 (a) shows a 128 × 128 pixels clean image that is used as a b0

image. Gaussian noise is added to (a) to create DWI with low SNR = 9.41. The

difference of the prior image and the DWI is computed and its is shown in (c).

The histogram shows that most of the corresponding pixels in the two images

have similar brightness. This is a good example in which the EBA algorithm will

perform under ideal situation.
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(a) Prior Image “b0” (b) DWI Image (c) Histogram of (b)-(a) (Levels
used=10)

Figure 4.1: Simulation Icon Images.

Figure 4.2 shows the result of the reconstructed images for different beta

values. As beta increases, the reconstructed image becomes cleaner since more

weight is put on the prior image.
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(a) Beta=.01, SNR=9.6 (b) Beta=.1, SNR=10.2 (c) Beta=.3, SNR=11.67

(d) Beta=.5, SNR=13.2 (e) Beta=.7, SNR=14.74 (f) Beta=.9, SNR=16.2

(g) Beta=1.1, SNR=16.55 (h) Beta=1.2, SNR=18.16 (i) Beta=1.4, SNR=19.25

(j) Beta=2, SNR=21.83 (k) Beta=4, SNR=26 (l) Beta=6, SNR=27.13

Figure 4.2: Icon Simulation Results.
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Figure 4.3: Icon SNR vs Beta.

Figure 4.3 shows the SNR versus beta. It shows that the SNR increases

as beta increases. When beta=0.3, the SNR increases to 24% above its original

value of 9.41.

We have seen in this Section an example in which the proposed method

improved the quality of the reconstructed images. The histogram of the difference

between the DWI image and the prior is used as a measure of similarity. It is

found using Matlab that 83.64% of the pixels are less than 20% difference in the

intensity.
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4.2 Experimental Results

The second part of the experiment was testing the algorithm on real diffusion

weighted images. Two phantoms were used at GE to collect two sets of images.

The first data set was collected using the GE standard Head coil NiCL cylindrical

phantom “ logo”, we used 4 different b values 50, 100, 200, and 400. The second

data set was using the large sphere NiCl phantom. We used 5 different b-values

500, 1500, 2500, 5000, and 10000. The purpose of this part was to study the

noise distribution on actual MRI images and to test how better the reconstructed

images would be.

4.2.1 Noise Study

It is usually assumed the noise in MRI has a Gaussian distribution, however it has

been shown by [8] that the noise of the magnitude data has a Rician distribution

for small SNR (≤ 3). As the SNR increases then the noise can be approximated

by Gaussian distribution. In this part, we tried to study the distribution of the

noise for different b-values based on the noise histogram analysis.

According to [19] the noise distribution will be Gaussian distribution if

the SNR > 3. We find that if the b-value is 1000 or less, then the SNR >3, as it

will be shown in the next two subSections.

Figure 4.4 shows the noise data of the logo phantom. The b-values were

50, 100, 200, and 400.
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(a) Logo Noise b=50 (b) Logo Noise b=100

(c) Logo Noise b=200 (d) Logo Noise b=400

Figure 4.4: Logo (Cylinder) Noise Data for DWI Images with Various b-values.

The noise data of each DWI image is used to form a histogram. We use

different quantization levels to create the histograms. The number of quantization

levels is chosen manually. Figure 4.5 shows the histogram of each data set. The

DWI images are magnitude images which have positive values. Data with negative

values are added to the original data in order to form a symmetric Gaussian

distribution. Matlab is used to estimate the mean and variance of each data set

with the maximum likelihood estimator. The estimated mean and variance, are

used to fit a Gaussian probability distribution for each noise histogram. Figure

4.5 shows that in four cases with different b-values, all with b< 1000, a Gaussian

distribution fits the data correctly as the SNR is larger than 3 in all cases.
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(a) Logo Noise b=50. (levels used =26) (b) Logo Noise b=100. ( levels used = 26)

(c) Logo Noise b=200. ( levels used = 26) (d) Logo Noise B=400. ( levels used = 26)

Figure 4.5: Logo Noise Histograms.

The second phantom is a sphere. Five sets of DWI images have been

collected with various b-values (500, 1500, 2500, 5000, 10000). Figure 4.6 shows

the noise data of each image.
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(a) Logo Noise b=500 (b) Logo Noise b=1500 (c) Logo Noise b=2500

(d) Logo Noise b=5000 (e) Logo Noise B=10000

Figure 4.6: Spherical Phantoms Noise Data for DWI Images with Various b-values.

The noise data from each image are used to form a histogram. Figure 4.7.

shows the histograms of the data for b=500 and b=1500 which have Gaussian

distributions. In these two cases, the SNR was higher than 3 which made the

Gaussian distribution a good approximation for the Rician distribution.
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(a) Sphere Noise b=500 Normal. ( levels used
= 24)

(b) Sphere Noise b=500 Rician. ( levels used
= 18)

(c) Sphere Noise b=1500 Normal. ( levels used
= 11)

(d) Sphere Noise b=1500 Rician. ( levels used
= 18)

Figure 4.7: Spherical Phantom Noise Histograms.

Figure 4.8 shows the results obtained for b=2500, 5000,10000. Two dis-

tributions are fitted to each histogram. On the left side of the figure we fit data

with the Gaussian distribution. On the right side of the figure, we fit data with

Rician distribution. It is clear from these histograms that the noise distribution

follows Rician distribution for b ≥ 2500 as the SNR is less than 3.
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(a) Normal Dististribution Fit to Data for
b=2500. ( levels used = 16)

(b) Rician Dististribution Fit to Data for
b=2500. ( levels used = 18)

(c) Normal Dististribution Fit to Data for
b=5000. ( levels used = 16)

(d) Rician Dististribution Fit to Data for
b=5000. ( levels used = 14)

(e) Normal Dististribution Fit to Data for
b=10000. ( levels used = 14)

(f) Rician Dististribution Fit to Data for
b=10000. ( levels used = 14)

Figure 4.8: Spherical Phantoms Noise Histograms.
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4.2.2 Reconstruction Images

4.2.2.1 Sphere Phantom

This Section shows the results of different experiments that have been done using

a sphere phantom. The purpose of the study is to validate the algorithm and

to study the noise distribution related to the b-value. The similarity between

the DWI image and the prior has been also computed using the absolute differ-

ence between the two images and forming the histogram of the difference. The

spread of the histogram has been used as a threshold for the success of the EBA

reconstruction algorithm.

(a) Prior Image with b=10. (b) DWI with b=500 (c) DWI with b=1500

(d) DWI with b=2500 (e) DWI with b=5000 (f) DWI with b=10000

Figure 4.9: Sphere Logo Images.

Figure 4.9 shows the images of the sphere logo collected with different

b-values.
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4.2.2.2 Sphere Phantom for b=500

The first real DWI in this study is for a sphere phantom. We collect different im-

ages with different b-values. The first one has b = 500. To compare the DWI with

its prior, the histogram of the difference between the two images is computed.

Figure 4.10(a),(b) and (c) shows the b0 or prior image, the DWI image

and the histogram of the difference between the b0 and the DWI respectively.

(a) Prior Image with b=10 (b) DWI with b=500 (c) Histogram of (b)-(a). (levels
used=22)

Figure 4.10: Sphere Logo b500.

The histogram shows the difference between the DWI and the prior image

is small with most pixels within 20% range of difference. The noise histogram also

have the shape of a Gaussian distribution for b=500.

The noise of the DWI image is obtained by masking the phantom on

the image. The rest of the image will be the back-ground noise. The noise was

examined to determine its distribution. In Figure 4.11 we show the noise of the

image in (a) and its histogram in (c). The data of the noise was used to estimate

the mean and the standard deviation of a Gaussian function. These values were

used to fit a Gaussian function to the histogram in (c).

Figure 4.11 (b), (d) shows the image SNR and its histogram. In (b),

the image SNR has high values (>10) which imply the Guassian distribution for
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noise. Clearly (d) shows that most of the data pixels have SNR greater than 10

which again infers Gaussian noise, further confirmed by the noise histogram in (c).

(a) Image Noise (b) Image SNR

(c) Noise Histogram. (levels used=73) (d) Data SNR Histogram. (levels used=22)

Figure 4.11: b=500 Noise Study

The EBA algorithm is then used to reconstruct the DWI and to test the

improvement in the quality of the images. Different b-values are chosen, and the

SNR is computed for each b-value using the a circle in the center of the image.

Figure 4.12 shows the SNR versus beta and demonstrates the improvement in the

SNR. A typical beta value is 0.3 at which the SNR improved by 20% with respect

to the DWI without applying the EBA algorithm.
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Figure 4.12: SNR vs Beta for b=500.

Finally, we show the reconstructed images in Figure 4.13. As beta in-

creases, the images have less noise.

(a) Beta=0.01,
SNR=10.4

(b) Beta=.1,
SNR=10.9

(c) Beta=.2,
SNR=11.4

(d) Beta=.3
SNR=11.8

(e) Beta=.4,
SNR=12.1

(f) Beta=.5,
SNR=12.3

(g) Beta=.6,
SNR=12.4

(h) Beta=.7,
SNR=12.64

(i) Beta=.8,
SNR=12.75

(j) Beta=.8,
SNR=12.75

(k) Beta=1,
SNR=12.9

(l) Beta=2,
SNR=13.17

Figure 4.13: Spherical Phantom Image Reconstruction Results for b-value=500.
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4.2.2.3 Sphere Phantom for b=1500

The second set of images for the spherical phantom is collected when b=1500.

The DWI image and the prior are shown in Figure 4.14 (a) and (b) respectively.

In 4.14 (c) the histogram of the difference between the DWI image and the b0

image is shown. The histogram has the shape of a Gaussian function but it was

more spread out than the previous case when b=500.

(a) Prior Image b=0 (b) b=1500 (c) Histogram of (b)-(a) ( levels used
=26)

Figure 4.14: Spherical Phantom for b=1500.

Figure 4.15 shows the noise date in (a) and its histogram in (c). A Gaus-

sian distribution is fit to the histogram showing that the noise distribution is close

to Gaussian when b=1500. Part (b) of the graph shows the image SNR and part

(d) shows the image SNR histogram. The SNR histogram shows that most of the

image pixels in the phantom had SNR greater than 5 which confirms the validity

of the Gaussian noise assumption.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram. ( levels used=52) (d) Image SNR Histogram. ( levels used= 20)

Figure 4.15: Noise Study for DWI with b=1500.

To verify the performance of the EBA algorithm, different numbers of beta

between 0.01 and 2 are used, and for each beta, the SNR is computed. Figure 4.16

shows the SNR vs Beta . The graph shows improvement in the SNR. A typical

value of Beta is 0.3 at which there was a 25% improvement in the SNR.

Figure 4.17 shows the results of the reconstructed images for different

beta values. The images in Figure 4.17 become cleaner with less noise as beta is

increased.
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Figure 4.16: SNR vs Beta for b=1500.

(a) Beta=.01 SNR=7.25(b) Beta=.1, SNR=7.75 (c) Beta=.2, SNR=8.35 (d) Beta=.3, SNR=10.2

(e) Beta=.4, SNR=9.55 (f) Beta=.5, SNR=10.1 (g) Beta=.6, SNR=10.6 (h) Beta=.7, SNR=11

(i) Beta=.8, SNR=11.35(j) Beta=0.9, SNR=11.2(k) Beta=1, SNR=11.85 (l) Beta=2, SNR=12.8

Figure 4.17: Spherical Phantom Image Reconstruction Results for b=1500.
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4.2.2.4 Sphere Phantom for b=2500

This Section shows the images when b=2500. The DWI image and the b0 image

are shown in Figure 4.18 (a) and (b) respectively. In Figure 4.18 (c) the histogram

of the difference between the DWI image and b0 is shown. It can be noticed that

the histogram is more spread out than the previous cases and has many bins where

the difference between the DWI image and the prior was greater than 20%. This

would be an example where the algorithm would perform poorly since the prior

image is not similar to the DWI.

(a) Prior Image b=0 (b) b=2500 (c) Histogram of (b) - (a). ( levels
used= 14)

Figure 4.18: Spherical Phantom for b=2500.

Figure 4.19 (a), (c) shows the noise of the image and its histogram. In

Figure 4.19 (b) the image SNR is shown and its SNR histogram is illustrated in

Figure 4.19 (d) .

Figure 4.19 (d) proves that most of the image data has SNR greater than

5 with more pixels falling with SNR below 5 than those in previous cases. This

suggests that the noise cannot be approximated by a Gaussian distributionfor the

pixels that had SNR < 5. If we compare the SNR histogram the ones in the

previous cases, we see that the SNR decreases as the b-value increases.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram. (levels used=18) (d) Image SNR Histogram. (levels used=18)

Figure 4.19: Noise Study for DWI with b=2500.

The DWI reconstruction for b=2500 using different values of beta has been

examined. Figure 4.20 shows the improvement in the SNR for different values of

beta. We can see that the SNR improved by a factor of 2 when beta=2. However,

beta=2 is not a typical value. A typical value of beta is 0.3 at which the SNR is

5.62 which is about 20% improvement.

Figure 4.21 shows the quality of the reconstructed images that has been

improved as beta is increased. However, there are some pixels on which the noise

is dominant and the algorithm fails to improve the image. The algorithm have

kept the same values of these pixels as it classifies it as true values of the DWI

instead of noise since the difference between the corresponding pixels in the DWI
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Figure 4.20: SNR vs Beta for b=2500.

image and the b0 image are high.
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(a) Beta=0.01, SNR=5.28 (b) Beta=.1, SNR=5.33 (c) Beta=0.2, SNR=5.33

(d) Beta=.3, SNR=5.62 (e) Beta=.4, SNR=5.87 (f) Beta=0.5, SNR=6.15

(g) Beta=0.6, SNR=6.64 (h) Beta=0.7, SNR=6.78 (i) Beta=.8, SNR=7.1

(j) Beta=0.9, SNR=7.47 (k) Beta=1, SNR=7.8 (l) Beta=2, SNR=10.6

Figure 4.21: Spherical Phantom Image Reconstruction Results for b=2500.
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4.2.2.5 Sphere Phantom for b=5000

In this Section, we show the results of the reconstructed images when b = 5000.

Figure 4.22 (a) shows the prior image and 4.22 (b) shows the DWI. Figure 4.22

(c) shows the histogram of the difference between the DWI and the prior. The

histogram is spread out which means a lot of the corresponding pixels in the two

images are very different. This makes the b0 image not the right prior and hence

the algorithm will not improve the DWI image quality significantly.

(a) Prior Image b=0 (b) b=5000 (c) Histogram of (b) -(a). (levels
used=14)

Figure 4.22: Spherical Phantom for DWI with b=5000.

Figure 4.23 (a) and (c) show the noise of the DWI image and its histogram.

The histogram is spread with many pixels having high-intensity values that are

larger than the true value of the pixel, i.e. the noise value is much higher than

the pixel value which makes it hard to properly estimate the image in this case.

In Figure 4.23 (b) and (d) the image SNR and its histogram are shown. A large

number of pixels have SNR value less than 5 which indicates invalidity of the

Gaussian noise approximation.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram ( levels used=14) (d) Image SNR Histogram ( levels used =
14)

Figure 4.23: Noise Study for DWI with b=5000.

Figure 4.24 shows a plot of the SNR vs Beta. It shows that the SNR

swings down and then up again owing to the improper use of the prior. For

.01 ≤ beta ≤ .8, the SNR is below the reconstructed DWI without prior. For

.9 ≤ beta ≤ 1.5, the SNR increases but it is still below the original DWI SNR=3.

As beta increases, the prior image will have dominant effect on the reconstructed

image. For large beta, when the difference between the corresponding pixel of the

DWI image and the prior is large, the algorithm will choose the value from the

prior image. This can be seen in Figure 4.25 which shows the image quality has

not improved until beta becomes high such that the prior becomes the DWI image

itself.
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Figure 4.24: SNR vs Beta for DWI with b=5000.

(a) Beta=.01,
SNR=3.02

(b) Beta=.2, SNR=2.23 (c) Beta=.3, SNR=2.74 (d) Beta=.5, SNR=2.62

(e) Beta=.7, SNR=2.55 (f) Beta=.8, SNR=2.55 (g) Beta=.9, SNR=2.58 (h) Beta=1, SNR=2.75

(i) Beta=1.3,SNR=2.82 (j) Beta=1.5, SNR=2.98(k) Beta=1.8, SNR=3.2 (l) Beta=2, SNR=3.35

Figure 4.25: Spherical Phantom Image Reconstruction Results for DWI with
b=5000.
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4.2.2.6 Sphere Phantom for b=10000

The last set of the sphere phantom images was when b = 10000. Figure 4.26

(a) shows the prior image and 4.26 (b) shows the DWI. Figure4.26 c shows the

histogram of the difference between the DWI and the prior image. The histogram

shows the high variation in the intensity of the pixels of the DWI and the corre-

sponding pixels of the prior. Here, the prior has no definite relationship with the

image and for this reason the EBA algorithm will not work. We can also notice

that the histogram has two populations, the first one in the 0 to .3 range, which

is coming from the noise in the two images, and the second population takes a

Gaussian shape and is coming from the sphere data itself.

(a) Prior Image b=0 (b) b=10000 (c) Histogram of (b)-(a) ( levels
used=16)

Figure 4.26: Spherical Phantom b=10000.

Figure 4.27 (a,c) show the noise in the image and its histogram . The

noise histogram is widely spread out. In Figure 4.27 (b,d) the image SNR and the

data histogram are shown.

The low image SNR reflects the extremely low intensity values in the DWI.

The data histogram in (d) shows that the histogram has two populations, the first

one can be Rician distribution for the pixels that had low SNR, and the second

one was Gaussian distribution which was coming from pixels that had SNR value

greater than 3, which indicate the noise distribution cannot be approximated by
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Gaussian distribution.

(a) Noise Data (b) Image SNR

(c) Noise Histogram (d) Image SNR Histogram

Figure 4.27: b=10000 Noise Study.

Next we show the EBA algorithm image reconstruction results. Figure

4.28 shows the reconstructed images with Beta values between 0.01 and 2. For

low values of Beta, the images looked the same as the DWI. As Beta became large

the images looked like the DWI in the center of the image and looked like the b0

image on the side of the image.
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(a) Beta=0.01, SNR=1.74 (b) Beta=.1, SNR=1.71 (c) Beta=0.2, SNR=1.66

(d) Beta=.3, SNR=1.6 (e) Beta=.4, SNR=1.56 (f) Beta=0.5, SNR=1.5

(g) Beta=0.6, SNR=1.47 (h) Beta=0.7, SNR=1.42 (i) Beta=.8, SNR=1.42

(j) Beta=0.9, SNR=1.41 (k) Beta=1, SNR=1.4 (l) Beta=2, SNR=1.44

Figure 4.28: Spherical Phantom Image Reconstruction Results for b=10000.
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The image SNR vs Beta is shown in Figure 4.29. The SNR went down

for all values of Beta as the EBA algorithm increased the variance of the image.

Figure 4.29: SNR vs Beta for b=10000.

Finally, we show the SNRs vs Beta for the three cases that illustrate the

enhancement in image reconstruction for b=500, b= 1500 and b=2500.

Figure 4.30: SNR comparison for different b = 500, 1500, 2500.
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4.2.3 Logo Phantom

The second experimental data were generated with the GE logo phantom. Four

sets of DWI images were collected. The b’s were 50, 100, 200, and 400. Figure

4.31 shows these images.

(a) Prior Image b=10 (b) b=50 (c) b = 100

(d) b = 200 (e) b = 400

Figure 4.31: Sphere-GE Logo Images.

In the next subSections, we will show the comparison between the con-

temporary DWI reconstruction methods and the EBA algorithm.
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4.2.3.1 Logo Phantom b=50

This Section shows the results when b=50. Figure 4.32 (a), (b) show the prior

image and the DWI. In 4.32 (c) the histogram of the difference between the DWI

and the prior is shown, the histogram is not much spread out, with most of the

pixels had intensity difference less than 20%, which indicated the high similarity

between the DWI and the prior image.

(a) Prior Image b=10 (b) b=50 (c) Histogram (b)-(a). (levels used=6)

Figure 4.32: Logo Phantom Images b=50.

Figure 4.33 (a) shows the noise in the image. In Figure 4.33 (c) the

histogram of the noise is shown, the histogram shows that the noise distribution

can be approximated by a Gaussian function. In Figure 4.33 (b) the image SNR

is shown. Most pixels had SNR > 3 which made it possible to approximate the

noise by a Gaussian distribution. Figure 4.33 (d) shows the data SNR histogram.

Again all of the pixels had SNR greater than 3 confirming the conclusion that was

made before about the noise in this Section.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram. (levels used=20) (d) Image SNR Histogram. (levels
used=10)

Figure 4.33: Logo Noise Study for b=50.

Figure 4.34 show the improvement in the SNR vs Beta. A typical value

of Beta is 0.3 at which the improvement of the SNR was 15%.

Figure 4.34: Logo SNR vs Beta for b=50.
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Figure 4.35 shows the reconstructed images. The images had less noise as

Beta was increased.

(a) Beta=0.01, SNR=5.69 (b) Beta=.1, SNR=6.1 (c) Beta=0.3, SNR=6.5

(d) Beta=.5, SNR=6.62 (e) Beta=.8, SNR=6.53 (f) Beta=1, SNR=6.5

(g) Beta=1.3, SNR=6.61 (h) Beta=1.75, SNR=6.5 (i) Beta=2, SNR=6.43

Figure 4.35: Logo Results for b=50.
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4.2.3.2 Logo Phantom b=100

This Section shows the results for b=100. Figure 4.36 (a), (b) show the prior image

and the DWI, in 4.36 (c) the histogram of the difference between the DWI and

the prior is shown, the histogram is not much spread out, indicating the similarity

is high between the DWI and the prior image. This histogram is very similar to

the previous case 4.32 (c), where Beta=50.

(a) Prior Image b=10 (b) b=100 (c) Histogram of (b)-(a). (levels
used=6)

Figure 4.36: Sphere Logo for b=100.

Figure 4.37 a shows the noise in the image. In Figure 4.37 the histogram

of the noise is shown, the histogram shows that the noise distribution can be

approximated by a Gaussian function. In Figure 4.37 (c) the image SNR is shown.

Most pixels had SNR > 3 which made it possible to approximate the noise by a

Gaussian distribution. Figure 4.37 (d) shows the data SNR histogram. All of

the pixels had SNR greater than 9 which confirm the conclusion was made before

about the noise that it can be approximated by the Gaussian distribution.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram. (levels used=14) (d) Image SNR Histogram.( levels used
=9)

Figure 4.37: Noise Study b=100.

To compare the performance of the algorithm, we computed the SNR of

each image vs Beta. The results are shown in Figure 4.38. The SNR improved by

8% at Beta =0.3.

Figure 4.38: Logo SNR vs Beta for b=100.
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Figure 4.39 shows the reconstructed images. The images had less noise as

Beta was increased.

(a) Beta=0.01, SNR=4.46 (b) Beta=.2, SNR=4.63 (c) Beta=0.4, SNR=4.94

(d) Beta=.7, SNR=5.23 (e) Beta=.9, SNR=5.27 (f) Beta=1.2, SNR=5.24

(g) Beta=1.5, SNR=5.27 (h) Beta=1.8, SNR=5.27 (i) Beta=2, SNR=5.28

Figure 4.39: Logo Results for b=100.
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4.2.3.3 Logo Phantom b=200

This Section shows the results when b=200. Figure 4.40 (a) and (b) show the

prior image and the DWI, in 4.40 (c) the histogram of the difference between the

DWI and the prior is shown, Most of the pixels fall within a 20% difference which

indicates the high similarity between the DWI and the prior image.

(a) Prior Image b=10 (b) b=200 (c) Histogram of (b)-(a) (levels
used=6)

Figure 4.40: Sphere Logo b200.

Figure 4.41(a) and (c) show the noise of the image and its histogram. The

noise histogram assumes a Gaussian shape. In Figure 4.41 (b) the image SNR is

shown. Most of the pixels had SNR higher than 3. In figure 4.41 (d) the phantom

data SNR histogram is shown. All pixels had an SNR that was greater than 7.

This would make the Gaussian approximation of the noise a valid assumption.
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(a) Noise Data (b) Image SNR

(c) Noise Histogram (levels used=12) (d) Image SNR Histogram (levels used=12)

Figure 4.41: Logo Noise Study for b=200.

Figure 4.42 shows the SNRs and the improvement in it.

Figure 4.42: Logo SNR vs Beta for b=200.
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Figure 4.43 shows the set of images and the improvement in the SNRs.

(a) Beta=.01, SNR=3.13 (b) Beta=.2, SNR=3.14 (c) Beta=0.4, SNR=3.19

(d) Beta=.7, SNR=3.48 (e) Beta=.9, SNR=3.76 (f) Beta=1.2, SNR=4.08

(g) Beta=1.5, SNR=4.23 (h) Beta=1.8, SNR=4.29 (i) Beta=2, SNR=4.3

Figure 4.43: Logo Results for b=200.
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4.2.3.4 Logo Phantom b=400

This Section shows the results when b=400. Figure 4.44 (a),(b) show the prior

image and the DWI. In 4.44 (c) the histogram of the difference between the DWI

and the prior is shown. Most of the histogram bins fall below 20% with a few of

the bins fall below 40%. This indicates good similarity between the DWI image

and the b0 image although the similarity is not as much as it is for the previous

cases when the b-value is smaller.

(a) Prior Image b=10 (b) b=10000 (c) Histogram ( b4-b0)

Figure 4.44: Sphere Logo b400.

Figure 4.45 (a) shows the noise in the DWI. In Figure 4.45 (c) the his-

togram of the noise is shown and it has a Gaussian shape. In Figure 4.45 (b), the

image SNR is shown. The histogram shows that most of the pixels have an SNR

> 3. In Figure 4.45 (d) the image SNR histogram of the image is shown. All of

the data phantom pixels have SNR > 7.
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(a) Noise Data (b) Image SNR.

(c) Noise Histogram (levels used=22) (d) Image SNR Histogram (levels used=14)

Figure 4.45: b400 Noise Study

The EBA algorithm is run with different Beta values ranging between

0.01 and 2. For each Beta, the SNR of the image is computed and Figure 4.46

shows the improvement of SNRs with Beta.

Figure 4.46: Logo SNR vs Beta for b=400.
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Figure 4.47 shows the set of results from the EBA algorithm for different

Beta values. The graph shows that beta enhances the image clarity.

(a) Beta=.01, SNR=2.67 (b) Beta=.2, SNR=2.6 (c) Beta=0.4, SNR=2.55

(d) Beta=.7, SNR=2.72 (e) Beta=.9, SNR=2.97 (f) Beta=1.2, SNR=3.18

(g) Beta=1.5, SNR=3.33 (h) Beta=1.8, SNR=3.45 (i) Beta=2, SNR=3.48

Figure 4.47: Logo Results for b=400.
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4.3 Anatomical Results

The third part of the practical study is to test the algorithm on real anatomical

data. We have two data sets. The first one is for a brain image, and the second

one is a stack of 28 slices of Propeller images of a brain. We begin by showing

results of the brain image.

4.3.1 Brain Results

In this Section, we show simulation results of DWI images of the brain. These

images are obtained from www.radiopaedia.org. Figure 4.48 shows two images of

the brain. The image in (a) has no pathology and Gaussian noise is added to it

to generate the prior image. The image in (b) had pathology and Rician noise is

added to (b) to form the DWI in (d) and Gaussian noise is added to (b) to form

the DWI in (c).
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(a) Prior Image (b) DWI Image

(c) Gaussian Noise (d) Rician Noise

Figure 4.48: Brain Images With Pathology.

The goal of this experiment is to investigate the clinical performance of the

EBA algorithm. We start by generating the histograms of the difference between

the DWI and the prior images in Figure 4.48. Figure 4.49 shows histogram of each

image.

(a) No Noise Histogram ( levels
used=6)

(b) Gaussian Noise Histogram (
levels used=12).

(c) Rician Noise Histogram ( lev-
els used=12)

Figure 4.49: Pathology Histograms.
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The histograms show that most of the pixels had small difference in the

DWI image and the prior, indicating a proper choice for prior.

Figure 4.50 shows the results of the noise analysis of the DWI with Gaus-

sian noise. Figure 4.50 (a) shows the DWI image with the Gaussian noise and in

(c) its histogram of the noise is shown. The histogram assumes Gaussian shape

as expected. In Figure 4.50 (b), the image SNR is shown. The SNR is higher

than 3 for most pixels which confirm the Guassian noise. In (d) the histogram

of the image SNR is shown with almost all pixels having SNRs greater than 5 in

agreement with [8].

(a) Gaussian Noise (b) Image SNR

(c) Noise Histogram (levels used=16).(d) Image SNR Histogram. ( levels
used =12)

Figure 4.50: Pathology Gaussian Noise Study.
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Figure 4.51 shows the noise study of the DWI with Rician noise. In (a)

the image with Rician noise is shown, in (c) the histogram of the noise is shown,

and it had the Rician distribution shape. In (b) the image SNR is shown. Most

pixels had SNR greater than 3 which made it possible to approximate the noise

by a Gaussian distribution. In (d) the histogram of the image SNRs is shown and

it shows that almost all pixels had SNRs greater than 3 which agrees with the

previous conclusion about the noise.

(a) Rician Noise (b) Image SNR

(c) Noise Histogram (levels used= 22) (d) Image SNR Histogram (levels used
=10)

Figure 4.51: Pathology Rician Noise Study.

Next we show the results of the EBA algorithm. Figure 4.52 shows the

improvement in the SNR vs Beta for both the Gaussian noise and the Rician noise.

It is clear that as Beta increased the SNR increased as well.
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Figure 4.52: Brain Pathology SNR vs Beta

Figure 4.53 shows the reconstructed images when the noise was Gaussian

for different values of Beta. The graph shows that as Beta increases, the image

quality improves as well. However for large values of Beta, the algorithm wipes

out the pathology area that is shown in Figure 4.53 (a) and makes it similar to

that in the prior image. Our conclusion is to limit Beta to be less than 0.5. Figure

4.54 shows the reconstructed images with Rician noise. The same conclusion can

be made about the quality of the images as in the previous case.
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(a) Beta=0.01, SNR=3.39 (b) Beta=.1, SNR=4.07 (c) Beta=0.2, SNR=4.98

(d) Beta=.3, SNR=5.8 (e) Beta=.55, SNR=7.35 (f) Beta=.7, SNR=7.87

(g) Beta=.85, SNR=8.23 (h) Beta=.85, SNR=8.29 (i) Beta=1, SNR=8.47

Figure 4.53: Brain Results With Gaussian Noise
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(a) Beta=0.01, SNR=5.03 (b) Beta=.1, SNR=6.07 (c) Beta=0.2, SNR=7

(d) Beta=.3, SNR=7.69 (e) Beta=.4, SNR=8.2 (f) Beta=.5, SNR=8.56

(g) Beta=.6, SNR=8.8 (h) Beta=.8, SNR=9.06 (i) Beta=1, SNR=9.2

Figure 4.54: Brain Results with Rician Noise.
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4.3.2 Propeller Images With Fixed Beta Value.

The MRI imaging technique is very sensitive to patient’s motion. PROPELLER

[21]“Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruc-

tion” MRI is designed to reduce the effect of patient voluntary and physiologic

motion (breathing, flow). Figure 4.55 shows a filling pattern that is used to fill a

radial k-space which is less sensitive to motion.

Figure 4.55: Propeller 1

The oversampling of the k-space center typical for radial k-space filling

yields increased SNR and high tissue contrast.

Figure 4.56 (a) shows MRI head image without Propeller; Figure 4.56 (b)

shows the same head MRI image with Propeller motion correction.

1Courtesy of GE healthcare.
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(a) MRI head image without Propeller (b) MRI head image with Propeller

Figure 4.56: Propeller Motion Artifact Correction. 2

In this Section we apply the EBA method on four data sets of Propeller

brain images. For each image, Beta will have a fixed value, hence we call it”Fixed

Beta EBA”. We will show three cases where the algorithm improve the quality of

the images, and one case where the algorithm cannot improve the quality of the

reconstructed DWI images.

2Courtesy of Siemens healthcare.
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4.3.2.1 Slice 5

The first example is for a case where the algorithm works. Figure 4.57 shows the

b0 image in (a) and the DWI image in (b) for slice 5. The histogram of their

difference is shown in (c). Most of the bins of the histogram are less than 20%

difference and the histogram is not spread out. This makes the b0 image a good

prior for this case.

(a) b0 Image (b) DWI image (c) Histogram (b)-(a). (levels
used=14)

Figure 4.57: Propeller Images Slice 5.

In Figure 4.58 we show the results of the analysis of the noise in this slice.

Figure 4.58 shows the results we had. In Figure 4.58, (a) is the DWI image and

(b) is the image SNR where the majority of the pixels have an SNR greater than

3, enabling us to assume Gaussian noise in our image. In Figure 4.58 (c), we show

the noise histogram of the image, fitting with a Rician distribution. In Figure 4.58

(d), the image data SNR is shown, a lot of pixels had an SNR greater than 3 at

which the Guassian noise assumption is valid.
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(a) DWI (b) Image SNR

(c) Noise Histogram. (levels used=14) (d) Image SNR Histogram. (levels
used=12)

Figure 4.58: Propeller Images Slice 5 Noise Analysis Data.

Next we show the reconstructed images using the EBA method. Figure

4.59 shows the reconstructed images for different Beta values. The figure shows

that as Beta increases the images have less noise. Figure 4.60 summarizes the

improvement in the SNRs with a graph. At Beta=0.5, the SNR improves by

60%.
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(a) Beta=0.01, SNR=4.23 (b) Beta=.05, SNR=4.94 (c) Beta=0.1, SNR=5.87

(d) Beta=.15, SNR=6.78 (e) Beta=.2, SNR=7.62 (f) Beta=0.25, SNR=8.13

(g) Beta=.3, SNR=10.03 (h) Beta=.4, SNR=11.67 (i) Beta=.5, SNR=12.83

Figure 4.59: Propeller Images Slice5 Results.

Figure 4.60: Slice 5 SNR vs Beta.
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4.3.2.2 Slice 14

The next example is for slice 14 where the algorithm does not perform well. Figure

4.61 shows the b0 image in (a) and the DWI image in (b). The histogram of their

difference is shown in (c). The histogram is spread out, and a lot of pixels have

difference in the intensity greater than 20%. This indicates that b0 image is not

a good prior for this image.

(a) b0 Image (b) DWI image (c) Histogram (b)-(a). (Levels
used =10)

Figure 4.61: Propeller Images Slice 14.

Next we show the reconstructed images generated by the EBA method

in Figure 4.62. The algorithm performs poorly and changes the structure of the

image. As Beta is increased, the image becomes more like the average of the two

images at some pixels where the difference is not very large, and it mimics the

prior image at other pixels where the difference is very large.
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(a) Prior Image (b) Diffusion Image (c) Beta=0.01

(d) Beta=0.1 (e) Beta=0.3 (f) Beta=0.5

(g) Beta=0.7 (h) Beta=0.9 (i) Beta=1

Figure 4.62: Propeller Images Slice 14 Results.
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4.3.2.3 Slice 27

In the next example we show the results of slice 27. Figure 4.63 shows the b0

image in (a) and the DWI image (b). The histogram of their difference is shown

in (c). It shows that most pixels has less than 20% difference in the intensity and

is not spread out. This indicated that the b0 image was a good prior.

(a) b0 Image (b) DWI Image (c) Histogram (b)-(a). (levels
used =10)

Figure 4.63: Propeller Images Slice27.

In Figure 4.64 we show the results of the noise analysis of this slice. In

Figure 4.64, (a) is the DWI image and (c) is the histogram of the noise. The pixels

of the noise are used to estimate the mean of a Rician distribution which is fit to

the histogram. In Figure 4.64 (b), the image SNR has many pixels with SNR > 3

which validates the Gaussian noise assumption. In Figure 4.64 (d), we show the

image SNR histogram. Its first bin lied under the SNR=2, corresponding to the

dark spots in the image while the remaining pixels with SNR> 2.
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(a) Diffusion Image (b) Image SNR

(c) Noise Histogram. (levels used=14) (d) Image SNR Histogram. (levels used=8)

Figure 4.64: Propeller Images Slice 27 Noise Analysis Data.

For the same data set, we show the reconstructed images with the EBA

method in Figure 4.65 which again shows the reduction in noise as Beta is in-

creased.
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(a) Beta=0.01 (b) Beta=0.1 (c) Beta=0.2

(d) Beta=0.3 (e) Beta=0.5 (f) Beta=0.6

(g) Beta=0.7 (h) Beta=0.9 (i) Beta=1

Figure 4.65: Propeller Images Slice 27 Results.
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4.3.2.4 Slice 28

Finally, we show the results of slice 28. Figure 4.66 shows the b0 image in (a) and

the DWI image (b). Their histogram shown in (c) is not spread out and has most

of the pixels with differences less than 20%. This indicates that b0 is a good prior

for this image.

In Figure 4.67 we show the results of the noise analysis.

(a) b0 Image. (b) DWI Image (c) Histogram (b)-(a). (Levels
used=6)

Figure 4.66: Propeller Images Slice 28.
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(a) b0 Image (b) Image SNR

(c) Noise Histogram. (levels used=14) (d) Image SNR Histogram. (Levels
used=7)

Figure 4.67: Propeller Images Slice 28 Noise Analysis.

We show the DWI Figure 4.67 (a) and its noise histogram in Figure 4.67

(c) is fit to a Rician distribution. The image SNR in Figure 4.67 (b) has many

pixels with SNR greater than 3 which enables us to approximate the noise with

the Gaussian distribution. The image data SNR histogram in Figure 4.67 (d)

further confirms a lot of pixels had SNR > 3. The improvement in the SNRs is

demonestrated in Figure 4.68. When beta is equal to 0.3, the SNR increased by

23%. Next we show the reconstructed images for slice 28 generated by the EBA

method in Figure 4.69
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Figure 4.68: Slice 28 SNR versus Beta for Data from Slice 28.

(a) Beta=0.01 (b) Beta=0.1 (c) Beta=0.2

(d) Beta=0.3 (e) Beta=0.4 (f) Beta=0.5

(g) Beta=0.6 (h) Beta=0.8 (i) Beta=1

Figure 4.69: Propeller Images Slice 28 Results.
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4.3.3 Propeller Data with Variable Beta Value.

In this Section, we propose the use of variable Beta size. Previously, we have

showed that the algorithm will perform poorly if the histogram of the difference

between the DWI image and the prior has many bins with differences greater than

20%. Under this condition, the algorithm will produce a poorly reconstructed

image. In this Section, we investigate the use of variable beta values. The beta

value will change for each pixel in the image depending on the difference in the

intensity between the corresponding pixels in the DWI and the prior image. If the

difference is small, large beta will be used. As the difference increases, beta will

be decreased. We have implemented this idea for several slices.

4.3.3.1 Slice 17

We begin with slice 17 where the DWI and the prior are not similar. Figure 4.70

shows the prior image in (a) and the DWI image in (b). The histogram of the

difference between the DWI image and the prior image in (c) is spread out and

has a lot of pixels with more than 20% difference in the intensity, indicating that

the b0 image is not a good prior.

(a) b0 Image (b) DWI Image (c) Histogram of (b) -(a).( Levels
used=14).

Figure 4.70: Propeller Slice 17 Images.
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In Figure 4.71 we show the reconstructed DWI for slice 17 with fixed

beta=0.4 in (a) and with variable Beta in (b). The reconstructed image in Figure

4.71 (a) is obviously poor in quality while the image in 4.71 (b) has preserved the

features of the original DWI.

(a) Fixed Beta (b) Variable Beta

Figure 4.71: Propeller Slice17 Results.
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4.3.3.2 Slices 19 and 21

In this Section, we show another two cases where the difference between the DWI

and the prior image is large. Figure 4.72 (b) and (e) show the DWI images of slice

19 and slice 21 respectively. Their prior images are displayed in Figure 4.72 (a)

and (d). The histograms of the difference image between the prior and the DWI

in Figures (c) and (f) are spread out have many pixels with difference greater than

20%. This indicates that the b0 images are not good priors.

(a) Slice 19 b0 Image (b) DWI Image (c) Slice 19 Histogram for (b)-(a). (Lev-
els used = 14)

(d) Slice 21 b0 Image (e) Slice 21 DWI Image (f) Slice 21 Histogram for (e)-(d).( Lev-
els used = 12)

Figure 4.72: Propeller Slices 19 and 21 Images.

In Figure 4.73, we show the reconstructed images with fixed beta and

variable beta. In Figure 4.73 (a), the image of slice 19 reconstructed with fixed

beta= 0.6 is distorted by the algorithm. In Figure 4.73 (b) the same image is

reconstructed but using variable Beta. The image is not distorted severely by the
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reconstruction algorithm and is close to the original DWI. Similar observation can

be seen in the data for slice 21 in Figures 4.73 (c) and 4.73 (d).

(a) Slice 19 DWI Image with Fixed Beta = 0.3 (b) Slice 19 DWI Image with Variable Beta

(c) Slice 21 DWI Image with Fixed Beta =0.3 (d) Slice 21 DWI Image with Variable Beta

Figure 4.73: Propeller Slice19 and Slice 21 Results.
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4.3.3.3 Slice 28

Finally we consider a case where the difference between the DWI and the prior

was less than 20% for most of the pixels. Figure 4.74 shows data for slice 28 the

prior image in (a), the DWI in (b) and the histogram of their difference in (c). The

histogram in Figure 4.74 (c) is not spread out with most pixels have difference less

than 20%. Cosnequently, the reconstructions with fixes beta = 0.4 and variable

beta in Figure 4.75 do not have any difference since the algorithm has adjusted

the variable beta to the same fixed value.

(a) b0 Image (b) DWI Image (c) Histogram (b)-(a). (levels
used=4)

Figure 4.74: Propeller Slice 28 Images.

(a) Fixed Beta=0.4 (b) Variable Beta

Figure 4.75: Propeller Slice 28 Variable Beta
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Chapter 5

Conclusion and Future Work

In this thesis, we have explained the concepts behind DWI and some of its ap-

plications. DWI images are corrupted with noise. The main goal of this thesis

is to enhance DWI image quality. In the first chapter we discuss the concepts

of DWI and the measurement procedure for image generation. We also describe

some of the diffusion parameters such as the b-value. Then we examine the noise

distribution in DWI which has been shown to be Rician. The Rician distribution

can be approximated by a Gaussian distribution when the SNR is high enough.

Particularly, we demonstrate that when the SNR >3, the Gaussian approximation

will be valid.

We then describe three contemporary denoising methods for DWI images.

The first method has been proposed by Guleryuz (2007). It makes use of the

sparness in the image representation in the DCT to remove the noise. Manjón

and Coupé (2013) have proposed the second method NLM which makes use of the

self-similarity in the image for filtering. The last method has been proposed by

Manjón and Pierrick Coupe. It depends on the PCA of image slices.
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In Chapter two, we explain the Bayesian Approach in denoising images.

The Bayesian approach makes use of another image to improve the reconstruction

of the DWI images. In MRI scanners, each time a scanner is used to produce

a diffusion image at a certain b-value while it will also generate another image

that has no diffusion. This image is called the b0 image. The b0 image has less

noise than the DWI image and hence can be used as a prior to denoise the DWI

image.

Since the b0 image is used in our Baeysian approach, we need to define

the joint entropy between the b0 image and the DWI image and demonestrate

that it can be used as a measure of similarity between two images. The closer is

the DWI image to the b0 image, the smaller the joint entropy is. Joint entropy

is used as a regularization term in the image reconstruction, and hence we called

the algorithm the Entropy Bayesian Approach (EBA).

In chapter three, we compare the performance of the EBA algorithm to

that of the other three denoising methods discussed in chapter one. The processing

time of the EBA is about the same as that of the NLM and PCA, but less than

that of the DCT algorithm. The EBA and the PCA have performed the best in

keeping the fine details of the image.

In Chapter four, we have validated the EBA algorithm performance with

the simulation and experimental results. Simulations have been performed using

prior images with added Gaussian noises at different levels as the DWI images. We

then apply EBA and observe the effect of beta on the results. For the experimental

validation, we have used real DWI intensity images. These images are generated

from phantom and clinical images that are obtained from GE healthcare.

We have used two different phantoms to produce the DWI images. These

images are collected at different b-values. The noise distribution is empirically

studied. We have measured the changes in the noise distribution with the b-value.
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For low b-values, since the SNR is higher than 3 and the noise can be assumed

to have Gaussian distribution. When the b-value is higher than 2500, the SNR

becomes less than 3 and the noise assumes Rician distribution.

The Bayesian approach performs well if the prior image is similar to the

DWI image. However, the b0 image is not always similar to the DWI image.

When they are different, the EBA algorithm fails to improve the DWI image

significantly. We use the histogram of the difference between the DWI and the b0

image as a measure of similarity. We verify the performance of the EBA algorithm

with respect to this similarity and find a threshold for the algorithm effectiveness.

A 20% intensity difference between the DWI and the b0 image is chosen to be the

threshold for the algorithm to improve the DWI. When the difference in intensity

is higher than 20%, we vary the value of beta according to the intensity difference.

Comparing to the results from the fixed beta size, we illustrate the variable beta

can improve performence for high intensity difference.

The EBA algorithm is also validated on real clinical images. We apply it

to 28 image slices. For some slices, when the b0 image is similar to the DWI image

(such as in slices 27 and 28), the algorithm performs very well. When the two

images are not very similar (such as slice 14), the algorithm corrupts the original

image with the prior image. To improve the performance of the EBA, we adopt

variable beta approach. If the difference between the corresponding pixels in the

b0 image and the DWI is less than 20%, beta is fixed to .5. If this difference is

larger than 20%, beta is reduced proportional.

The limitation of the EBA method is that it requires the right prior.

This means that the prior image, i.e the b0 image, should be similar to the DWI.

Otherwise, the algorithm cannot improve the quality of the DWI significantly.
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For future work, the algorithm will be tested with complex images, which

is the case in MRI images. Unlike image intensity which has Rician noise, complex

images have Gaussian noise and hence no need to approximate the noise distri-

bution. This is impossible for the current experimental work since GE can only

provide intensity images but not complex images.

So far, the size of beta is fixed for the images for the current EBA algo-

rithm. Further implementation will be done to automatically choose the value of

beta based on the noise level and difference between the DWI and the b0 image.

To improve the performance of the EBA algorithm, the prior can be pre-

processed with a low pass filter to smooth the image before it is used in the EBA

algorithm. We can also combine this method with the contemporary methods

especially the PCA algorithm. The denoised image from the PCA can be used

as the prior image, replacing the b0 image. The optimization can also be done

using a block around each pixel rather than the pixel itself. This will have the

advantage of enabling better estimate of the noise around the pixel and hence, an

accurate measure of the true pixel value can be obtained.
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