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ABSTRACT
AN EXAMINATION OF THE ROWE MODEL AND LEE MODEL

FOR COMPLEX-VALUED FUNCTIONAL MAGNETIC
RESONANCE IMAGING

Yuning Chen

Marquette University, 2013

The problem being addressed in this paper is the validity of two competing
models for complex-valued fMRI activation. Most of the previous models only use
the magnitude portion of the data and discard the phase portion of data which may
contain useful biological information. These two models were designed to detect
activation using both the magnitude and/or phase in fMRI data. Hence the results
can be more accurate and reliable. The first model published by Rowe (2005) and
the second model published by Lee (2007) both claim to perform the same job.
After the two models have been published, Dr. Rowe pointed out four inaccurate
items in Lee model. But Dr. Lee only agreed with Dr. Rowe’s first item and he
claimed that his model is correct and the data in polar coordinates misled Dr.
Rowe’s conclusion. In this paper, I will discuss the four items Dr. Rowe pointed out
and use some examples and mathematical arguments to support Dr. Rowe’s
conclusions. The work is mainly about two aspects of these two models. The first
aspect is the estimation of the parameter which would be used in the model. The
second aspect is the distribution of the test statistic for activation. For the
estimation of the parameters, I will analyze the conditions under which the two
models can be used and restrictions on the design matrices. For the test statistic, I
will present a detailed mathematical derivation of its distribution.
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1. BACKGROUND

In human brain research, functional magnetic resonance imaging (fMRI) is

an important method to observe brain activity. It measures the blood oxygen

level-dependent (BOLD) to detect activity in human brain. Due to the noise from

various sources in this process, mathematical models and statistical methods are

usually used to detect brain activity.

Statistical models have been used to compute brain activation for many

years using magnitude data, more recently models have been published using

magnitude and phase for activation from complex-valued data. The first model

published by Rowe (2005) and the second model published by Lee (2007) both claim

to perform the same job. In 2009, Rowe wrote a letter to the editor to point out

four items which he claimed to be inaccurate in the Lee model. After Dr. Rowe

published this letter, Dr. Lee responded to Dr. Rowe in another letter to the editor.

In this second letter, Dr. Lee only agreed with Dr. Rowe’s first statement and he

gave another counter example and some explanation as response to Dr. Rowe’s

other three statements in order to prove that his model was correct. However, Dr.

Rowe is not satisfied with Dr. Lee’s explanations and he seeks a more detailed

mathematical argument to show that the Lee model is not equivalent to the Rowe

model and can not be used in practical situations.

In Dr. Rowe’s letter, the first item is a mathematical proof by Dr. Lee that

to show the equivalence of the Lee model to the Rowe model. Dr. Rowe pointed out

that this proof is merely a derivation of the test statistic using a likelihood ratio test
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in the Lee model. It did not show the equivalence of the two models. In Dr. Lee’s

response, he agreed with Dr. Rowe’s comment on this item.

The second and third items in Dr. Rowe’s letter is regarding the validity of

the Lee model. Dr. Rowe pointed out that the Lee model is only correct when we

add some strong constraints on the design matrix. Dr. Rowe also gave an example

to show that Lee model does not work under some conditions. In the response, Dr.

Lee stated that the Lee model is in Cartesian coordinates and Rowe model is in

polar coordinates, and that this difference misled Dr. Rowe to give a wrong

conclusion. Dr. Lee also gave a simple example with the goal to show that the Lee

model works while Rowe model does not work.

The fourth item is regarding the degrees of freedom of the test statistic using

a likelihood ratio test in the Lee model. In Appendix B of his original paper, Dr.

Lee directly gave a conclusion that the test statistic when using a likelihood ratio

test is the same as the test statistic when using Hotelling’s T 2 test, and hence the

test statistic should be F distributed and its degrees of freedom should be (m, n-m).

But Dr. Rowe stated in his letter that it is F distributed with 2 and 2n-4 degrees of

freedom. Dr. Lee responded in his letter that Dr. Rowe assumed the residual errors

are independent, hence the degrees of freedom are correct as stated in his original

paper. In addition, when the independence of errors is assumed, the degrees of

freedom should be 2n− 2 and 2n− 4. So Dr. Lee still does not agree with Dr. Rowe.
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2. METHODS

2.1 The Rowe Model

In fMRI, the temporally changing intensity value in each voxel yt is

complex-valued. The observation yt can be described with a nonlinear multiple

regression model that includes both a temporally varying magnitude ρt and phase θt

given by

yt = [ρtcosθt + ηRt] + [ρtsinθt + ηt]

ρt = x′tβ = β0 + β1x1t + · · ·+ βq1xq1t

θt = u′tγ = γ0 + γ1u1t + · · ·+ γq2uq2t, t = 1, · · · , n

where (ηRt, ηIt)
′ ∼ N(0,Σ), x′t is the tth row of an n× (q1 + 1) design matrix X for

the magnitude, u′t is the tth row of an n× (q2 + 1) design matrix U for the phase,

and Σ = σ2I2 while β and γ are magnitude and phase regression coefficient vectors

respectively. Then activation can be determined with a generalized likelihood ratio

statistic

-2logλ=2nlog( σ̃
2

σ̂2 ).

This statistic has an asymptotic χ2
r dsitribution where r is the difference in the

number of constraints between the alternative and null hypotheses.

In the Rowe model, there are four potential hypotheses.

Ha : Cβ 6= 0, Dγ 6= 0 does not constrain the coefficients of magnitude and phase,

Hb : Cβ = 0, Dγ 6= 0 only constrains the coefficients of magnitude,

Hc : Cβ 6= 0, Dγ = 0 only constrains the coefficients of phase,

Hd : Cβ = 0, Dγ = 0 constrains the coefficients of both magnitude and phase, which

can be combined in various ways to test different hypotheses.

2.2 The Lee Model
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The complex-valued time series data can be decomposed into real and

imaginary parts.

yr = Xβr + εr

yi = Xβi + εi

where y = yr + iyi is the time-series data of an individual voxel, X is the design

matrix, βr and βi are the parameters of the model, εr and εi are residual errors. The

least-squares estimates of β̂r and β̂i without any constraints are (XTX)−1XTyr and

(XTX)−1XTyi respectively.

To detect activation, Lee used Hotelling’s T 2-test. The model describes the

null hypothesis is with the constraints vTβr = 0 and vTβi = 0, then the T 2 value can

be obtained as follow:

T 2 = vT [β̂r β̂i] · [COV (ε̂r, ε̂i)v
T (XTX)−1v]−1 · [β̂r β̂i]Tv.

If both the real and imaginary parts of the data are normally distributed, the T 2

statistic will follow an F-distribution with 2 and n-2 degrees of freedom. Thus for a

given significance level α, the null hypothesis is rejected when

T 2 > [2(n−1)
n−2 ] F2,n−2(α).

Similar to the Rowe model, there are also four hypotheses in the Lee model.

But because the deign matrices for real and imaginary are the same in Lee model,

there is only one contrast vector v in each of the four hypotheses:

Ha : vβr 6= 0, vβi 6= 0 does not constrain the coefficients of real and imaginary.

Hb : vβr = 0, vβi 6= 0 only constrains the coefficients of real.

Hc : vβr 6= 0, vβi = 0 only constrains the coefficients of imaginary.

Hd : vβr = 0, vβi = 0 constrains the coefficients of both real and imaginary.

We can find that both of the two models can be divided into two parts. The

first part is estimating the parameters used in the model. The second part is using
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the estimated parameters to determine activation. In the Rowe model, the data is in

polar coordinates and uses a generalized likelihood ratio test to determine

activation. The likelihood must be maximized under appropriate null and

alternative hypotheses to estimate the parameters in the model. In this process, a

multiple iterations method is used to estimate the parameters. In the Lee model,

the data is in Cartesian coordinates and Hotelling’s T 2-test is used to determine

activation. Lee also used the maximum likelihood estimate under constrained null

and unconstrained alternative hypotheses to obtain those parameters.
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3. RESULTS

From last section, we know that the parameters in the Lee model without

constraints can be estimated by

β̂r = (X ′X)−1X ′yr, β̂i = (X ′X)−1X ′yi

The fitted time series can be obtained by

ŷr = X(X ′X)−1X ′yr, ŷi = X(X ′X)−1X ′yi

In the Rowe model, the same design matrix X can be used for both magnitude and

phase which is useful in comparison to the Lee model which requires the same

design matrix. To estimate the parameters β̂ and γ̂, the multiple iterations method

is used. Then the estimated magnitude and phase at time t are

ρ̂t = x′tβ̂,

θ̂t = x′tγ̂

and the fitted real and imaginary parts of the data is

ŷr = ρ̂t cos θ̂t = x′tβ̂cos(x
′
tγ̂)

ŷi = ρ̂t sin θ̂t = x′tβ̂sin(x′tγ̂)

where x′t is the tth row of design matrix X.

3.1 Validity of Rowe Model and Lee Mode

To examine these two models, I assume that there are three columns in the

design matrix. We can build the design matrix by a constant vector [1 1. . . . . . 1]′ (a

real n×1 vector), a counting number vector [1 2 3 . . . n]′ (a real n×1 vector) and an

on/off(0/1) reference vector. I started with different phase regression coefficient

vectors γ. There are also three components in the γ vector.

All possible γ’s are
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γ =


C

0

0

, γ =


0

0

C

, γ =


C

0

C

, γ =


0

0

0

,

γ =


0

C

0

, γ =


C

C

0

, γ =


0

C

C

, γ =


C

C

C

,

where C represents an arbitrary non-zero positive number and 0 represents zero.

All possible β’s are

β =


C

0

0

, β =


0

0

C

, β =


C

0

C

, β =


0

0

0

,

β =


0

C

0

, β =


C

C

0

, β =


0

C

C

, β =


C

C

C

.

We do not need to examine the two choices

β =


0

0

C

, β =


0

0

0


because the magnitude could be zero in these two cases.

I examined all the possible combinations of β’s and γ’s. The result is that

the Rowe model works as described in all the cases, while Lee model does not work

when

γ =


0

0

C

, γ =


C

0

C

,
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and β =


0

C

0

, β =


C

C

0

, β =


C

0

C

, β =


C

C

C

.

Graphs and differences between the Rowe model, the Lee model and the true values

are shown below. In these examples, we assume they are noiseless. We first generate

a data set from the Rowe model, then we use both the Rowe model and Lee model

to estimate the data set. If the Lee model is correct, it should give us a very close

estimation. I assumed that there are 256 time points and that the size of the design

matrix is 256×3. We build the design matrix by a constant vector [1 1. . . . . . 1]′ (a

real 256×1 vector), a counting number vector [1 2 3 . . . 256]′ (a real 256×1 vector)

and an on/off (0/1) reference vector.

3.1.1 Example 1

When β =


C

C

C

, γ =


C

0

C

, we use β=[5 1 2]′,γ=[5 0 2]′ to generate data

set from the Rowe model, then we use both of the two models to estimate data.

Here are the results.
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Figure 1

The norm of the difference between the fitted value from the two models and the

true value are

lee rowe=1.2261× 103

true lee=1.2261× 103

true rowe=9.7479× 10−3.

In Figure 1a, it shows the real part of the fitted value from the Rowe model and the

Lee model compared with the true value.

In Figure 1b, it shows the imaginary part of the fitted value from the Rowe model

and the Lee model compared with the true value.

In Figure 1c, it shows the magnitude of the fitted value from the Rowe model and

the Lee model compared with the true value.

In Figure 1d, it shows the phase of the fitted value from the Rowe model and the

Lee model compared with the true value.

In Figure 1e, it shows the fitted complexed-valued estimation from the Rowe model
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and the Lee model compared with the true value.

One can see that in all of these five figures, the fitted value from the Rowe

model (the green one) is very close to the true value from the data (the blue one).

They are almost the same. But the Lee model gave us a very bad fitted value (the

red one).

3.1.2 Example 2

When β =


C

C

0

, γ =


C

0

C

, we use β=[2 10 0]′,γ=[1 0 10]′ to generate

data set from the Rowe model, then we use both of the two models to estimate the

data. Here are the results.
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Figure 2

The norm of the difference between the fitted value from the two models and the

true value are

lee rowe=896.0575

true lee=896.0575

true rowe=1.5787× 10−12.

In Figure 2a, it shows the real part of the fitted value from the Rowe model and the

Lee model compared with the true value.

In Figure 2b, it shows the imaginary part of the fitted value from the Rowe model

and the Lee model compared with the true value.

In Figure 2c, it shows the magnitude of the fitted value from the Rowe model and

the Lee model compared with the true value.

In Figure 2d, it shows the phase of the fitted value from the Rowe model and the

Lee model compared with the true value.

In Figure 2e, it shows the fitted complexed-valued estimation from the Rowe model

and the Lee model compared with the true value.

The same as example 1, one can easily see that in all of these five figures, the

fitted value from the Rowe model (the green one) is very close to the true value (the

blue one). But the Lee model gave us a very bad fitted value (the red one). In

addition, the difference between the true value and estimation from Lee model is

very large. But the difference between the true value and estimation from Rowe
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model is very close to 0.

3.1.3 Example 3

To demonstrate the validity of the two models, I will choose one combination

of β and γ from above, then use the Shepp-Logan Phantom and add activation in

certain areas. I will plot the graphs of β̂0, β̂1, β̂2, θ, θ̂, σ
2 and σ̂2 in the Shepp-Logan

phantom. Assume there are 160 time points.

I chose to use β=[2 1 20]′, γ=[1 0 10]′ in the Rowe model to generate the

activation in the specified areas. Then I use the Lee model and the Rowe model to

estimate the parameters used in the models.

Lee model Rowe model
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Figure 3

Figures 3a and 3b show β̂0, β̂1 and β̂2 from the Lee model and the Rowe model.

Figures 3c, 3d, 3e and 3f show the real, imaginary, magnitude and phase of the data

from the Rowe model and the Lee model compared with the true values.

Figures 3g and 3h show the σ̂2 from the Rowe model and the Lee model.

In the graphs of β0, although the areas of activation are both white,

β̂0 = 1160 in the Lee model and β̂0 = 100.2 in the Rowe model. In figure 3g, the σ̂2

in the two white areas is 2.874× 106, while in figure 3h, all the values of σ̂2 are close

to 1. And from the graphs of real, imaginary, magnitude and phase in the activation

area, one can convincingly conclude that the Lee model does not give us a good

estimation.

We can see that the Lee model does not work under these conditions, while

the Rowe model works as described. Because when we build the design matrix in

this way, in fact the Lee model is a linear regression model. A linear regression

model can only give us a “good”estimation when there is a constant slope of the
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upper side and a constant slope of the lower side in the graph. But when we

generate data from the Rowe model using the parameter vectors we choose,

although the graphs of the magnitude and phase have the constant slops of the

upper and lower sides, the graphs of the real and imaginary parts do not satisfy this

condition. Hence, the Lee model does not work.

3.2 Items 2 and 3 Design Matrix

In Lee’s response letter to the editor (2009), he presented an example to

demonstrate that the Rowe model does not work, but his example is very

misleading.

Lee considered an example in which L=2, n=3 and the design matrix has the

first column [1 1 1]′ and the second column [0 0.5 1]′. He assumed the observation

made was yRt=[4 5 6]′ and yIt=[8 7 6]′. This is also a noiseless observation in

Cartesian coordinates. In this case, the Lee model is also a linear regression model.

Lee was using the linear function ŷ = â+ b̂x to estimate the data when he chose

y =


y1

y2

y3

, X =


1 x1

1 x2

1 x3

, β =

 a

b



We know the linear regression model works better when (x1, y1), (x2, y2), (x3, y3)

almost lie in a line. So when we are estimating the real part of the data,

yr =


4

5

6

, X =


1 0

1 0.5

1 1


We can see (4, 0), (5, 0.5), (6, 1) lie in a line. This is the same in the imaginary part,

(8, 0), (7, 0.5), (6, 1) lie in a line too. So in this misleading special example chosen by

Lee, his model works. But when we make a very small change such that the three
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points do not lie perfectly in a line, the Lee model does not work. We assume the

design matrix is the same, the observation was

yRt=[4 5 6]′, yIt=[8 6 7]′

and the estimation is

β̂r = (X ′X)−1X ′yr =[4 2]′

β̂i = (X ′X)−1X ′yi =[7.5 -1]′

ŷr = Xβ̂r =[4 5 6]′

ŷi = Xβ̂i =[7.5 7 6.5]′

We can see that the Lee model does not work because in the imaginary part,

(8, 0), (6, 0.5), (7, 1) do not lie in the same line. Furthermore, when there are two

columns in the design matrix, one is a constant baseline, the other one is on/off

reference vector, the Lee model works well only when the graph of the real and

imaginary data set has a constant zero slope or the slopes of upper and lower sides

are zero. That means the graph of real and imaginary parts consists of horizontal

lines.

3.3 Item 4 Degrees of Freedom of Test Statistic

To find the test statistic of the Lee model when we use a likelihood ratio test,

consider Hd vs. Ha. Under the alternative hypothesis Ha : vTβr 6= 0, vTβi 6= 0, we

have

β̂r = (XTX)−1XTyr

β̂i = (XTX)−1XTyi

σ̂2
Ha = 1

2n
[(yr −Xβ̂r)T (yr −Xβ̂r) + (yi −Xβ̂i)T (yi −Xβ̂i)]

Under the null hypothesis Hd : vTβr = 0, vTβi = 0, we have

β̃r = β̂r − (XTX)−1v[vT (XTX)−1v]−1vT β̂r,

β̃i = β̂i − (XTX)−1v[vT (XTX)−1v]−1vT β̂i,
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σ̃2
Hd

= 1
2n

[(yr −Xβ̃r)T (yr −Xβ̃r) + (yi −Xβ̃i)T (yi −Xβ̃i)]

In the generalized likelihood ratio test, the likelihood ratio statistic is

λ = (
σ̃2
Hd

σ̂2
Ha

)−n

The activation test statistic is

F = λ−
1
n − 1 =

σ̃2
Hd
−σ̂2

Ha

σ̂2
Ha

The numerator of the activation statistic can be written as [(yr −Xβ̃r)T (yr −

Xβ̃r)− (yr −Xβ̂r)T (yr −Xβ̂r)] + [(yi −Xβ̃i)T (yi −Xβ̃i) + (yi −Xβ̂i)T (yi −Xβ̂i)].

As seen in Appendix A, we have

(yr −Xβ̃r)T (yr −Xβ̃r) = (β̃r − β̂r)T (XTX)(β̃r − β̂r) + yTr yr − yTr Xβ̂r

(yr −Xβ̂r)T (yr −Xβ̂r) = yTr yr − β̂Tr XTyr

Assume yr is n× 1, design matrix X is n×m and β̂r is m× 1, then the

dimension of yTr Xβ̂r is 1× 1, hence yTr Xβ̂r is a number and yTr Xβ̂r = β̂Tr X
Tyr.

Now

(yr −Xβ̃r)T (yr −Xβ̃r)− (yr −Xβ̂r)T (yr −Xβ̂r) = (β̃r − β̂r)T (XTX)(β̃r − β̂r)

We can do the same work to the imaginary part. We can get

(yi −Xβ̃i)T (yi −Xβ̃i)− (yi −Xβ̂i)T (yi −Xβ̂i) = (β̃i − β̂i)T (XTX)(β̃i − β̂i)

The activation test statistic becomes

F = [(β̃r−β̂r)T (XTX)(β̃r−β̂r)+(β̃i−β̂i)T (XTX)(β̃i−β̂i)]/σ2

[(yr−Xβ̂r)T (yr−Xβ̂r)+(yi−Xβ̂i)T (yi−Xβ̂i)]/σ2

We assume

X1r = (β̃r − β̂r)T (XTX)(β̃r − β̂r)

X1i = (β̃i − β̂i)T (XTX)(β̃i − β̂i),

X2r = (yr −Xβ̂r)T (yr −Xβ̂r),

X2i = (yi −Xβ̂i)T (yi −Xβ̂i).

First of all, we will derive the distribution of X2r and X2i. One can easily get

X2r = yTr [I −X(XTX)−1XT ]yTr /σ
2 (See Appendix).
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We can show that [I −X(XTX)−1XT ] is symmetric and idempotent. By

Conclusion 2 (See Appendix), X2r/σ
2 follows a χ2 distribution. The degrees of

freedom come from the rank of [I −X(XTX)−1XT ], which in turn is the trace by

Conclusion 1 (See Appendix). That is trace[I −X(XTX)−1XT ] = n− p. So X2r/σ
2

follows a χ2
n−p distribution. We can do the same work to X2i/σ

2 and we can show

that it also follows a χ2
n−p distribution.

Secondly, we will show the derivation of X1r and X1i. Consider when the null

hypothesis is H0 : Cβ = 0 where C is r × p, full rank and r < p. Because matrix C

is of full rank, the row vectors are linearly independent. We can always add more

linearly independent row vectors in C to get a square matrix and the new square

matrix is still full rank. We call the new square matrix Q =

 C

C1

. There are

(p− r) linearly independent row vectors in C1. Q is p× p, non-singular and

invertible.

We have

y = Xβ + ε

y = XQ−1Qβ + ε

y = XQ−1

 C

C1

 β + ε, where Q =

 C

C1



y = Xq

 Cβ

C1β

+ ε , where Xq = XQ−1

y =
(
X(1)
q , X(2)

q

) r1

r2

+ ε,

where Xq =
(
X(1)
q , X(2)

q

)
,

 Cβ

C1β

 =

 r1

r2

 .

y = X(1)
q r1 +X(2)

q r2 + ε.

The null hypothesis H0 : Cβ = 0 is the same as H0 : r1 = 0. Assume
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r1 =



r11

r12
...

r1r


, the null hypothesis becomes H0 : r11 = 0, r12 = 0, · · · , r1r = 0. Hence

X1r/σ
2 follows a χ2 distribution (See Appendix). The degrees of freedom is r which

is equal to the number of rows in C. We can also get X1i/σ
2 ∼ χ2

r.

Third, we will show that X1r and X2r are independent. By Conclusion 4 (See

Appendix), this is the same as showing

σ2AB = 0,

where A = X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 and B = I −X(XTX)−1XT .

As proved in the Appendix,

σ2[X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 ][I −X(XTX)−1XT ] = 0.

So we proved that X1r and X2r are independent. Using the same method, we

can also show that X1i and X2i are independent.

Hence under the null hypothesis H0 : Cβ = 0 where C is r × p, full rank and

r < p,

X1r

σ2 ∼ χ2
r

X1i

σ2 ∼ χ2
r

X2r

σ2 ∼ χ2
n−p

X2i

σ2 ∼ χ2
n−p

X1r

σ2 and X2r

σ2 are independent. X1i

σ2 and X2i

σ2 are independent.

The test statistic is therefore

F =
X1r
σ2

+
X1i
σ2

X2r
σ2

+
X2i
σ2

∼ F2r,2(n−p)

which has an F distribution with 2r numerator and 2(n− p) denominator degrees of

freedom. This is exacely as described by Rowe in his letter where r = 1.
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4. Conclusion

Including both the magnitude and phase activations, these two models do

not discard the biological information that might be in the phase-signal changes.

Hence we can hopefully obtain more reliable results. However, as shown above, we

can conclude that when we build the design matrix by a constant vector [1

1. . . . . . 1]′ (a real n×1 vector), a counting number vector [1 2 3 . . . n]′ (a real n×1

vector) and an on/off (0/1) reference vector, the Lee model can not give us a good

estimation under some conditions, while the Rowe model works all the time. In the

Lee model , Dr. Lee can not conclude that his model using Hotelling’s T 2 test is

equivalent to the model using likelihood ratio test for the reason that the degrees of

freedom of the two statistics are not the same. Different coordinate systems used is

not the reason for poor parameter estimation. The poor estimation comes from the

inaccuracy of the model. Despite these four critical items Dr. Rowe made, the Lee

model is more computationally efficient and also works well when the phase of the

data is a constant. Even though under some conditions as listed above in this

paper, the Lee model works, but since the Rowe model works all the time, one

should use the Rowe model to detect the magnitude and phase activation in fMRI.
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Appendix. Detailed Proof of Degrees of Freedom of Test Statistic

To find the test statistic of Lee model when we use likelihood ratio test,

consider Hd vs. Ha. Under alternative hypothesis Ha : vTβr 6= 0, vTβi 6= 0, we have

LLa=logP (y|Ha) = −n log 2πσ2
Ha−

1
2σ2
Ha

[(yr−Xβr)T (yr−Xβr)+(yi−Xβi)T (yi−Xβi)]

When ∂LLa
∂βr

= 0 and ∂LLa
∂βi

= 0,

β̂r = (XTX)−1XTyr

β̂i = (XTX)−1XTyi.

When ∂LLa
∂σ2
Ha

= 0, we have

σ̂2
Ha = 1

2n
[(yr −Xβ̂r)T (yr −Xβ̂r) + (yi −Xβ̂i)T (yi −Xβ̂i)].

Under null hypothesis Hd : vTβr = 0, vTβi = 0, we have

LLd=logP (y|Hd) =

−n log 2πσ2
Hd
− 1

2σ2
Hd

[(yr −Xβr)T (yr −Xβr) + (yi −Xβi)T (yi −Xβi)].

When ∂LLd
∂βr

= 0 and ∂LLd
∂βi

= 0

β̃r = β̂r − (XTX)−1v[vT (XTX)−1v]−1vT β̂r,

β̃i = β̂i − (XTX)−1v[vT (XTX)−1v]−1vT β̂i.

When ∂LLd
∂σ2
Hd

= 0, we have

σ̃2
Hd

= 1
2n

[(yr −Xβ̃r)T (yr −Xβ̃r) + (yi −Xβ̃i)T (yi −Xβ̃i)].

In the generalized likelihood ratio test, the likelihood ratio is

λ = (
σ̃2
Hd

σ̂2
Ha

)−n.

The test statistic

F = λ−
1
n − 1

=
σ̃2
Hd

σ̂2
Ha

− 1

=
σ̃2
Hd
−σ̂2

Ha

σ̂2
Ha

.
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The numerator can be written as [(yr −Xβ̃r)T (yr −Xβ̃r)− (yr −Xβ̂r)T (yr −

Xβ̂r)] + [(yi −Xβ̃i)T (yi −Xβ̃i) + (yi −Xβ̂i)T (yi −Xβ̂i)].

We have

(yr −Xβ̃r)T (yr −Xβ̃r)

= yTr yr − yTr Xβ̃r − β̃Tr XTyr + β̃Tr X
TXβ̃r

= β̃Tr [(XTX)β̃r −XTyr] + yTr yr − yTr Xβ̃r

= β̃Tr (XTX)[β̃r − (XTX)−1XTyr] + yTr yr − yTr Xβ̃r

= β̃Tr (XTX)[β̃r − β̂r] + yTr yr − yTr Xβ̃r

= (β̃r − β̂r)T (XTX)(β̃r − β̂r) + β̂Tr (XTX)(β̃r − β̂r) + yTr yr − yTr Xβ̃r

= (β̃r− β̂r)T (XTX)(β̃r− β̂r) + yTr X(XTX)−1(XTX)(β̃r− β̂r) + yTr yr− yTr Xβ̃r

= (β̃r − β̂r)T (XTX)(β̃r − β̂r) + yTr X(β̃r − β̂r) + yTr yr − yTr Xβ̃r

= (β̃r − β̂r)T (XTX)(β̃r − β̂r) + yTr Xβ̃r − yTr Xβ̂r + yTr yr − yTr Xβ̃r

= (β̃r − β̂r)T (XTX)(β̃r − β̂r) + yTr yr − yTr Xβ̂r.

We also have

(yr −Xβ̂r)T (yr −Xβ̂r)

= yTr yr − yTr Xβ̂r − β̂Tr XTyr + β̂Tr X
TXβ̂r

= yTr yr − yTr Xβ̂r − β̂Tr XTyr + yTr X(XTX)−1(XTX)(XTX)−1XTyr

= yTr yr − yTr Xβ̂r − β̂Tr XTyr + yTr X(XTX)−1XTyr

= yTr yr − yTr Xβ̂r − β̂Tr XTyr + yTr Xβ̂r

= yTr yr − β̂Tr XTyr.

Assume yr is n× 1, design matrix X is n×m and β̂r is m× 1, then the

dimension of yTr Xβ̂r is 1× 1, hence yTr Xβ̂r is a number and yTr Xβ̂r = β̂Tr X
Tyr.

Now

(yr −Xβ̃r)T (yr −Xβ̃r)− (yr −Xβ̂r)T (yr −Xβ̂r)

= (β̃r − β̂r)T (XTX)(β̃r − β̂r) + yTr yr − yTr Xβ̂r − (yTr yr − β̂Tr XTyr)

= (β̃r − β̂r)T (XTX)(β̃r − β̂r).
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We can do the same work to the imaginary part too. Then we have

(yi−Xβ̃i)T (yi−Xβ̃i)− (yi−Xβ̂i)T (yi−Xβ̂i) = (β̃i− β̂i)T (XTX)(β̃i− β̂i).

The test statistic becomes

F = [(β̃r−β̂r)T (XTX)(β̃r−β̂r)+(β̃i−β̂i)T (XTX)(β̃i−β̂i)]
[(yr−Xβ̂r)T (yr−Xβ̂r)+(yi−Xβ̂i)T (yi−Xβ̂i)]

F = [(β̃r−β̂r)T (XTX)(β̃r−β̂r)+(β̃i−β̂i)T (XTX)(β̃i−β̂i)]/σ2

[(yr−Xβ̂r)T (yr−Xβ̂r)+(yi−Xβ̂i)T (yi−Xβ̂i)]/σ2

We assume

X1r = (β̃r − β̂r)T (XTX)(β̃r − β̂r)

X1i = (β̃i − β̂i)T (XTX)(β̃i − β̂i),

X2r = (yr −Xβ̂r)T (yr −Xβ̂r),

X2i = (yi −Xβ̂i)T (yi −Xβ̂i).

To find the distribution of X1r, X1i, X2r and X2i, we need the following

conclusions.

Conclusion 1: Let A be an idempotent matrix. The rank of A is its trace.

Conclusion 2: Let A be a k × k matrix of constants and y be a k × 1

multivariate normal random vector with mean µ and variance matrix σ2I; thus,

y ∼ N(µ, σ2I). If A is idempotent with rank p, then

y′Ay
σ2 ∼ χ2

p,λ

where λ = µ′Aµ/σ2.

Conclusion 3: Let X be an n× p matrix partitioned such that X = [X1, X2],

note that

X(X ′X)−1X ′X = X

X(X ′X)−1X ′[X1X2] = X

X(X ′X)−1X ′[X1X2] = [X1X2]

Consequently,

X(X ′X)−1X ′X1 = X1 and X(X ′X)−1X ′X2 = X2.
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Similarly,

X ′1X(X ′X)−1X ′ = X ′1 and X ′2X(X ′X)−1X ′ = X ′2.

Conclusion 4: Let A and B be symmetric and idemponent matrices,

y = Xβ + ε, where ε ∼ N(µ, σ2I). Assume U = yTAy, V = yTBy, U and V are

independent if

σ2AB = 0.

A simple proof is given as below.

Proof: Because A and B be symmetric and idemponent,

yTAy = yTATAy = f1(Ay)

yTBy = yTBTBy = f2(By)

yTAy can be seen as a function of Ay and yTBy can be seen as a function of

By.

Hence showing yTAy and yTBy are independent is the same as showing Ay

and By are independent. Under the assumption that V ar(ε) = σ2I, Ay and By are

independent when

cov(Ay,By) = Acov(y, y)BT = Aσ2IBT = σ2AB = 0.

We will derive the distribution of X1r, X1i, X2r and X2i respectively. Firstly,

we will show the derivation of X2r and X2i.

X2r = (yr −Xβ̂r)T (yr −Xβ̂r)/σ2,

= (yr −X(XTX)−1XTyr)
T (yr −X(XTX)−1XTyr)/σ

2

= yTr [I −X(XTX)−1XT ]yTr /σ
2.

We can show that [I −X(XTX)−1XT ] is symmetric idempotent. By

Conclusion 2, X2r/σ
2 follows a χ2 distribution. The degrees of freedom come from

the rank of [I −X(XTX)−1XT ], which in turn is the trace by Conclusion 1.

trace[I −X(XTX)−1XT ]

=trace[I] - trace[X(XTX)−1XT ]
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=trace[I] - trace[XTX(XTX)−1]

=trace[I] - trace[Ip]

=n− p.

So X2r/σ
2 follows a χ2

n−p distribution. We can do the same work to X2i/σ
2

and we can show it also follows a χ2
n−p distribution.

Secondly, we will show the derivation of X1r and X1i.

The design matrix is X =



1 x11 x12 ... x1k

1 x21 x22 ... x2k
...

...
...

...
...

1 xn1 xn2 ... xnk


=



x(1)

x(2)
...

x(n)


.

Here x(t) represents the tth row in the design matrix and

x(t) = (1, x(t)1, x(t)2, · · · , x(t)k). yt = 1 · β0 + x(t)1 · β1 + x(t)2 · β2 + · · ·+ x(t)k · βk + εt.

If the null hypothesis is H0 : β1 = 0, β2 = 0, · · · , βm = 0, under the null

hypothesis, we can change the order of columns and write the design matrix as

X =



x11 x12 ... x1m 1 x1,m+1 x1,m+2 ... x1k

x21 x22 ... x2m 1 x2,m+1 x2,m+2 ... x2k
...

...
...

...
...

...
...

...
...

xn1 xn2 ... xnm 1 xn,m+1 xn,m+2 ... xnk


= [X1, X2]

where X1 =



x11 x12 ... x1m

x21 x22 ... x2m
...

...
...

...

xn1 xn2 ... xnm


, X2 =



1 x1,m+1 x1,m+2 ... x1k

1 x2,m+1 x2,m+2 ... x2k
...

...
...

...
...

1 xn,m+1 xn,m+2 ... xnk


.

Note ŷt = 1 · β̂0 +x(t)1 · 0 +x(t)2 · 0 + · · ·+x(t)m · 0 +x(t)m+1 · β̂m+1 + · · ·+x(t)k · β̂k + εt.

We can write the design matrix under the null hypothesis as
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X2 =



1 x1,m+1 x1,m+2 ... x1k

1 x2,m+1 x2,m+2 ... x2k
...

...
...

...
...

1 xn,m+1 xn,m+2 ... xnk


.

Note β̃r = (XT
2 X2)

−1XT
2 yr.

X1r = (β̃r − β̂r)T (XTX)(β̃r − β̂r)

= (yr −Xβ̃)T (yr −Xβ̃)− (yr −Xβ̂)T (yr −Xβ̂)

= yTr [I −X2(X
T
2 X2)

−1XT
2 ]yr − yTr [I −X(XTX)−1XT ]yr

= yTr [X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 ]yr.

By Conclusion 2, X1r/σ
2 follows a χ2 distribution. The degrees of freedom

come from the rank of [X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 ], which in turn is the

trace by Conclusion 1.

trace[X(XTX)−1XT ] - trace[X2(X
T
2 X2)

−1XT
2 ]

=trace[XTX(XTX)−1] - trace[XT
2 X2(X

T
2 X2)

−1]

=trace[Ip] - trace[Ip−m]

=m.

So the degrees of freedom is m.

Now consider when the null hypothesis is H0 : Cβ = 0 where C is r × p, full

rank and r < p.

In matrix C, because it is full rank, the row vectors are linearly independent.

We can always add more linearly independent row vectors in C to get a square

matrix and the new square matrix is still full rank.

We call the new square matrix Q =

 C

C1

. There are p− r linearly

independent row vectors in C1. Q is p× p, non-singular and invertible.

We have
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y = Xβ + ε

y = XQ−1Qβ + ε

y = XQ−1

 C

C1

 β + ε, where Q =

 C

C1



y = Xq

 Cβ

C1β

+ ε , where Xq = XQ−1

y =
(
X(1)
q , X(2)

q

) r1

r2

+ ε,

where Xq =
(
X(1)
q , X(2)

q

)
,

 Cβ

C1β

 =

 r1

r2

 .

y = X(1)
q r1 +X(2)

q r2 + ε.

The null hypothesis H0 : Cβ = 0 is the same as H0 : r1 = 0. Assume

r1 =



r11

r12
...

r1r


, the null hypothesis becomes H0 : r11 = 0, r12 = 0, · · · , r1r = 0. This is

the same situation as we showed above. Hence X1r/σ
2 follows a χ2 distribution.

The degrees of freedom is r which is equal to the number of rows in C. We can also

get X1i/σ
2 ∼ χ2

r.

Thirdly, we have shown that both X1r/σ
2 and X2r/σ

2 follow χ2 distribution.

Now we will show that X1r and X2r are independent.

X1r = (β̃r − β̂r)T (XTX)(β̃r − β̂r) = yTr [X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 ]yr

X2r = (yr −Xβ̂r)T (yr −Xβ̂r) = yTr [I −X(XTX)−1XT ]yTr .

By conclusion 4, this is the same as showing

σ2AB = 0,

where A = X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 and B = I −X(XTX)−1XT .
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Note that

σ2[X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 ][I −X(XTX)−1XT ]

=σ2[X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 −X(XTX)−1XTX(XTX)−1XT+

X2(X
T
2 X2)

−1XT
2 X(XTX)−1XT ]

= σ2[X(XTX)−1XT −X2(X
T
2 X2)

−1XT
2 −X(XTX)−1XT +X2(X

T
2 X2)

−1XT
2 ]

= 0.

So we proved that X1r and X2r are independent. Using the same method, we

can also show that X1i and X2i are independent.

Hence we have proved that under the null hypothesis H0 : Cβ = 0 where C is

r × p, full rank and r < p,

X1r

σ2 ∼ χ2
r

X1i

σ2 ∼ χ2
r

X2r

σ2 ∼ χ2
n−p

X2i

σ2 ∼ χ2
n−p

X1r

σ2 and X2r

σ2 are independent. X1i

σ2 and X2i

σ2 are independent.

The test statistics

F =
X1r
σ2

+
X1i
σ2

X2r
σ2

+
X2i
σ2

∼ F2r,2(n−p).
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