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Quantifying the Statistical Impact of GRAPPA in
fcMRI Data With a Real-Valued Isomorphism

Iain P. Bruce and Daniel B. Rowe*

Abstract—The interpolation of missing spatial frequencies
through the generalized auto-calibrating partially parallel acqui-
sitions (GRAPPA) parallel magnetic resonance imaging (MRI)
model implies a correlation is induced between the acquired and
reconstructed frequency measurements. As the parallel image
reconstruction algorithms in many medical MRI scanners are
based on the GRAPPA model, this study aims to quantify the
statistical implications that the GRAPPA model has in functional
connectivity studies. The linear mathematical framework derived
in the work of Rowe et al., 2007, is adapted to represent the com-
plex-valued GRAPPA image reconstruction operation in terms of
a real-valued isomorphism, and a statistical analysis is performed
on the effects that the GRAPPA operation has on reconstructed
voxel means and correlations. The interpolation of missing spatial
frequencies with the GRAPPA model is shown to result in an
artificial correlation induced between voxels in the reconstructed
images, and these artificial correlations are shown to reside in
the low temporal frequency spectrum commonly associated with
functional connectivity. Through a real-valued isomorphism, such
as the one outlined in this manuscript, the exact artificial corre-
lations induced by the GRAPPA model are not simply estimated,
as they would be with simulations, but are precisely quantified. If
these correlations are unaccounted for, they can incur an increase
in false positives in functional connectivity studies.

Index Terms—Connectivity analysis, functional magnetic reso-
nance imaging (fMRI), image reconstruction, magnetic resonance
imaging (MRI), parallel imaging, quantification and estimation.

I. INTRODUCTION

A MAGNETIC resonance imaging (MRI) scanners in-
ability to instantly acquire the spatial frequency spectrum

of an object being scanned imposes constraints on the spatial
and temporal resolution of images acquired in echo planar
imaging schemes, such as those used in functional connectivity
MRI (fcMRI). Since postulated in [1], parallel MRI (pMRI)
has become one of the most prevalent areas of studies that aim
to improve the spatial and/or temporal resolution of fcMRI im-
ages. The basis of pMRI is such that the complex-valued spatial
frequency spectrum ( -space) can be acquired from an array
of receiver coils concurrently, and then combined into a single
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image using pMRI techniques such as SENSitivity Encoding
(SENSE) [2] and generalized auto-calibrating partially parallel
acquisitions (GRAPPA) [3]. Taking advantage of the overlap
of spatial information from each receiver coil, -space can be
sub-sampled by a factor of by acquiring only every line
of spatial frequencies in the phase encoding (PE) direction,
resulting in reduced field-of-view (FOV) aliased images in the
image domain.
Recently, Bruce et al. [4]–[7] demonstrated that the “un-

folding” of aliased coil images into a single full FOV combined
image with the SENSE model induces a previously unquan-
tified artificial correlation between unaliased voxels. As the
GRAPPA model interpolates missing -space values from
acquired measurements both within a coil and between coils,
the operation by definition induces a local correlation between
the interpolated and acquired spatial frequencies. Based on
the properties of the inverse Fourier transform (IFT) used to
convert coil spatial frequencies into coil images, any operation
that induces a local correlation between individual frequencies
in -space implies a global correlation between voxels in the
image domain. This induced correlation must therefore be
explored and precisely quantified.
When a real-valued object is placed in an MRI scanner, mag-

netic field ( -field) gradients Fourier encode -space to ac-
quire complex-valued frequency measurements with both real
and imaginary components. If a further phase distortion is in-
voked by factors such as -field inhomogeneities (that can arise
from respiration, improper field shimming, etc.), transverse re-
laxation, and chemical shifts [8]–[11], the conjugate Hermitian
symmetry of -space is broken, which results in IFT recon-
structed voxel values being complex-valued as well. In recent
studies [12]–[16], it has been shown that models that employ
both a magnitude and phase time series have a greater statis-
tical power in detecting functional activations in the brain than
traditional magnitude-only models. Furthermore, if spatial pro-
cessing and image reconstruction operations are applied to com-
plex-valued data, an artificial correlation is induced between
the real reconstructed voxel values, between the imaginary re-
constructed voxel values, and between the real and imaginary
(real/imaginary) reconstructed voxel values [4]–[7], [17], [18].
The real, imaginary and real/imaginary correlations cannot be
precisely distinguished when the operations are represented in a
complex-valued form and performed on a voxel-by-voxel basis.
This provides the motivation for using a real-valued isomor-
phism, in which the complex-valued operation is performed on
all voxels at once using mathematically equivalent real-valued
matrix operators, allowing for all correlations induced by that
process to be quantified.
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In this manuscript, we further develop the linear AMMUST
(A Mathematical Model for Understanding the STatistical)
framework [14], [15], to perform a mathematically equivalent
application of the conventional complex-valued GRAPPA
image reconstruction to all sub-sampled spatial frequencies
from an array of receiver coils at once using a real-valued linear
isomorphism. To create such an isomorphism, the individual
operations involved in carrying out the GRAPPA reconstruc-
tion process are presented in terms of real-valued matrices that
permute and interpolate the real and imaginary missing lines
of -space. An isomorphism of this kind provides a means of
deducing the correlations artificially induced by the GRAPPA
model both precisely and directly, without the need for time
consuming approximations through Monte Carlo simulations
[20], [21]. While the GRAPPA operation has been previously
represented in terms of a complex-valued matrix operator [22],
[23], the correlations induced between the real, imaginary and
real/imaginary reconstructed voxels cannot be determined from
that formulization. The correlations induced by the GRAPPA
operators are theoretically illustrated and simulated on phantom
data as well as on experimental human subject fcMRI data. It is
shown in both theoretical and experimental illustrations that the
correlations induced by the GRAPPA operation are still present
after band-pass filtering voxel time series to the
frequency band commonly observed in fcMRI studies [24].
This suggests that the induced correlations can have null
hypothesis fcMRI implications, where a zero correlation is
assumed between voxels.

II. THEORY

A. The GRAPPA Model

As illustrated in Fig. 1, the GRAPPA reconstruction gener-
ates a full FOV uncombined spatial frequency array for each
receiver coil. When sub-sampling occurs in the PE direction, an
interpolation kernel is used to fit the acquired data from
columns and rows in all receiver coils, , where the
acquired rows are spaced apart, to the addi-
tionally acquired calibration signal measurements, , in a
single coil, . A set of kernel weights, , can be estimated and
used to generate the missing spatial frequencies for each coil

by solving

(1)

In (1), denotes the -space row number, denotes the
frequency offset from the acquired frequency in the direc-
tion at position , the number of rows above and
below sum to a total of rows, and the number
of columns to the left and right of sum to a total
of columns in the interpolation kernel. While more recent
adaptations of the GRAPPA model employ a 2-D interpolation
kernel [25]–[28], (1) simplifies to the original 1-D interpolation
derived in [3] when is set to zero. Repeating this process for
all coils results in a complete array of spatial frequencies for

Fig. 1. The (a) rows and columns in coils, (b) used in the
GRAPPA model in (2), vectorized to form in (4).

each coil, which if combined in either the image or frequency
domains produces a full FOV reconstructed image after an IFT.

B. GRAPPA Interpolation Weights

Interpolation weights are derived from training data with a
sufficient SNR through either additionally acquired auto-cali-
bration signal (ACS) lines in the center of -space, or through
full FOV pre-calibration scans [29]. Although ACS lines can be
used for both estimating weights and incorporated into the final
reconstructed image, this approach results in data with varying
effective inner-echo spacing if acquired using an EPI pulse se-
quence. As such, a uniform sub-sampling scheme is used in this
study, with interpolation weights in (1) estimated from full FOV
calibration scans.
The weights used in the GRAPPA interpolation are consid-

ered shift invariant [3], [30], and the contribution from each ac-
quired measurement is relative to its distance from the block of

missing measurements to be interpolated. Illustrated in
Fig. 1, for an application of (1) to an array of coils using
a kernel of size rows by columns, sub-sampled with
an acceleration factor of , (1) can be applied for all coils
at once using a matrix representation by

(2)

In (2), is a 1 column vector with sub-vec-
tors of the complex-valued calibration spatial frequency
values from each coil. In this manuscript, a column-wise appli-
cation of (1) is employed. As shown in Fig. 1(b), the vector
in (2) is constructed by first stacking the complex-valued

acquired spatial frequencies from the coils into vectors.
Moving through the kernel from top to bottom and left to right,
the vectors of length in each column are stacked into

vectors, which are in turn stacked into a single vector of
length 1. Using a least squares estimation, one
can solve for the matrix of com-
plex-valued weights in (2) by

(3)

To account for noise in the acquired data, one shifts through
the calibration data using the technique outlined in [31],
and stacks the vectors and in (2), from at least

fits, into the columns of matrices
and ,
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Fig. 2. (a) The vectorization of coils into a single vector, , (b) per-
muted via complex permutation, , and (c) permuted by for application
of the real-valued GRAPPA operator.

respectively. This allows for the interpolation weights to be
determined by

(4)

C. Linear Framework

The GRAPPA interpolation in (1) effectively performs a
sensitivity encoding [2] in -space through a convolution
between sub-sampled spatial frequency measurements and
the Fourier transform (FT) of the -field sensitivities of each
receiver coil. By definition, an interpolation induces a local
correlation between neighboring spatial frequencies, and this
correlation becomes global between voxels after an IFT. Fur-
thermore, as the convolution kernel is derived from the FT
of coil sensitivities, this correlation is directly related to the
spatial localization used for unaliasing voxels, and is therefore
expected to be greatest between previously aliased voxels. To
observe this correlation, a mathematically equivalent repre-
sentation of the GRAPPA model is presented to interpolate all
missing complex-valued spatial frequencies in all coils at once
using real-valued matrix operators.
The weights in (4) are described for an interpolation with

data ordered by column, and thus the sub-sampled acquired data
needs to be appropriately formatted. For a array
of complex-valued sub-sampled spatial frequencies in multiple
receiver coils, illustrated in Fig. 2(a) for a “toy” example with

, a real-valued vector, , is generated by stacking
the rows of the real and imaginary measurements of each coil
into separate vectors, stacking the vector of real values on top
of the corresponding vector of imaginary values for each coil,
and finally concatenating the resulting vectors into a single

1 vector. A complex permutation, , is then
applied to reorder to having all real spatial frequencies from
all coils stacked upon all imaginary spatial frequencies from
all coils, as illustrated in Fig. 2(b). The vector of sub-sam-
pled spatial frequencies in Fig. 2(b) is permuted again such that
the resulting vector

(5)

Fig. 3. Complex-valued GRAPPAmatrix operators for interpolation kernels of
size (a) 2 1 (green) and 2 3 (green and blue), (b) 4 1 (green) and 4 5
(green and blue). GRAPPA model is performed on a 6 12 FOV, sub-sampled
by with .

has spatial frequencies ordered first by column, then by row, and
finally by coil, as illustrated in Fig. 2(c).
In Fig. 3, the “toy” example from Fig. 2 is expanded to having

columns, rows, sub-sampled by in
coils. For each block of missing spatial

frequencies, the complex-valued weights in (4) are positioned
such that the appropriate columns of acquired measurements are
employed in the interpolation. For a complex-valued matrix im-
plementation of GRAPPA, the layout for the ker-
nels of size 2 3 and 4 5 are presented in Fig. 3(a) and (b),
respectively. The weights for each interpolation are segmented
to incorporate the appropriate rows in the appropriate columns
for the respective kernel size. In both Fig. 3(a) and (b), the green
portion of the weights represents 1-D kernels of size 2 1 and
4 1, respectively, while the combination of green and blue
comprise the complete 2-D kernels. In each block of weights,
the vertical red line in the green portion denotes the center of
the kernel. While one could utilize a variety of techniques to
refill the measurements near the edge of -space (zero-filling,
symmetry, wraparound, etc.), partial kernels were used in this
study for simplicity, with weights, specific for each edge condi-
tion assuming no wraparound, estimated using (4). To maintain
all acquired lines in the refilled array, real-valued iden-
tity matrices are placed between the blocks of weights. For the
complex-valued GRAPPA matrix operator, ,
in Fig. 3 to be applied to the permuted vector in (5), a
real-valued representation is derived by

(6)

where and are the real and imaginary parts of .
After applying the GRAPPA operator, in (6), to the per-

muted vector in (5), the refilled vector of spatial frequencies is
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re-permuted using the reverse of the operations in and
with permutations and , respectively, which are of a
larger dimension. This results in a 1 vector with full
FOV spatial frequencies, , with vectors of the real values for
each coil, vectorized by row, stacked upon the imaginary values
for the corresponding coil

in an order similar to that of vector in Fig. 2(a). To reconstruct
a vector of spatial frequencies into voxel values, the real-valued
matrix representation of the complex-valued IFT, , was de-
rived by Rowe et al. [19]. At this stage, one can either recon-
struct each coil image, using a Kronecker product, ,
and apply a combination matrix, , to perform the combination
in the image domain

(7)

or, to reduce the demand on computational resources, combine
the coil frequencies in -space and inverse Fourier reconstruct
to get a single combined image

(8)

While not in the scope of this study, the operator in (7) and
(8) can be adjusted to account for intra-acquisition decay
and -field inhomogeneities acquired in the -space signal [8],
[18] if or maps can be obtained. As the traditional mag-
nitude reconstruction is not linear in nature, it is not used in
this manuscript. In most studies, a magnitude reconstruction is
used and the phase is discarded [3], however it has been shown
in [14], [32]–[34] that there is important biological informa-
tion that can be obtained from the phase. The combination ma-
trix in this manuscript, , therefore performs a complex linear
combination, generating a 1 vector of the reconstructed
image containing subvectors for the real and imaginary parts as
in (7), or of the combined spatial frequencies in (8). While a root
sum of squares combination might be more commonly used, the
process was not adopted in this study, as it is not linear.

D. GRAPPA Operator-Induced Correlations

The complete set of matrix operators used in the GRAPPA
image reconstruction isomorphism is

(9)

If the vector of observed -space measurements has a mean, ,
and a covariance, , which can include phase distortions such
as -field inhomogeneities, transverse relaxation, and chemical
shifts, then the reconstructed image vector, , will have a mean
of , and a covariance of

, or

(10)
Since all of the permutations in (9) simply rearrange the data

that they pre-multiply, they are orthonormal and do not induce
any covariance, but rather rearrange any preexisting covariance

in . The GRAPPA operator, , from (6) is not orthogonal, pro-
ducing an identity matrix scaled by a constant,
and therefore induces a nonidentity covariance. Although the
permutations, and , and the IFT operator, , are or-
thogonal, since the GRAPPA operator that they pre-multiply is
not orthogonal, the resulting covariance in (10) will not be iden-
tity, even if the covariance of the original data, , was assumed
to be identity.
The correlation induced between voxels by the GRAPPA

image reconstruction operators is found by

(11)

where is a diagonal matrix of the
variances drawn from the diagonal of the covariance matrix

. The correlation induced solely by the GRAPPA
image reconstruction process is deduced by assuming an iden-
tity covariance structure in the data, , reducing (11) to

(12)

The real-valued isomorphism correlation matrices produced
by (11) and (12) can be partitioned into quadrants
as

where quadrant denotes the correlation between the real
voxel values, quadrant denotes the correlation between the
imaginary voxel values, and quadrant denotes the correla-
tion between the real and imaginary voxel values. The correla-
tion between a voxel and all other voxels in the reconstructed
image can be generated by partitioning the th row of each quad-
rant in into vectors of 1 , stacking these row
vectors into a matrix, and transposing.

III. METHODS

A. Theoretical Illustration

To theoretically illustrate the correlations induced by the
GRAPPA model, both full FOV and sub-sampled time series
of 490 images were generated for each of coils using
the MR signal equation

For the proton spin density, , a 96 96 Shepp–Logan phantom
was used with a simulated of 49 ms for white matter, 42 ms
for grey matter, 2200 ms for CSF, and set to ms in space.
The -fields, , for each coil were estimated from experimen-
tally acquired human subject data by fitting a third order poly-
nomial to the estimated coil sensitivities from the experimental
human data. Independent and identically distributed (IID) mean
0 and variance of 1 Gaussian noise was added to both compo-
nents each of 490 images in a time series for each coil. The
quality of GRAPPA reconstructed images is known to depend
on both the kernel size and choice of [35], [36]. Weights were
therefore estimated from full FOV data to form in (6) and
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(9) for kernels of size 4 1, 2 3, and 4 5 with and
, to explore the effects that each parameter has on theo-

retical GRAPPA induced correlations.
For a Monte Carlo (MC) simulation of the GRAPPA induced

correlations, an additional accelerated data set was generated
with the MR signal equation. Rather than sub-sampling retro-
spectively, sub-sampling was simulated in the anterior–poste-
rior PE direction by shifting through -space in increments of

, with an acceleration factor of , as commonly used
in fcMRI. Using the full FOV data for calibration, the acceler-
ated data set was reconstructed using the GRAPPA model with
a 4 5 interpolation kernel. After inverse Fourier reconstruc-
tion, the full FOV calibration data set was averaged over coils
into a single time series to provide a baseline for comparison
with the GRAPPA reconstructed time series. An average was
used in place of a root sum of squares combination to match
the framework in (7) and (8) as the process is linear. In fcMRI
studies, voxel time series are band-pass filtered to observe fre-
quencies below 0.08 Hz in an effort to eliminate BOLD signal
changes correlated with physiological effects such as respira-
tion [37], and observe fluctuations in the BOLD signal in the
nontask condition that demonstrate patterns of coherence with
specific networks in the brain [38]. To observe the degree to
which the GRAPPA induced correlations affect fcMRI statistics,
voxel time series were convolved with a temporal Hamming
band-pass filter [39] with cutoff frequencies set to 0.009 and
0.08 Hz [24], after which both the full FOV and GRAPPA re-
constructed time series were spatially filtered using a Gaussian
smoothing kernel with a full-width at half-maximum of two
voxels.

B. Experimental Illustration

To observe the degree to which the statistical implications of
the GRAPPA model manifest in experimental data, two nontask
human subject fcMRI data sets were acquired from an array of
eight receiver coils in a 3.0T General Electric Signa LX mag-
netic resonance imager. The first data set was composed of nine
2.5-mm-thick axial slices that are 96 96 in dimension for a 24
cm FOV, with the PE direction oriented as anterior to posterior
(bottom-top in images), while the second data set was acquired
under the same conditions with the PE dimension sub-sampled
by . Acquired for a series of 510 TRs, both acquired data
sets had a repetition time (TR) of 1 s, an echo time of 45.4 ms, an
effective echo spacing of 816 , a flip angle of 45 , and an ac-
quisition bandwidth of 125 kHz. The first 20 TRswere discarded
to account for effects and varying echo times, resulting in
490 TRs acquired under the same conditions. Data was acquired
with an echo planar imaging (EPI) pulse sequence and recon-
structed using locally developed software. The center row of
-space for each receiver coil was acquired with three navigator
echoes in order to estimate the error in the center frequency and
group delay offsets between the odd and even -space lines [40].

C. Analysis

To observe the effects of the GRAPPA reconstruction process
on the correlation structure of each data set, both theoretical
and MC simulated correlations are presented between the real

parts, between the imaginary parts, and between the real and
imaginary (real/imaginary) parts of the reconstructed voxel
values. Additionally, correlations for magnitude-squared data
are presented in lieu of the correlations for magnitude only
data, because the correlation structure of magnitude-squared
data is asymptotically equivalent and visually similar to the
correlations of magnitude data, yet magnitude-squared correla-
tions are linear in nature when magnitude correlations are not
[18], [41]. The null hypothesis in an fcMRI study assumes that
no correlation exists between voxels, and thus any voxels that
exhibit a statistically significant correlation in reconstructed
data are deemed functionally connected. As the theoretical data
was generated with no inherent correlation structure between
voxels, seed voxels in both the theoretical and MC simulations
were selected in regions of the phantom that were aliased
prior to GRAPPA reconstruction. In the experimental data, the
seed voxel was selected in a region of the brain that was both
aliased prior to a GRAPPA reconstruction of sub-sampled data,
and exhibited no correlation in full FOV data with a voxel
in the location that would have been previously aliased had
sub-sampling been performed.
Correlations in each illustration are presented about the seed

voxel in three different ways. First, theoretical correlations in-
duced solely by theGRAPPA reconstruction operators are found
by assuming an identity covariance structure, , as in (12).
Second, simulated correlations are estimated directly from the
reconstructed MC simulation in the theoretical illustration, and
from the reconstructed experimental time series for the human
subject. Third, the correlation coefficient about the seed voxel in
each time series is presented after the reconstructed voxel time
series are Hamming band-pass filtered to 0.009 and 0.08 Hz.
Spatial filtering has become a common practice in many

fMRI and fcMRI studies [42]–[44], and the effects of spatial
filtering have recently been shown to exaggerate the correla-
tions induced by image reconstruction processes [4]–[7], [18].
As such, all images in the reconstructed time series have been
spatially filtered by a Gaussian smoothing kernel operator, ,
which when added to the GRAPPA reconstruction operators in
(9)

results in spatially filtered images with a covariance of

IV. RESULTS

A. Theoretical Results

Presented in Fig. 4 are theoretical real, imaginary, real/imag-
inary and magnitude-squared correlations induced by the
GRAPPA model about the seed voxel of interest (VOI) in
the center of the pink circle for kernels of size 4 1, 2 3,
and 4 5 with in Fig. 4(a)–(c), and with
in Fig. 4(d)–(f). Using a Shepp–Logan phantom for an un-
derlay, the observed structures in Fig. 4 were accentuated by
removing correlations outside of these areas, with a threshold
close to zero, , applied to the remaining correlations.
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Fig. 4. Presented about a seed voxel in pink circle are theoretical correlations
induced by GRAPPA reconstruction for an acceleration of with kernels
of size (a) 4 1, (b) 2 3, and (c) 4 5, and for an acceleration of with
kernels of size (d) 4 1, (e) 2 3, and (f) 4 5. Correlations are threshold to

.

Due to spatial localization that results from using truncated
convolution kernels, derived from the FT of the coil sensi-
tivities, the strongest correlations in the real, imaginary and
magnitude-squared images in Fig. 4 are between the VOI and
previously aliased VOIs (aVOIs) in the center of the green
circles. The induced correlations between each VOI and aVOI,
stated adjacent to the respective voxel, appear to be (on average)
inversely related to the size of the interpolation kernel. This
is likely the result of a decreased relative weighting of each
frequency measurement used in the interpolation. Similarly,
the GRAPPA induced correlations are distributed among the

aVOIs, and thus the strength of correlations induced
with are lower than those with . The vertical band
of correlation in the column with the VOI and aVOI, as seen
in all images of Fig. 4, results from interpolations in the PE
direction, while the horizontal bands of correlation in the rows
of the VOI and aVOIs, as seen in the images of Fig. 4 with 2-D
kernels, results from interpolations in the frequency encoding
direction. After an IFT, these bands exhibit an approximately
sinc correlation with amplitudes and periods relative to the size
of the rectangular kernels. The negative sign of the magni-
tude-squared correlation induced between the VOI and aVOI
in Fig. 4 results from a combination of the magnitude-squared

Fig. 5. Presented about a seed voxel in pink circle for a theoretical
Shepp–Logan phantom are: theoretical correlations induced by (a) spatial
filtering, , and (b) GRAPPA reconstruction with spatial filtering; simulated
MC correlations for time series reconstructed with (c) (full FOV) with
spatial filtering, and with (d) (GRAPPA reconstructed) with spatial
filtering; simulated fcMRI time series Hamming band-pass filtered between
0.009 and 0.08 Hz for (e) (full FOV) with spatial filtering, and with
(f) (GRAPPA reconstructed) with spatial filtering. Correlations in
(a)–(b) threshold to and correlations in (c)–(f) threshold to 0.35.

expected values and the covariance between the two voxels.
The sign of the correlation between previously aliased voxels
can therefore change from one voxel to the next, as will be
seen in the experimental illustration, where this correlation is
positive.
Presented in Fig. 5(a) and (b) are the theoretical induced cor-

relations from only the spatial filtering operator, , and spa-
tial filtering after a 4 5 GRAPPA image reconstruction with

. The correlations that exceed a threshold of , se-
lected to be close to zero, are presented in Fig. 5(a) and (b),
using full FOV and GRAPPA mean magnitude reconstructed
images for underlays. As expected in Fig. 5(a), the process of
smoothing induces a correlation between a voxel and its neigh-
bors. Since Fig. 5(a) involves no pMRI reconstruction, ,
there is no theoretical operator induced correlation between the
VOI in the pink circle and where an aVOI would be located in
the green circle. By contrast in Fig. 5(b), the theoretical cor-
relation induced by GRAPPA with a 4 5 kernel in Fig. 4(c)
is accentuated with the addition of spatial filtering, as both the
high correlations between the VOI and aVOI and the low bands
of correlation are spread out and amplified.
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In Fig. 5(c) and (d) are the correlations that exceed a liberal
threshold of ( ) [43], estimated directly from
the full FOV and GRAPPA reconstructed MC simulated time
series respectively. As both time series were generated with IID
standard Gaussian noise, the correlations resulting from spatial
filtering in the full FOV time series would only be expected to
exist between the VOI and its immediate neighbors, shown in
Fig. 5(c). However, in accordance with the theoretical corre-
lations induced by GRAPPA in Fig. 4 and Fig. 5(b), there are
notable positive real and imaginary correlations between the
VOI and aVOI, as well a negative magnitude-squared correla-
tion in Fig. 5(d). The negative sign of the theoretical magni-
tude-squared induced correlation in Fig. 5 again results from a
combination of the magnitude-squared expected values and the
covariance of the two voxels, and is relative to the magnitude
signal strength of the aliased voxels.
TheMC simulated fcMRI correlations that exceed a threshold

of in the full FOV reconstructed data after Hamming
band-pass filtering between 0.009 and 0.08 Hz are presented
in Fig. 5(e). There is again no apparent structure between
the VOI and any other voxel, but the imaginary correlations
scattered throughout the image appear more significant after
Hamming band-pass filtering in Fig. 5(e) by contrast to those
in Fig. 5(c). However, the MC simulated correlation structure
noted in the GRAPPA reconstructed time series in Fig. 5(d)
is still apparent in Fig. 5(f) after being temporally filtered.
As the data possessed no such correlation structure when it
was generated, these correlations indicate that the GRAPPA
reconstruction process induces correlations that reside in the
frequency spectrum commonly associated with functional con-
nectivity, and could thus have null hypothesis implications in a
connectivity study marked by an increase in the false positive
rate if no correlation is assumed between voxels.

B. Experimental Results

The averaged time series of a 2 2 seed region for the human
subject was selected in the left posterior region of an axial slice
of the brain such that the aVOI in a GRAPPA reconstructed
image falls within the brain, and there is no correlation in full
FOV data between the 2 2 seed region and where an aVOI
would be located in full FOV data had sub-sampling been per-
formed. The magnitude-squared operator induced correlations
are presented for the full FOV and GRAPPA reconstructed data
sets in Fig. 6(a) and (b), respectively. As with the theoretical
operator induced correlations in Fig. 5(a) and (b), the operator
induced correlations that exceed a threshold of for the
human subject only exhibit a local correlation between the VOI
and its neighbors when spatial filtering is applied in the case of
the full FOV data, and the GRAPPA induced correlations ex-
hibit bands in the rows and columns of the VOI and the aVOI,
with higher correlations in the neighborhood of the VOI and
aVOI. The magnitude-squared experimental time series corre-
lations that exceed a threshold of show that there is no
correlation between the VOI and the aVOI in the full FOV re-
constructed data in Fig. 6(c), by contrast to the GRAPPA recon-
structed data in Fig. 6(d) where there is a distinct 2 2 cluster
of voxels in the aVOI correlated with the VOI.

Fig. 6. Presented about a seed voxel in pink circle for a human subject are: mag-
nitude-squared correlations induced by (a) spatial filtering, , and (b) GRAPPA
reconstruction with spatial filtering; experimentally estimated correlations for
time series reconstructed with (c) (full FOV) with spatial filtering, and
with (d) (GRAPPA reconstructed) with spatial filtering; experimen-
tally estimated fcMRI time series Hamming band-pass filtered between 0.009
and 0.08 Hz for (e) (full FOV) with spatial filtering, and with (f)
(GRAPPA reconstructed) with spatial filtering. Correlations in (a)–(b) threshold
to and correlations in (c)–(f) threshold to 0.35.

After Hamming band-pass filtering the reconstructed time se-
ries to observe the fcMRI correlation coefficients in the human
subject data, there is still no correlation between the VOI and
aVOI in the case of the full FOV reconstructed data in Fig. 6(e),
while there is again a distinct 2 2 cluster of voxels in the aVOI
that are correlated with the VOI in Fig. 6(f) for the GRAPPA re-
constructed data. The correlations between the VOI and aVOI
in Fig. 6(f) are of note as they are not present in the full FOV
data and they are still present after the Hamming band-pass
filtering. This is consistent with the theoretical illustration in
Fig. 5, and illustrates that the GRAPPA model induces corre-
lations that are both statistically significant and reside in the
frequency spectrum commonly associated with functional con-
nectivity. A study that uses GRAPPA reconstructed fcMRI data
could thus result in a false positive, assuming voxels to be cor-
related when they are not.

V. DISCUSSION

The work in this manuscript extends upon the AMMUST
framework in [14] to reconstruct sub-sampled data from an
array of receiver coils using a real-valued isomorphic represen-
tation of the conventional complex-valued GRAPPA model.
By representing the GRAPPA model in this mathematically
equivalent way, it has been shown that the local correlation
induced between neighboring spatial frequencies through the
GRAPPA interpolation translates to a global correlation be-
tween multiple voxels in the full FOV reconstructed image.
This correlation is most notable between voxels that were
previously aliased because the GRAPPA interpolation effec-
tively conducts a sensitivity encoding in -space, with spatial
localization performed by using a truncated convolution kernel
that is derived from the FT of coil sensitivities. Despite the
demand an isomorphism of this kind places on computational
resources, it is only through a real-valued linear representation
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of the complex-valued GRAPPA image reconstruction process,
such as the one presented here, that one can observe the ar-
tificial correlations induced between the real, the imaginary,
between the real and imaginary, and between the square of
the magnitude components of the reconstructed voxels. This
is of particular importance given the increasing popularity of
complex-valued fMRI and fcMRI studies [14], [32]–[34].
The implications of the GRAPPA reconstruction model were

illustrated in both theoretical and experimental data sets, in
which a comparison was made between data reconstructed
with no sub-sampling and data sub-sampled by an acceleration
factor of , reconstructed with the GRAPPA model. The
framework developed in this manuscript has shown that the
interpolation of missing spatial frequencies by the GRAPPA
model induces a significant correlation between each recon-
structed voxel and its previously aliased counterpart, with
additional low correlations in the rows and columns of those
voxels. As these correlations are of no biological origin, the
degree to which they influence the correlations in functional
connectivity studies was investigated by observing the cor-
relations about a seed voxel with and without the band-pass
filtering process undertaken in fcMRI studies. As a significant
correlation between previously aliased voxels was noted in
both the filtered and unfiltered GRAPPA reconstructed time
series, but not in either of the full FOV reconstructed time
series, it implies that the effects of the GRAPPA reconstruction
process can have null hypothesis implications in a functional
connectivity study in which no correlation is assumed between
voxels. Depending on the placement of functionally connected
networks within the brain, the PE direction, and the choice of
, the correlations induced between previously aliased voxels
could either amplify or diminish the true correlation coeffi-
cients, thereby producing misleading results and conclusions.
As such, care should be taken when investigating data acquired
and reconstructed using pMRI models such as GRAPPA, and an
analysis such as the one demonstrated in this manuscript should
be performed. If an analysis of this kind cannot be performed,
particular attention should be paid when correlations are noted
between voxels spaced either or apart, depending
on the direction of PE.
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