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ABSTRACT 
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Marquette University, 2014 
 
 

Functional connectivity MRI is fast becoming a widely used non-invasive means 
of observing the connectivity between regions of the brain.  In order to more accurately 
observe fluctuations in the blood oxygenation level of hemoglobin, parallel MRI 
reconstruction models such as SENSE and GRAPPA can be used to reduce data 
acquisition time, effectively increasing spatial and temporal resolution. However, the 
statistical implications of these models are not generally known or considered in the final 
analysis of the reconstructed data.  In this dissertation, the non-biological correlations 
artificially induced by the SENSE and GRAPPA models are precisely quantified through 
the development of a real-valued isomorphism that represents each model in terms of a 
series of linear matrix operators. Using both theoretical and experimentally acquired 
functional connectivity data, these artificial correlations are shown to corrupt functional 
connectivity conclusions by incurring false positives, where regions of the brain appear to 
be correlated when they are not, and false negatives, where regions of the brain appear to 
be uncorrelated when they actually are. With a precise quantification of the artificial 
correlations induced by SENSE, a new cost function for optimizing the design of RF coil 
arrays has also been developed and implemented to generate more favorable magnetic 
fields for functional connectivity studies in specific brain regions. Images reconstructed 
with such arrays have an improved signal-to-noise ratio and a minimal SENSE induced 
correlation within the regions of interest, effectively improving the accuracy and 
reliability of functional connectivity studies. 
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Chapter 1:  Introduction 

Magnetic Resonance Imaging (MRI) is a radiological medical imaging technique 

that uses radiofrequency waves and magnetic fields to investigate the anatomical 

structure and functional activity of the human body. In neuroscience, MRI techniques 

provide a non-invasive means of observing the human brain in action without the need 

for surgery or exposing the subject to radiation. As with all medical imaging 

methodologies, the data acquired in an MRI scanner is both plagued by “noise” from 

various sources and can take an appreciable amount of time to be acquired. To alleviate 

the acquired MRI data of noise, neuroscientists have a great many image processing 

software packages at their disposal, and various techniques have been developed and 

incorporated into scanning protocols for accelerating the acquisition of MRI data. As it is 

only after a neuroscientist applies these tools to their data that a statistical analysis is 

performed, the underlying question upon which the work outlined in this dissertation is 

based is whether or not one can reap the benefits of such tools without suffering from the 

statistical implications that they may incur. 

The work outlined in this dissertation is organized in five chapters. In the first 

chapter, a literature review is provided to outline the theory and background upon which 

this dissertation is based. To accelerate MRI data acquisition, SENSitivity Encoding 

(SENSE) (Pruessmann et al., 1999) and Generalized Auto-calibrating Partially Parallel 

Acquisition (GRAPPA) (Griswold et al., 2002) are the two most common parallel MRI 

(pMRI) techniques used in most medical MRI scanners. As such, the second and third 

chapters of this dissertation outline a novel method for precisely quantifying the 

statistical implications of the respective models using real-valued linear isomorphisms. In 
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both chapters, the theoretical correlations artificially induced by the SENSE and 

GRAPPA models are validated through both theoretical Monte Carlo simulations as well 

as experimentally acquired data. Given the previously unexplored correlation structure of 

the SENSE model outlined in the second chapter, the fourth chapter introduces a novel 

approach for designing phased arrays of radiofrequency coils that improve the statistical 

properties of SENSE imaging in specific brain regions. The final chapter summarizes the 

results obtained by the work outlined in this dissertation and projects the direction that 

this line of research could follow in the future.  

1.1 Background 

The discovery that magnetic field gradients can be used to encode the spatial 

information of an object in the resonance spectrum is the fundamental basis for image 

formation in MRI (Lauterbur, 1973; Haacke et al., 1999).  While multiple mathematical 

basis sets exist to encode the spatial information of an object, Fourier encoding is by far 

the most prominent.  When a real-valued object is placed into an MRI scanner, the 

magnetic field gradients Fourier encode the spatial information of the object into 

complex-valued spatial frequencies.  When measurements of the spatial frequency 

domain (k-space) are acquired, additional factors such as magnetic field inhomogeneities 

(resulting from respiration, improper field shimming, etc.), transverse relaxation, and 

chemical shifts (Hahn et al., 2009; Hahn and Rowe, 2012; Hahn et al., 2012; Jezzard and 

Balaban, 1995) invoke a phase distortion that breaks the Hermitian symmetry of k-space. 

Although the object placed in the scanner is real-valued, the images of the object 

obtained by inverse Fourier reconstructing a k-space array without Hermitian symmetry 

become complex-valued, with both a magnitude and phase.  
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By collecting a time series of low-resolution complex-valued images in quick 

succession, one can observe changes in the blood oxygenation level dependent (BOLD) 

contrast, a metabolic correlate to neuronal activity (Ogawa et al., 1993). The BOLD 

contrast mechanism is the most commonly used form of contrast in mapping brain 

function and connectivity. The hemoglobin molecule in blood has different magnetic 

properties depending on whether or not it is bound to oxygen.  When blood flows to 

different regions of the brain, the contrast between deoxygenated hemoglobin, which is 

paramagnetic, and oxygenated hemoglobin, which is diamagnetic, results in an 

observable change in the MR signal. This change is due to fluctuations in the bloods 

magnetic susceptibility, as indicated by the BOLD contrast mechanism (Ogawa et al., 

1993).  

1.1.1 Functional and Connectivity MRI 

By tracking fluctuations in the BOLD contrast, functional MRI (fMRI) 

(Bandettini et al., 1993) and functional connectivity MRI (fcMRI) (Friston et al., 1993; 

Biswal et al., 1995) have become incredibly popular non-invasive means of observing 

both task related and spontaneous activity in the human brain.  Functional studies 

investigate task related changes in the hemodynamic response that result from neuronal 

activity.  When a human subject performs a task, the vascular system supplies glucose to 

the region of the brain associated with the task.  The metabolic demands of the neuronal 

activity in this region results in an increased flow of oxygenated blood, thereby 

decreasing the magnetic susceptibility of the blood.  This change is noted by a peak that 

forms in the BOLD signal for several seconds, before returning to a baseline level 

(Huettel & Song, 2008).   
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In fMRI, a time series of images is acquired while the subject alternates between 

laying at rest and performing a task in predefined intervals of time.  As the BOLD 

signal’s response to the stimulus is not instantaneous, the duration of the interval in 

which the subject performs the task is typically longer than the time it takes for the 

BOLD level to reach its peak, plateau, and drop off again.  By repeating this process 

several times, an fMRI experiment tracks changes in the BOLD contrast in a time series 

of images using statistical models to develop maps of brain regions that are activated by 

the stimulus.  

While the activity maps in fMRI are an innovative means of observing the regions 

of the brain that exhibit task related signal changes, they do not provide information on 

the relationship between brain regions, or connectivity.  In fcMRI, a cross-correlation 

analysis is performed to determine which regions of the brain exhibit a correlation in low 

frequency BOLD activity over the course of a time series, even in the absence of the 

subject performing a task.  Two regions that exhibit a correlation of this kind would 

suggest that the regions are functionally connected.   

In recent years, both fMRI and fcMRI have become broadly recognized to have 

tremendous clinical advantages, effectively enabling neuroscientists to observe cognitive 

brain activity without the need for either surgery or subjecting patients to radiation. In 

2009, the National Institute of Health granted more than $35m to sponsor the five-year 

Human Connectome Project (Sporns et al., 2006; Raichle et al., 2007; Jo et al., 2010; 

Deschpande et al., 2009) and, more recently in 2013, a $100m Brain Research through 

Advancing Innovative Neurotechnologies (BRAIN) Presidential initiative was unveiled. 

Both of these initiatives are aimed at better understanding the human mind, developing a 
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map of brain networks, and uncovering new means of treating degenerative brain 

disorders and traumatic brain injury. With such tremendous funding and effort devoted 

towards using techniques of this kind for observing cognitive brain activity, it is 

important to ensure that the models and tools developed to “improve” the quality of 

images do not inadvertently and unknowingly alter the statistical properties of the data. 

1.1.2 MRI Data Acquisition 

In an MRI scanner, a powerful superconducting magnet is used to align the 

magnetization of the hydrogen nuclei in the object being scanned.  With the nuclei 

aligned in the same direction, radiofrequency (RF) pulses are emitted to the atoms in the 

object, effectively tipping the magnetic moment of the hydrogen nuclei into the 

transverse plane and causing the nuclei to precess around the alignment of the main 

magnetic field.  The rate at which the nuclei re-align themselves with the main magnetic 

field is tissue dependent, and thus provides the contrast between tissues in the 

reconstructed images.  Once the RF pulse excites the atoms in a typical MRI pulse 

sequence, magnetic field gradients are used to navigate through k-space such that spatial 

frequency measurements can be discretely recorded. While a variety of trajectories (such 

as a spiral or propeller) can be employed to shift through k-space, acquiring 

measurements along the way, the most typical method involves acquiring spatial 

frequencies on a Cartesian grid.  Beginning in the lower left corner of the field of view 

(FOV) in Fig. 1.1a, the frequency encoding (FE) gradient moves the position in k-space 

from left to right until it reaches the right edge of the FOV, at which point the phase 

encoding (PE) gradient is applied to shift the position one increment towards the top.  

The FE gradient is then reapplied in the opposite direction, moving from right to left, and 
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this process is repeated until a complete array of spatial frequencies are acquired.  Given 

the Fourier encoding nature of the gradients, an image of the object being scanned can be 

obtained by taking the inverse Fourier transform of the acquired spatial frequencies. 

 
 

 

Figure 1.1: Acquisition of a) full k-space, and b) k-space sub-sampled by A=2 in the PE direction.  
Acquired frequencies are marked in black, while sub-sampled frequencies are marked in white. 

 
 

One of the biggest hurdles faced in MR imaging is the fact that all spatial 

frequency measurements are not acquired instantaneously.  The laborious process of 

Fourier encoding a volume in k-space takes an appreciable amount of time. In order to 

observe changes in the BOLD contrast most effectively, it is therefore imperative that 

data acquisition is performed in a minimal amount of time.  It is for this reason that fMRI 

and fcMRI images are traditionally of a low resolution.  The resolution of the 

reconstructed image is directly determined by the number of sampled frequencies, while 

the FOV in k-space is defined by the frequency range one can sample, which is in turn 

determined by the sampling rates in the kx and ky directions, Δkx and Δky.  In order to 

acquire a full FOV image, the Shannon-Nyquist sampling criteria requires that the 
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increments between measurements are Δkx ≥ 1/(NxΔx) and Δky ≥ 1/(NyΔy), where Nx and 

Ny are the number of volume elements (voxels) in the x and y dimensions of the 

reconstructed image, and Δx and Δy are the dimensions of each voxel.  

In a Cartesian acquisition of k-space, such as that in Fig. 1.1, the greatest amount 

of time is wasted in the application of the PE gradient.  In order to shift one increment of 

Δky in the PE dimension, it can take on the order of 80% of the time it takes to acquire an 

entire line of k-space with the FE gradient.  This is because the FE and PE gradients have 

to work together in switching the direction of the FE gradient, while simultaneously 

shifting upwards with the PE gradient.  As such, it can be beneficial to minimize the 

number of PE steps required to traverse the FOV by skipping lines of k-space, thereby 

lowering the resolution of the reconstructed image in the y-dimension, as illustrated in 

Fig. 1.1b.  The factor by which the PE dimension of k-space is sub-sampled is commonly 

referred to as the acceleration factor (or reduction factor), A.  Sub-sampling by this factor 

effectively only acquires every Ath line, with each increment between acquired lines of 

AΔky, skipping the A-1 lines between acquired lines. The consequence of skipping A-1  

lines of k-space is what is commonly referred to as aliasing. When a full FOV array of k-

space is acquired, such as that in Fig. 1.2a, the result is a full FOV inverse Fourier 

reconstructed image. When the sub-sampling scheme in Fig. 1.1b is carried out with an 

acceleration factor of A=2, such as that in Fig. 1.2b, and by A=3, such as that in Fig. 1.2c, 

the reconstructed aliased images appear to be folded over on themselves A times (similar 

to a letter being folded to fit into an envelope) as a result of failure to meet the Shannon-

Nyquist sampling criteria.  



 

 

8

 
Figure 1.2: When k-space is a) fully sampled with A=1 the result is a full FOV image. When sub-sampled 
by b) A=2 and c) A=3, the result is an image that appears folded over on itself A times. 

 

1.1.3 Parallel MRI 

In many recent studies, great efforts have been spent on developing techniques for 

unfolding the aliased images that result from accelerated acquisitions of k-space using 

parallel MRI models.  In pMRI, a phased array of multiple receiver coils is placed around 

the object in the scanner, and all receiver coils measure spatial frequencies concurrently 

after a single RF pulse excitation (Hyde et al., 1986; Roemer et al., 1990).  As each 

receiver coil has a unique magnetic field (B-field), represented through a sensitivity 

profile that describes the B-field strength in the space surrounding the coil, the resulting 

aliased image acquired by each coil is locally weighted by the coil sensitivities.  By 

acquiring spatial frequencies in all coils concurrently, one can therefore exploit the 
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overlap of the full FOV sensitivity profiles in the corresponding voxels in each aliased 

coil image and obtain an estimation of the unfolded and combined image. The un-aliasing 

of coil images can then be performed in either the image domain with techniques such as 

SENSE (Pruessmann et al., 1999), where the aliased coil images are “unfolded” into a 

single combined full FOV image, or in k-space with techniques such as SMASH 

(Sodickson & Manning, 1997), VD-AUTO SMASH (Heidermann et al., 2001) or 

GRAPPA (Griswold et al., 2002), where the missing spatial-frequency measurements are 

interpolated from the neighboring acquired frequencies. 

1.2 Linear Image Reconstruction Framework 

The ability to perform a complex-valued inverse Fourier reconstruction by means 

of a real-valued isomorphism, a process for performing a complex-valued operation 

through a mathematically equivalent real-valued operation, as derived in (Rowe & 

Logan, 2005; Rowe et al., 2007), paves the way for a statistical analysis of the pre-

processing, post-processing, and image reconstruction operations performed on the 

acquired data.  Consider a py×px matrix of two-dimensional complex-valued spatial 

frequencies, FC, comprised of the sum of a true noiseless complex-valued spatial 

frequency matrix, F0C, and a matrix of complex-valued measurement error, EC,  

FC = F0C + EC. 

Since the spatial frequency array, FC, is obtained by magnetic field gradients Fourier 

encoding the real-valued object placed in the MRI scanner, the reconstructed complex-

valued image array, YC, is ideally derived through an inverse Fourier transform by  
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Upon closer observation, the 2-dimensional inverse Fourier transform operation used to 

obtain the px×py reconstructed image, YC, in Eq. [1.1] is a linear operation in both the x 

and y dimensions. If indices j and k both vary from 1 to px, then the jkth element of the 

inverse Fourier transform matrix in the x dimension, ΩxC, can be expressed as 

2
( ) exp 1 * 1

2 2
x x

xC jk
x

p pi
j k

p

                    
       

, 

and a similar inverse Fourier transform matrix can be expressed for the y dimension, ΩyC, 

that is of dimension py (Nencka et al., 2009).  With complex-valued inverse Fourier 

transform matrices, 

ΩxC = ΩxR + iΩxI,  and  ΩyC = ΩyR + iΩyI, 

the complex-valued inverse Fourier transformation of FC in Eq. [1.1] can be written in 

matrix form as 

YC = ΩyC FC ΩxC
T.                  [1.2] 

The inverse Fourier transformation of spatial frequencies used in Eq. [1.2] is illustrated in 

Fig. 1.3. When the inverse Fourier transform matrix for the vertical dimension, ΩyC, in 

Fig. 1.3a pre-multiplies the complex-valued acquired spatial frequency array, FC, in Fig. 

1.3b, and is subsequently post-multiplied by the inverse Fourier transform matrix for the 

horizontal dimension, ΩxC, in Fig. 1.3c, the result is the complex valued image space 

array, YC, in Fig. 1.3d. 

For simplicity in representation, it can be shown that the pre- and post- 

multiplication of inverse Fourier matrices in Fig. 1.3 and Eq. [1.2] can be combined into 

a single reconstruction matrix, 

R I

I R

  
     
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Figure 1.3: The real and imaginary components of a) the inverse Fourier transform in the y direction, ΩyC, 
b) the spatial frequency array, FC, c) the inverse Fourier transform in the x direction, ΩxC, and d) the 
resulting image space array when multiplying YC = ΩyC FC ΩxC

T . 

 
 
where the real and imaginary components are formed using the Kronecker product, ,	by 

ΩR = [(ΩyR  ΩxR) – (ΩyI  ΩxI)],  ΩI = [(ΩyR  ΩxI) – (ΩyI  ΩxR)].	

The Kronecker product operator, , multiplies every element of its first matrix argument 

by its entire second matrix argument. To use a single inverse Fourier transform operator, 

Ω, a vector of observed k-space spatial frequencies, f, is first formed by stacking the pxpy 

real spatial frequencies on top of the pxpy imaginary spatial frequencies, 

f = vec(Re(FC
T), Im(FC

T)) = f0 + ε, 

where vec(·) is a vectorization operator that stacks the columns of its matrix argument, Re 

denotes the real part of FC
T, and Im denotes the imaginary part of FC

T.  This vectorization 

therefore concatenates the rows of the real and imaginary matrices into separate vectors, 

which are in turn concatenated into a vector, f, of length 2pxpy.  As with FC, f is the sum 

of a vector of true noiseless (complex-valued) spatial frequencies, f0, and a vector of 
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(complex-valued) measurement error, ε. With the complex-valued spatial frequencies in a 

real-valued vector form, a real-valued image vector, y, is thus obtained by	

y = Ω f.                      [1.3] 

Similarly to the observed k-space data, if the complex-valued reconstructed image is of 

dimensions py×px, then the reconstructed image vector, y, will consist of pxpy real 

reconstructed voxel values stacked above pxpy imaginary reconstructed voxel values, 

making the reconstructed image vector, y, in Eq. [1.3], of length 2pxpy. 

The advantage of representing Eq. [1.1] in terms of Eq. [1.3] is that it allows one 

to easily observe the exact linear combination of spatial frequency measurements in f that 

result in each reconstructed voxel value in y. While it can be shown that the formalism of 

the linear reconstruction operator, Ω, in Eq. [1.3] holds true for any linear reconstruction 

process (Hadamard, wavelet, singular value decomposition), the inverse Fourier 

transform is the most commonly used image reconstruction algorithm in MRI, and will 

therefore be utilized throughout the remainder of this dissertation.  While not in the scope 

of this dissertation, the Ω operator can be adjusted to account for intra-acquisition decay 

(T2
*) and magnetic field inhomogeneities (ΔB) acquired in the k-space signal if T2

* or ΔB 

maps can be obtained (Nencka et al., 2009; Hahn et al., 2009). 

1.2.1 Statistical Implications of Processing and Reconstruction Operations 

If the spatial frequency vector, f, is comprised of real and imaginary values, with a 

covariance between the real measurements, between the imaginary measurements, and 

between the real and imaginary measurements, then an application of the inverse Fourier 

transform operator,  
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,            [1.4] 

will result in an image vector, y, that is also comprised of real and imaginary values with 

a  covariance between the real voxel values, between the imaginary voxel values, and 

between the real and imaginary voxel values. Eq. [1.4] lays the groundwork for the 

framework in A Mathematical Model for Understanding the STatistical properties 

(AMMUST) of pre- and post- reconstruction processing operations (Nencka et al., 2009) 

that is necessary to analyze the statistical implications of operations involved in image 

reconstruction for data that is fully sampled with a single receiver coil.  If the observed k-

space data vector, f, has a mean of E[f]=f0 and a covariance represented by the matrix Γ, 

then the inverse Fourier reconstructed image vector, y, has a mean and covariance that are 

modified by the reconstruction operator, Ω, to become 

E[y]=Ωf0 and cov(y) = ΩΓΩT.                     [1.5] 

If the vector f is pxpy in length and assumed to have an identity covariance structure, Γ=I, 

the orthogonal nature of the Ω operator would simplify the covariance structure of the 

reconstructed image vector, y, in Eq. [1.5] to being an identity matrix scaled by the 

reciprocal of the length of f, 

  

cov( y)IT  1
px py

I .                [1.6] 

In almost all fMRI and fcMRI studies, various pre- and post-processing 

operations are applied to the acquired data prior to statistical analysis. These processes 

are performed to alleviate the data of Nyquist ghosting, motion, respiration, nuisance 

signal from various tissue types (such as cerebral spinal fluid), and various other sources 

of artifacts. Irrespective of the type of operation being performed on the data, the 
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covariance structure of the processed data (which is observed in the statistical analysis) 

will not be the same as that of the un-processed acquired data. To observe the 

implications of either a single arbitrary processing or reconstruction operation, or a 

collection of operations, represented in matrix form, O, the reconstruction in Eq. [1.3] can 

be generalized by  

y = Of.                  [1.7] 

Just as in Eq. [1.5], the mean of the vector y in Eq. [1.7] is E[y]=Of0, and the covariance 

matrix of the vector f is modified by the operator, O, to become 

Σ = cov(y) = OΓOT.                [1.8] 

In a conventional study on the analysis of image and signal processing, the covariance 

induced by the operator, O, would typically be estimated using Markov Chain Monte 

Carlo (MCMC) simulations (Barry & Strother, 2011; Strother, 2006; Della-Maggiore et 

al., 2009). As a heuristic rule, if the data vector f is pxpy in length, these studies would 

simulate a time series with at least 10pxpy data vectors from which the covariance in Eq. 

[1.8] would be estimated. As the dimensions of f increase, this approach calls for an 

increasingly larger numbers of simulated data arrays to determine what is only an 

approximation of the true induced covariance structure. The formalism in Eq. [1.8], 

however, is able to determine the exact induced covariance structure directly, without the 

need to generate a single data vector. While the covariance of the originally acquired data 

vector, Γ, might only have a covariance between the real measurements and a covariance 

between the imaginary measurements, it is important to note that the covariance matrix, 

Σ, might also have a covariance between the real and imaginary (real/imaginary) 



 

 

15

measurements that is induced by the operator O. Given the covariance structure in Eq. 

[1.8], the correlation structure between voxels is derived by 

corr(Σ) = DO
-1/2O ΓOTDO

-1/2,                               [1.9] 

where DO=diag(Σ) is a diagonal matrix of the variances drawn from the diagonal of the 

covariance matrix in Eq. [1.8], and the -1/2 superscript denotes that the diagonal elements 

are inverted after taking the square root.  With the real and imaginary components of 

vectors y and f stored in vectors of the form in Eq. [1.4], the real-valued representation of 

the correlation matrix produced by Eq. [1.9] can be partitioned into quadrants as 

corr( )
RR RI

IR II

 
   

 
,              [1.10] 

where the quadrant RR denotes the correlation between the real components of y, II 

denotes the correlation between the imaginary components of y, and RI=IRT denotes the 

correlations between the real and imaginary components of y. Any row, j, of the each 

quadrant in Eq. [1.10] represents the correlation between voxel j and all other voxels in 

the reconstructed image. The correlation about voxel j can thus be observed by 

partitioning the jth row of each quadrant in Eq. [1.10] into px vectors of length 1×py, each 

of which represent a column of the reconstructed image, stacking the row vectors into a 

matrix, and finally transposing.   

Under the assumption of normality, the derivation outlined in the Appendices of 

(Nencka & Rowe, 2007) allows for the covariance structure of the square of magnitude-

only data (magnitude-squared data) to be derived from the covariance matrix Σ in Eq. 

[1.8].  Magnitude-squared data is considered in the analysis of the covariance and 

correlation induced by operators involved in image reconstruction because an analytical 

solution exists for the linear framework in this dissertation, while magnitude-only data is 
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not considered because magnitude operations are not linear in nature.  It can be shown 

that the correlation of magnitude-squared data is asymptotically equivalent to the 

correlation of magnitude-only data, and thus magnitude-squared data will be used along 

with complex-valued data to observe properties of real, imaginary, and real/imaginary 

correlation structures.  

In many fMRI and fcMRI studies, data is first acquired by one person who can 

choose from a variety of acquisition and processing options available in the scanner’s 

software. The data is then reconstructed and processed by another person who can choose 

between numerous software packages to try and rid the data of various types of noise and 

artifacts. Finally, inferences are made about the processed data (often by a third person) 

without taking into account the degree to which the true statistical properties of the 

acquired data have been changed by each process. In an attempt to draw statistical 

inferences about the originally acquired data from the reconstructed and processed data, 

an analyst would need to model data with considerably more complicated statistical 

properties than merely observing the statistical properties of the processed data. Recent 

studies, such as that by Nencka et al. (2009), have used the formalism in Eqs. [1.8]-[1.10] 

to quantify the degree to which various spatial processing operations modify the 

correlation structure of the original acquired data. These studies have shown that 

commonly used processing operations such as apodization in k-space and spatial filtering 

in image space induce local correlations between a voxel and its neighbors, while 

processes such as slice timing corrections can induce a correlation between voxels in 

different slices of a volume. These artificially induced correlations are of no biological 
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origin, and can therefore corrupt the statistical measures of the biological interpretations 

made in both fMRI and fcMRI studies. 

 While the use of pMRI models such as SENSE and GRAPPA offers a significant 

advantage in being able to increase spatial or temporal resolution by accelerating data 

acquisition, the degree to which these models alter the statistical properties of the 

acquired data have not been quantified. When each coil in a phased array acquires an 

aliased image, such as those in Fig. 1.4 for accelerations of A=2 and A=3, each aliased 

voxel value contains spatial information for voxels in all of the A folds of the image that 

are aliased in that location. This means that when the aliased voxels are un-aliased 

through either SENSE or GRAPPA, the voxels that were previously aliased will be 

correlated as a result of the un-aliasing process. Unlike the correlations induced by 

processes such as spatial filtering, where voxels become correlated with their neighbors, 

the SENSE and GRAPPA un-aliasing processes induce long-range correlations between 

different regions of the reconstructed images. Such correlations, which are artificial and 

of no biological origin, could potentially lead to Type I/II errors in fcMRI studies, where 

regions of the brain are assumed to be either correlated or uncorrelated with one another 

when they are not. As the statistical implications of the SENSE and GRAPPA models 

have not been previously explored, the work performed in this dissertation is aimed at 

developing linear isomorphic representations of each complex-valued model to precisely 

quantify the correlations induced in the images reconstructed by the respective model. 

1.3 RF Coil Design for SENSE Imaging 

 The simultaneous acquisition of spatial frequencies in pMRI studies is typically 

performed using a phased array of surface coils, such as the array illustrated in Fig. 1.4. 
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Each surface coil in the array in Figs. 1.4a and 1.4b is comprised of a small loop of wire 

placed near the surface of the object being scanned and receives RF signals emitted by 

the spins of atomic nuclei that are in close proximity to the coil. The reception sensitivity 

of an RF coil can be deduced from the principle of reciprocity. With a current flowing 

through the wire loop, the B-field generated by the coil projects into the object with an 

effective depth of sensitivity that is proportional to the width of the coil, as illustrated in 

Fig. 1.4b. While the B-field for an individual surface coil is inhomogeneous throughout 

the volume being imaged, when multiple surface coils are phased together in an array 

there is a relatively homogeneous field generated by the array as a whole. It is this 

overlap of coil B-fields that allows for k-space to be sub-sampled concurrently by each 

coil, as the resulting aliased coil images can be un-aliased with models such as SENSE 

that use B-field sensitivity profiles for spatial localization.  

 
 

 

Figure 1.4: a) An array of NC=4 rectangular coils b) placed around a human head, c) each with its own B-
field sensitivity profile. Coil sensitivities are greatest in strength in the vicinity of the coil, shown in white, 
and decrease in strength with distance from the coil. 

 
 
 Unlike images derived from a full FOV acquisition of k-space, images 

reconstructed from accelerated acquisitions of k-space, using models such as SENSE, 

exhibit an inhomogenous noise distribution.  This is a result of the inhomogeneous B-
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field sensitivity profiles of the coils, used for spatial localization, when combined with 

the standard Fourier encoding performed by the magnetic field gradients.   By 

comparison to a full FOV acquisition, pMRI techniques generally yield reconstructed 

images with a reduced signal-to-noise ratio (SNR). The ratio 

SNRSE 
SNR full

g A
.               [1.11] 

quantifies the loss in SNR in the SENSE reconstructed images, SNRSE, by contrast to the 

SNR in images reconstructed from a fully sampled array of k-space, SNRfull (Pruessmann 

et al., 1999).  If the full FOV py×px array of spatial frequencies, FC, in Eq. [1.1] has an 

identity covariance structure prior to being inverse Fourier reconstructed, the covariance 

of the reconstructed image, YC, is equivalent to that of FC, scaled by 1/pypx. Therefore, 

when a (py/A)×px sub-sampled array of spatial frequencies is inverse Fourier 

reconstructed, the resulting covariance is scaled by a factor of A/pypx. Since SNR is 

typically the ratio of the magnitude and standard deviation, the SNRSE therefore becomes 

inversely proportional to the square root of the acceleration factor by which k-space was 

sub-sampled, and consequently SNRSE is also inversely proportional to the data 

acquisition time.  The additional factor g in the denominator of Eq. [1.11] is commonly 

referred to as the geometry-factor (or g-factor). For a collection of NC receiver coils, such 

as those in Fig. 1.4a, each with a unique B-field profile, the g-factor represents the 

amplification of noise (standard deviation) in each voxel of the un-aliased SENSE 

reconstructed image that results from the overlap of coil B-fields in Fig. 1.4c. The B-field 

sensitivities in Fig. 1.4c are greatest in strength in the vicinity of each coil (illustrated in 

white), and decrease in strength with distance from the coil.  For a voxel in which there is 

no aliasing, there is no amplification of noise, and thus the g-factor is one. For voxels that 
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experience aliasing with multiple regions of the object being scanned, the measurement 

noise (the denominator of SNR) in the un-aliased voxels is scaled by g>1.  As this 

amplification of noise arises from an overlap of the coil B-fields, the g-factor has become 

the de facto metric used in the assessment of parallel RF coils designed for SENSE 

imaging, especially when a high SNR is needed in a particular region of interest (ROI). 

1.3.1 Methods of RF Coil Design 

 In an ideal situation, a phased array of RF surface coils would be comprised of 

independent receiver coils with sensitivity profiles that neither overlap nor decrease in 

strength with distance from the coil (i.e. similar to that of a pie with wedge slices of equal 

size and constant throughout). While such an array would result in a g-factor of one in 

every voxel, this coil arrangement is virtually impossible to achieve.  Coil B-fields will 

therefore always have some level of overlap in order to obtain an image, reconstructed 

with the SENSE model, that exhibits a uniform signal intensity throughout.  In recent 

years, many studies have therefore been aimed at improving SENSE reconstructed 

images through advancements in hardware.  Until recently, most approaches have been 

characterized as direct methods, in which several coil configurations are defined, and the 

arrangement that yields the best g-factor in a ROI is selected (Weiger et al., 2001; Zwart 

et al., 2002).  While this approach could progressively produce better and better arrays, 

through multiple iterations of designs, the probability of achieving an optimal design is 

low.  Alternatively, recent studies have described each coil in the array by a collection of 

connected vertices in a 3-dimensional space, and performed brute-force methods through 

simulated annealing to systematically shift the vertices, thereby varying the size and 

shape of each coil.  For each coil configuration, the SNR in a ROI is estimated and the 
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arrangement with the highest SNR is considered as the optimal coil layout.  This 

approach offers greater potential for achieving an optimal layout than the initial trial and 

error methods, but could be very time consuming to appropriately simulate as many coil 

geometries as possible, while accurately simulating the B-fields for each geometry. 

 The most promising methods of determining optimal RF coil designs in recent 

years have adopted an inverse approach that is predicated on the fact that the SNR in an 

ROI is directly determined by the distribution of coil B-fields in that region.  By 

establishing a desired distribution of the B-fields in the ROI, early methods aimed to 

solve the inverse problem of determining the surface current distribution necessary to 

generate the desired distribution (Lawrence et al., 2002; Xu et al., 2005).  Using a finite 

element analysis, the optimal current density distribution for a coil can be determined 

using a least squares approach to minimize a cost function, such as the g-factor or 

1/SNRSE (Muftuler et al., 2005). Once the optimal surface current distribution that 

achieves maximal SNRSE is defined, an RF coil design is then determined that will 

produce the desired distribution.  A disadvantage of this approach lies in the potential for 

complicated and unrealistic coil designs in order to achieve the desired current 

distribution.  In more recent studies, such as those by Chen et al. (2007), the geometry of 

a supplemental RF coil array was modeled by a set of connected conductor segments, 

with each coil in the shape of a butterfly.  The SNRSE was then formulated as a function 

of the coil vertices, and a least squares estimation was performed to determine the 

optimal vertex locations that would define an array with a minimal cost function and in 

turn a maximal SNRSE.   
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1.3.2 The Limitations of Current RF Coil Designs 

 In both fMRI and fcMRI studies, the same generic RF coil arrays are often used 

for imaging all regions of the brain. Most typically, “birdcage” arrays with rectangular 

coil elements, such as the array in Fig. 1.4a, are used. These arrays are radially 

symmetric, from back to front, from left to right, and from top to bottom. The resulting 

B-fields generated by such a symmetric array are relatively homogeneous in the center of 

the volume. As the human brain is not fully symmetric, and ROIs are not typically in the 

very center, using the same coil for all regions may not be beneficial. As the overlap of 

coil B-fields is unavoidable in order to achieve a reconstructed image with a uniform 

signal distribution, there will always be areas in which the noise is amplified, as 

measured through the g-factor. If a conventional birdcage array of rectangular coils is 

used for acquiring images in all studies, these areas with a high g-factor will always be in 

the same spatial location. By changing the geometry of an RF coil array when imaging a 

specific ROI, however, these areas with a high g-factor could be strategically relocated 

such that they are not within the ROI. For studies such as fMRI and fcMRI, where 

constraints are placed on spatial and temporal resolutions, the accelerations in data 

acquisition that can be achieved through pMRI techniques can be combined with purpose 

build hardware that minimizes the amplification of noise and artifacts in a particular ROI 

of the reconstructed images.   With the incredible amount of both funding and effort 

being devoted towards fMRI and fcMRI studies for specific degenerative brain disorders 

(commonly associated with specific brain regions), the notion of RF coil arrays purpose 

built for imaging specific brain regions makes sense.  Depending on the location of the 

ROI, asymmetric coil geometries that have elements with variable sizes and shapes, and 
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are designed to work in conjunction with a custom MRI pulse sequence, could achieve a 

more optimal g-factor within a ROI.  As the B-fields of a coil geometry designed for a 

scanner with one magnetic field strength will behave differently when placed in a scanner 

with a different field strength (Wang, 2012), ROI specific coil geometries would have to 

be determined to achieve the same statistical properties and g-factor for each field.  

In many studies (Muftuler et al., 2006; Muftuler et al., 2009; Chen et al., 2007), 

the optimization of RF coil design using the g-factor as a metric has proved to be a 

beneficial means of achieving higher SNR values in a ROI of the reconstructed image.  

However, while the g-factor represents the amplification of noise (standard deviation) in 

each voxel, it does not provide a measure of the correlations induced between the voxels 

in the ROI and the voxels previously aliased with the ROI prior to a SENSE 

reconstruction.  In a coil design study, it is therefore not sufficient to only align the 

elements of the array in such a way that the g-factor in the ROI is minimal. While this 

would provide a uniform distribution of the noise in the ROI, if a region of the object 

being scanned that was previously aliased with the ROI has a g-factor that is significantly 

greater than that of the ROI, the amplified noise that results from the overlap of coil B-

fields in that region will be correlated with the ROI through the SENSE reconstruction 

process.  As such, the optimization criteria used in designing an RF coil array for SENSE 

imaging would be more appropriately defined to incorporate both the traditional g-factor 

metric, as well as a measure of the correlations induced between the ROI and other 

voxels in a SENSE reconstructed image.    
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Chapter 2:  A Statistical Investigation of the SENSE pMRI Model 

2.1 The SENSE Model 

The SENSE model is characterized as an image space model because it performs 

the unfolding of aliased coil images in the image domain after the accelerated arrays of k-

space from each of NC receiver coils are inverse Fourier reconstructed. Consider a 

collection of full FOV B-field sensitivities for NC=4 receiver coils in Fig. 2.1a, with 

corresponding aliased coil images acquired with an acceleration factor of A=3 by each 

coil in Fig. 2.1b. The underlying assumption of the SENSE model is that every complex-

valued aliased voxel, j, in each of the NC aliased coil images in Fig. 2.1b, ajC = ajR + iajI, 

is a sensitivity weighted linear combination of the A true un-aliased voxel values in Fig. 

2.1c, vjC = vjR + ivjI, with added measurement error, εjC = εjR + iεjI,  

ajc = SjC vjC + εjC.                  [2.1] 

Illustrated for an arbitrary voxel, j, the sub-scripts of the sensitivities in Fig. 2.1a 

represent the coil and aliased fold indices in the matrix SjC, the sub-scripts for the aliased 

voxel values in Fig. 2.1b indicate the coil index in the vector ajC, and the sub-scripts in 

Fig. 2.1c represent the fold of the un-aliased image vector, vjC. The spatial localization 

matrix, SjC = SjR+iSjI, in Eq. [2.1] is an NC×A array in which each of the NC rows are 

comprised of the A fully sampled complex-valued coil sensitivities from each of the NC=4 

coils in Fig. 2.1a. It is generally assumed that the complex-valued measurement noise, 

εjC, is derived from the complex-valued normal distribution (Wooding, 1956), given by 

f (
jC

)  (2 )N
C 

C
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exp 
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Figure 2.1: As performed in the SENSE model, a) full FOV coil sensitivities are used to un-alias the b) 
aliased coil images from NC=4 coils, sub-sampled by A=3, to reconstruct c) a single un-aliased image. 

 
 
where ΨC = ΨR +iΨI  is the complex-valued coil covariance matrix and H denotes the 

Hermetian, or conjugate transpose. Derived through a change of variables from the 

distribution of εjC, the distribution of the complex-valued vector of sub-sampled spatial 

frequencies, ajC, in Eq. [2.1] also has a complex-valued normal distribution 

f (a
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Under the assumption of normality, the maximum likelihood estimates of the complex-

valued un-aliased voxel values can therefore be derived using a complex-valued weighted 

least-squares estimation by 

vjC = (SjC
H ΨC

-1SjC)-1SjC
H ΨC

-1ajC.                         [2.2] 

Through the complex-valued weighted least squares estimation in Eq. [2.2], the A un-

aliased voxel values are derived from aliased voxel values acquired from the NC coils. 
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Figure 2.2: a) The non-biological correlations artificially induced by the SENSE un-aliasing process with 
A=2 and A=3 share the same spatial locations with b) biological correlations denoting the Default Mode 
Network derived through an fcMRI study (Greicius et al., 2003), (Copyright (2003) National Academy of 
Sciences, U.S.A). 

 
 

As shown for acceleration factors of A=2 and A=3 in Fig. 2.2a, the complex-

valued weighted least squares estimation of the un-aliased voxel values in Eq. [2.2] 

effectively converts a single value in each of the NC aliased coil images into A un-aliased 

values. By definition, such an un-aliasing process would therefore be expected to 

artificially induce a correlation between the A un-aliased voxels. The figure presented in 

Fig. 2.2b was drawn from a study by Greicius et al. (2003) that observed functional 

connectivity in both the resting and active brain. The correlations in Fig. 2.2b are of a 

true biological origin and represent a very commonly investigated network of functional 

connections within the brain known as the “Default Mode” (Raichle et al, 2001; Raichle 

et al., 2007). Upon observation, the artificially correlated voxels un-aliased by the 

SENSE model in Fig. 2.2a share the same spatial locations as the truly correlated voxels 

of the Default Mode Network in Fig. 2.2b. If a statistical analysis were to be conducted 
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on SENSE reconstructed images, without accounting for such correlations, it would be 

impossible for one to know whether or not the correlations observed in the fcMRI data 

were of a true biological origin or artificially amplified or diminished by the SENSE 

induced correlations. For this reason, the remainder of this chapter presents a means of 

precisely quantifying the non-biological correlations artificially induced by SENSE 

through a real-valued isomorphism, with the implications of the artificial correlations 

validated by both theoretical and experimental illustrations.  

2.2  The SENSE Isomorphism 

In this section, an isomorphic representation of the complex-valued SENSE 

model is presented to un-alias all voxels from the NC aliased coil images at once using 

real-valued matrix operators.  Representing the complex-valued SENSE un-aliasing 

process with a single real-valued matrix operator enables one to observe the precise linear 

combination of the sub-sampled spatial frequencies acquired by the NC receiver coils that 

formed each voxel in the un-aliased image. Furthermore, with a real-valued matrix 

operator, the way in which the covariance and correlation structure of the acquired data is 

altered by the SENSE model can be precisely quantified using the formalism in Eqs. [1.8] 

and [1.9], without the need for time consuming Monte Carlo simulations that are only 

able to approximate the structure of the induced correlation.  

2.2.1 Real-Valued SENSE Model 

For a single aliased voxel j, the complex-valued SENSE model in Eq. [2.1] can be 

equivalently expressed as a real-valued isomorphism by  
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, or  aj = Sj vj + εj.                    [2.3] 

In Eq. [2.3], the vector aj is comprised of the vector of NC real aliased voxel 

measurements stacked upon the vector of NC imaginary aliased voxel measurements, the 

vector vj is comprised of the A real true un-aliased voxel values stacked upon the A 

imaginary true un-aliased voxel values, and the vector εj is comprised of the NC real parts 

of the complex-valued additive noise stacked upon a vector of the NC imaginary parts of 

the complex-valued additive noise. When the product SjC vjC = (SjR+iSjI)(vjR+ivjI) in Eq. 

[2.1] is expanded and expressed in terms of a real-valued isomorphism, the spatial 

localization matrix, Sj, in Eq. [2.3] takes on the skew symmetric form,  

jR jI

j
jI jR

S S
S

S S

 
  
 

.                              [2.4] 

Using the real-valued isomorphism in Eq. [2.3], the complex-valued multivariate normal 

distribution of the vector of aliased voxel values, aj, can be expressed as the 2NC×1 real-

valued multivariate normal distribution of coil measurements by 

1/2 11
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. 

As the additive measurement noise, derived from the complex-valued normal distribution 

(Wooding, 1956), 

εjC ~ CN(0, ΨC), 

provides the covariance between the coils in the SENSE model, when represented as a 

real-valued isomorphism,  
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the real-valued representation of the complex coil covariance matrix, as used in the 

SENSE model, takes on the skew-symmetric form 

 


RR


II


II


RR















.                                 [2.5] 

It is of note that when a covariance between coils is estimated from experimentally 

acquired complex-valued aliased voxel values organized with the real component stacked 

upon the imaginary component, such as aj in Eq. [2.3], there is an estimated covariance 

between the real components, ΨRR, between the imaginary components, ΨII, and between 

the real and imaginary components of the coil measurements, ΨRI, that are ordered by 

̂ 


RR


RI


IR


II






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






. 

What Eq. [2.5] therefore implies is that the complex-valued application of the SENSE 

model imposes a skew-symmetric covariance structure between coils, where the 

real/imaginary covariance between coils is equated to be the negative of the imaginary 

covariance, and that the imaginary coil covariance is equated to that of the real coil 

covariance. The validity of this assumption is explored further in Appendix A.  In many 

studies, ΨC (and hence Ψ) is treated as a real-valued identity matrix, however, it will be 

shown in both the illustrations in this chapter and in Appendix A that when the 

covariance between coils is estimated from experimentally acquired data, the structure is 

far from an identity matrix (Bruce et al., 2011; Bruce et al., 2012). 

Provided with the real-valued isomorphism representation of the complex-valued 

coil sensitivities matrix in Eq. [2.4] and the real-valued isomorphism representation of the 

complex-valued coil covariance matrix in Eq. [2.5], the SENSE estimator for the un-
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aliased voxel values in Eq. [2.2] can be equivalently expressed as a real-valued 

isomorphism by 
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or 

vj = (Sj
T Ψ-1Sj)

-1Sj
T Ψ-1aj,                    [2.6] 

where Sj is of dimension 2NC×2A, Ψ is of dimension 2NC×2NC, and the vector of voxel 

measurements, aj, is of dimension 2NC×1.  The isomorphism in Eq. [2.6] yields an image 

space vector, vj, of dimension 2A×1 that is comprised of the A real voxel values stacked 

upon the A imaginary voxel values.  These A un-aliased voxel values correspond to the A 

folds that are formed via sub-sampling the data in k-space by a factor of A.  It can be 

shown that the real and imaginary parts of the estimated complex-valued un-aliased voxel 

values in Eq. [2.4] are mathematically equivalent to the estimated real and imaginary 

isomorphism vector of un-aliased voxel values in Eq. [2.6].  

2.2.2 A Linear Framework for Parallel Imaging 

For the aliased images acquired from the NC receiver coils to be combined and un-

aliased with the SENSE unfolding matrix, the aliased images first need to be 

appropriately formatted. The formalism in Eqs. [1.3] and [1.4] is expressed to reconstruct 

data from a single receiver coil that acquires a full FOV array of k-space measurements, 

but can be generalized to reconstruct sub-sampled data from multiple receiver coils in an 
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array at once. With each of ξ = [1,…, NC] receiver coils acquiring a (py/A)×px array of 

complex-valued sub-sampled spatial frequencies, Fξ,C, a real-valued vector can be formed 

for each coil by stacking the rows of the real component of Fξ,C into a vector, fξ,R, 

stacking the rows of the imaginary component of Fξ,C into a vector, fξ,I, and then 

concatenating the vectors with the real and imaginary components for each coil into a 

single vector, fξ = [fξ,R
T, fξ,I

T]T. Each coil vector, fξ, is now of the same form as f in Eq. 

[1.3], and when inverse Fourier reconstructed with the Ω operator, (that has been adjusted 

for the sub-sampled dimensions) results in a vector of aliased voxel values, 

aξ = Ω fξ. 

Being of a single coil, the vector aξ is ordered in the same fashion as y in Eq. [1.3].  

As illustrated in Fig.2.3, when the spatial frequency vectors from each of the NC coils are 

concatenated into a single vector, fcoil, with alternating sub-vectors of the real and 

imaginary spatial frequency measurements from each coil, the inverse Fourier 

reconstruction of all NC aliased coil images can be conducted at once using a Kronecker 

product of the inverse Fourier transform operator,  

acoil = (INC
Ω) fcoil.             [2.7] 

The resulting vector, acoil, in Eq. [2.7] is thus comprised of NC sub-vectors, each with a 

vector of the real reconstructed aliased voxel values from coil ξ stacked upon a vector of 

imaginary reconstructed voxel values from coil ξ. As illustrated in Fig. 2.3, the NC sub-

vectors in acoil can be reshaped into NC aliased coil images by reversing the process used 

to generate the vector fcoil.  
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Figure 2.3: Vectorizing the sub-sampled spatial frequencies from each of NC coils into a single real-valued 
vector, fcoil, such that all aliased coil images can be inverse Fourier reconstructed at once into another 
vector, acoil, with NC sub-vectors of alternating real and imaginary components. 

 

2.2.3 SENSE Operator and Permutations 

To apply the SENSE unfolding operation in Eq. [2.6] to all aliased voxels at once, 

the vector acoil in Eq. [2.7] first needs to be permuted from being ordered by aliased coil 

image, to being ordered by aliased voxel. This reordering operation, illustrated in Fig. 

2.4, can be undertaken by pre-multiplying the vector acoil in Eq. [2.7] with a “complex” 

permutation matrix, PC, by  

a = PC (INC
Ω) fcoil = PC acoil.                   [2.8] 

The result of such a permutation is another vector, a, containing the same elements as 

acoil, but the elements are rearranged with the NC real voxel values stacked upon the NC 

imaginary voxel values for each of the rp aliased voxels in the NC coil images.   
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In addition to the complex permutation applied in Eq. [2.8], it may be necessary 

to apply a second permutation that performs a Fourier transform shift when even 

acceleration factors are used.  The underlying assumption for a continuous Fourier 

transform is that the limits of the domain being transformed are infinite. When an inverse 

Fourier transform is performed on a discrete array of k-space, with a finite domain, the 

continuity condition is accounted for by assuming a wraparound of spatial frequencies. 

This effectively places “copies” of the 2-dimensional k-space array at all four edges of 

the domain. When sub-sampling is performed in the PE dimension, the failure to meet the 

Shannon-Nyquist sampling criteria causes these “copies” of the inverse Fourier  

 
 

 

Figure 2.4: Complex permutation, PC, used in the SENSE isomorphism to permute vector acoil from being 
ordered by aliased coil image to being ordered by aliased voxel with the respective vector of the real 
components stacked on top of the vector of the imaginary components. 
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Figure 2.5: The unfolding of aliased images with a reduction factor of A=2 a) without a Fourier transform 
shift results in an off center image, and b) with a Fourier transform shift results in a centered image.  c) No 
Fourier transform shift is needed for odd reduction factors such as A=3, as the image is centered after 
unfolding. 

 
 
reconstructed image to overlap, placing the center of the image domain in the center of 

the aliased image. For an acceleration factor of A=2, the center of the image domain will 

therefore be in the center of the aliased image, and thus an unfolding of the aliased image 

will lead to an image that is shifted in the PE direction by py/(2A), as illustrated in Fig. 

2.5a, where the image appears to be off center.  However, if a Fourier transform shift is 

applied to the aliased images after inverse Fourier reconstruction, then the top and bottom 

halves of the aliased images are effectively reversed, as illustrated in Fig. 2.5b, shifting 

the center of the un-aliased image back to the center of the image domain. As shown for 

an acceleration factor of A=3 in Fig. 2.5c, this is not an issue for odd acceleration factors 

because the center of the aliased image will always be aligned with the center of the 

image domain. As such, a Fourier transform shift permutation, PS, pre-multiplies the 

complex permutation in Eq. [2.8] whenever an even acceleration factor, A, is selected, 

a = PS PC (INC
Ω) fcoil.                            [2.9] 
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In order to apply the SENSE isomorphism in Eq. [2.6] to un-alias all voxels in the 

aliased coil images at once using the linear framework in Eqs. [2.8] and [2.9], Eq. [2.6] is 

rewritten as 

v = Ua, 

where the SENSE unfolding matrix, U, is a block diagonal matrix, with the jth block for 

un-aliasing voxel j defined by 

Uj = (Sj
T Ψ-1Sj)

-1Sj
T Ψ-1. 

Provided with the fully sampled coil sensitivities, a coil sensitivity matrix, S, can be 

constructed by placing the 2NC×2A coil sensitivities in Eq. [2.4] corresponding to each 

aliased voxel j = [1,…, rp], Sj, along the diagonal of a block diagonal matrix, where rp 

denotes the total number of aliased voxels.  Assuming a true covariance structure 

between spatial frequencies of Λ, and a covariance between receiver coils of Ψ, the 

covariance structure of the acquired k-space data in f, ordered by coil, is defined to be  

Γ = ΨΛ.             [2.10] 

When the acquired k-space data in all coils is inverse Fourier reconstructed into coil 

images through Eq. [2.7], the covariance structure between spatial frequencies that are 

ordered by coil in Eq. [2.10] is converted to a covariance between voxel values, also 

ordered by coil, through 

Σ = (INC
Ω)Γ(INC

Ω)T 

  = Ψ  (ΩΛΩT), 
 
where the covariance between voxels is 

Υ	ൌ	ΩΛΩT. 

In order to reconstruct all voxels at once with a known covariance between voxels, Υ, the 

SENSE unfolding operator is expressed as 
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U  ST  1
S ST  1

,                 [2.11] 

where the order of Ψ and Υ are reversed in the Kronecker product in Eq. [2.11] because 

the data un-aliased by U has been permuted by PC to being ordered by voxel rather than 

by coil.  Although it can be shown when estimated from experimental data that Υ	is not 

an identity matrix (Bruce et al., 2012), the general practice in almost all applications of 

the SENSE model is to use an identity covariance between voxels.  If Υ is assumed to be 

an identity matrix of size rp, the SENSE unfolding operator assumes that all voxels in the 

aliased coil images exhibit the same covariance between coils, Ψ, and thus Eq. [2.11] 

becomes a block diagonal matrix of the form 

U  ST Irp  1

S



 ST Irp  1

. 

A discussion on the choice between Υ≠Irp and Υ=Irp in Eq. [2.11] is carried out in 

Appendix A. It has been shown in Bruce et al. (2012) that while the assumption of Υ≠Irp 

may be more mathematically appropriate, the incorporation of Υ into the SENSE model 

through Eq. [2.11] does not offer a sufficient improvement over the common assumption 

that Υ=Irp to justify the significantly increased computational load. As such, Υ=Irp will be 

assumed for the remainder of this dissertation unless stated otherwise. When U is applied 

as an operator, it will perform the real-valued un-aliasing of the NC real and NC imaginary 

aliased voxel values in Eq. [2.6] into A real and A imaginary voxel values for all rp 

aliased voxels at once, 

v = U PS PC (INC
Ω) fcoil.  

After an application of the SENSE operator, U, it is then necessary to apply a third 

permutation, PU, illustrated in Fig. 2.6, that reorders the real and imaginary un-aliased 
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voxel values in v from being ordered by voxel to being ordered by fold. Applying a 

permutation of this kind results in a vector of all real image values stacked upon all 

imaginary image values, 

y = PU U PS PC (INC
Ω) fcoil,                    [2.12]  

that is of the same order as the vector y in Eq. [1.3]. 

 

 

Figure 2.6: Unfolding permutation, PU, used in the SENSE isomorphism to permute vector v from being 
ordered by un-aliased voxel to being ordered by fold. 

 
 

The framework in Eq. [2.12] enables additional operators for pre-processing in k-

space, OK, and image space processing, OI, to be incorporated into the reconstruction by 

y = OI PU U PS PC (INC
ΩOk) fcoil.         [2.13] 

The operators used to reconstruct the acquired k-space data in Eq. [2.12] can finally be 

combined into a single operator that performs the entire SENSE reconstruction by 

OSE = OI PU U PS PC (INC
ΩOk).                         [2.14] 
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2.3 SENSE Operator Induced Correlations 

Assuming a true covariance between coils, Ψ, and a true covariance between 

spatial frequencies, Λ, the data vector, fcoil, in Eq. [2.12] is described by the sum of a 

vector of mean spatial frequency measurements, E[fcoil]=f0, with added measurement error 

that has the covariance structure, cov(fcoil)=Γ, in Eq. [2.10].  When the operators in Eq. 

[2.14] are applied to fcoil in Eq. [2.12], the resulting image vector will have a mean of 

E[y]=OSE f0 and a modified covariance structure of  

cov(y) = OSE ΓOSE
T.            [2.15] 

In order to determine the covariance structure induced solely by the reconstruction 

operators in Eq. [2.14], Γ is assumed to be an identity matrix, simplifying Eq. [2.15] to 

ΣSE = OSE OSE
T  

 = OI PU U PS PC (INC
ΩOK) (INC

ΩOK) T PC
T PS

T
 U

T PU
T OI

T. 

 
Under the assumption that Γ=I, any non-zero terms in the off diagonal elements of ΣSE 

denote an artificially induced covariance (and in turn correlation) between voxels in the 

reconstructed image vector, y. It is important to note that such an induced covariance is 

purely a result of the reconstruction process, and is of no biological origin whatsoever. 

Assuming there are no pre-processing operations performed in k-space, OK =I, the 

covariance induced by each operation in Eq. [2.14] can be investigated by simply 

multiplying each individual operator by its transpose. To quantify the covariance induced 

by each operator, operators were constructed to simulate the reconstruction of a 6×6 array 

of spatial frequencies acquired by NC=4 receiver coils, sub-sampled by a factor of A=2. 

Starting with the first operator applied to the frequency vector, fcoil, the inverse Fourier 

transform operator, (INC
 Ω), illustrated in Fig. 2.7a is shown to be orthogonal, resulting  
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Figure 2.7: Illustrated for a toy example unfolding 6×6 images acquired with A=2 from NC =4 coils, 
operators and covariance induced by a) inverse Fourier transform applied to NC=4 coils, b) complex 
permutation, c) shift permutation, d) SENSE un-aliasing operator, e) unfolding permutation, and f) a 
Gaussian smoothing operator, Sm, with fwhm of one voxel. 
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in an identity covariance matrix scaled by A/pxpy when multiplied by its transpose. As 

such, there is no covariance induced between voxels by the (INC
 Ω) operator. Similarly, 

the permutations PC and PS in Figs. 2.7b and 2.7c merely rearrange the data vector that 

they pre-multiply, and are therefore orthonormal, resulting in identity matrices when 

multiplied by their respective transposes. As predicted in Fig. 2.2, the SENSE un-aliasing 

matrix, U, is not an orthogonal operation, and thus the block diagonal operator in Fig. 

2.7d is shown to result in a block diagonal induced covariance matrix when multiplied by 

its transpose. Since the data vector, PS PC (INC
Ω) fcoil, that the SENSE un-aliasing 

operator pre-multiplies is permuted to being ordered from by coil to by aliased voxel, the 

blocks along the diagonal of the covariance matrix in Fig. 2.7d denote the covariance 

structure induced between the previously aliased voxels. Although the unfolding 

permutation, PU, is orthonormal by itself, as shown in Fig. 2.7e, the fact that it pre-

multiplies the SENSE un-aliasing matrix, which is not orthogonal, means that any 

covariance induced by the SENSE operator will be rearranged by the permutation. This is 

true even if the original data was assumed to have an identity covariance, Γ=I, and thus 

the resulting covariance induced by the SENSE model simplifies to 

 

SE 
A

px py

OI PUUU T PU
TOI

T  . 

In almost all fMRI and fcMRI studies, it is common practice to perform spatial 

filtering (smoothing) after image reconstruction in an effort to increase the contrast to 

noise ratio (CNR) (Lowe & Sorenson, 1997). As such, a Gaussian smoothing kernel, 

OI=Sm, with a full-width-at-half-maximum (fwhm) of one voxel was applied in image 

space after the unfolding permutation,  
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y = Sm PU U PS PC (INC
Ω) fcoil, 

and thus the SENSE operators for smoothing and reconstructing k-space data becomes 

OSEsm = Sm PU U PS PC (INC
Ω).         [2.16] 

By definition, the operation of spatial smoothing induces a covariance between a voxel 

and its neighbors, and thus the covariance induced solely by the smoothing operator in 

Fig. 2.7f is not orthogonal. Furthermore, the fact that the operator Sm post-multiplies the 

unfolding permutation and SENSE unfolding operation, PUU, means that any covariance 

induced by the SENSE operator will be further modified by the smoothing operation. The 

resulting covariance induced by the SENSE model together with smoothing thus becomes  

SEsm 
A

px py

SmPUUU T PU
T Sm

T .
 

 

 

Figure 2.8: a) The complete SENSE reconstruction matrix, b) the SENSE reconstruction matrix with 
Gaussian smoothing, c) the correlation induced by the complete SENSE process and d) the correlation 
induced by the SENSE process with Gaussian smoothing. 
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The overall SENSE reconstruction operators without smoothing in Eq. [2.14] are 

presented in Fig. 2.8a, and together with smoothing in Eq. [2.16] are presented in Fig. 

2.8b. Inserting the SENSE operations in both Eq. [2.14] and Eq. [2.16] into Eq. [1.9], the 

correlations induced by the entire SENSE model are precisely quantified and presented 

without smoothing in Fig. 2.5c and with smoothing in Fig. 2.8d. It is apparent that the 

SENSE operators together with Gaussian smoothing in Fig. 2.8d spread the structure of 

the correlation induced by the SENSE model in Fig. 2.8c to additional neighboring 

voxels. This indicates that while spatial filtering is commonly thought to improve the 

CNR of an image, it can have adverse effects on the covariance of the reconstructed 

image as well. If the correlation matrices in Figs. 2.8c and 2.8d are partitioned into 

quadrants, such as those in Eq. [1.10], there are apparent non-zero elements in the upper 

right and lower left quadrants that indicate correlations are induced between the real and 

imaginary components of the reconstructed data.  

2.4 Theoretical Illustration of SENSE Induced Correlations 

2.4.1 Data Generation 

To replicate the process of acquiring data from an MRI scanner with a standard 

EPI pulse sequence, a time series of complex valued spatial frequencies was generated 

using the MR signal equation, 

f (kx ,ky )  (x, y)et /T2
* (x,y)ei B(x,y)tei2 (kxxkyy) dx dy










 .         [2.17] 

In Eq. [2.17], every spatial frequency value, f(kx,ky), is derived from a linear combination 

of the proton spin density, ρ, the intra-acquisition decay, T2
*, and the magnetic field, B, in  
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Figure 2.9: Data generated through Eq. [2.17] using a) a 96×96 Brain phantom with proton spin density, ρ, 
and transverse relaxation, T2

*, parameters defined for CSF, grey matter, white matter and space. Data was 
generated for each of NC=8 coils using B-field b) magnitudes and c) phases estimated from experimentally 
acquired data, resulting in noiseless coil images (magnitude shown) for acceleration factors of d) A=1, e) 
A=2, f) A=3. As used in the SENSE reconstruction g) full FOV B-field sensitivity profiles (magnitude 
shown) were estimated for each of the NC=8 receiver coils. 
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every voxel location, (x,y), within the slice of the object being scanned. As the magnetic 

field gradients in an MRI scanner Fourier encode the spatial frequency spectrum of the 

object being scanned, the term e-i2π(kxx+kyy) in Eq. [2.17] corresponds to the forward Fourier 

transform. In this simulation, the 96×96 brain phantom in Fig. 2.9a was used to simulate 

an axial slice of a human subject’s brain. Voxels that correspond to white matter, grey 

mater, cerebral spinal fluid (CSF) and points in space were given tissue specific values of 

both ρ and T2
*, as listed in Fig. 2.9a. To simulate the acquisition of k-space using a 

phased array, a collection of NC=8 B-fields, B, were estimated from an experimentally 

acquired human subject resting-state data set (that will be presented in the Experimental 

Illustration to follow) by fitting a third order polynomial to estimated sensitivity profiles. 

The magnitude and phase of the B-field for each of the NC=8 receiver coils are presented 

in Fig. 2.9b and Fig. 2.9c respectively. The B-fields in Fig. 2.9b and Fig. 2.9c were 

estimated from data acquired in a 3.0 T MRI scanner, and the gyromagnetic ratio, γ, in 

Eq. [2.17] is γ=42.58 MHz/T. 

To simulate the acquisition of spatial frequencies, the generation of each spatial 

frequency value, f(kx,ky), in Eq. [2.17] is performed by shifting through k-space in 

increments of Δt=0.004 ms, thereby defining a time, t, at which each location in k-space 

is acquired. As with a standard EPI pulse sequence in Fig. 1a, k-space is sampled on a 

frequency-by-frequency and row-by-row basis, starting in the lower left corner. The 

magnetic field gradients shift through k-space in the frequency encoding direction from 

the lower left corner to the lower right corner, measuring spatial frequencies spaced Δkx 

apart. Once an entire row of frequencies has been acquired, the gradient in the frequency 

encoding direction is reversed while the gradient in the phase encoding direction is 
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applied simultaneously to shift vertically by an increment of Δky. This turn around 

process occurs over a series of “turn around” points, during which the time, t, is 

incremented by Δt=0.004 ms at each point. For this simulation, a total of 80 turn around 

points were simulated for each turn. When shifting in the PE dimension by an increment 

of Δky, a fully sampled array of spatial frequencies is acquired, resulting in the noiseless 

coil images in Fig. 2.9d after applying an inverse Fourier transform. To simulate sub-

sampling by an acceleration factor of A, the increment in the PE dimension was increased 

to AΔky. The resulting noiseless inverse Fourier reconstructed sub-sampled coil images 

for accelerations of A=2 and A=3 are illustrated in Fig. 2.9e and Fig. 2.9f respectively. 

To generate the time series of images, the noiseless spatial frequency arrays 

generated by Eq. [2.17] for each coil with acceleration factors A=1 (fully sampled), A=2 

and A=3 were first inverse Fourier reconstructed into the image domain to generate 

noiseless coil images for each acceleration factor. These noiseless coil images were then 

scaled to have a maximum magnitude of 50 in the coil image with the greatest magnitude, 

and subsequently Fourier transformed back into spatial frequency arrays for each coil. A 

time series of 500 time repetitions (TRs) was generated for all NC=8 coils by adding 

Gaussian noise with a mean of zero and a standard deviation of p
x
p

y
 96 96  to both 

the real and imaginary components of the 500 k-space arrays for each coil and for each of 

the three different acceleration factors. If a py×px array of k-space, with a standard 

deviation of p
x
p

y
, is sub-sampled by a factor of A, the standard deviation of the 

corresponding (py/A)×px inverse Fourier reconstructed image will be increased by A . 

When A=1 in the fully sampled data set, this results in images with a standard deviation 

of 1, and thus a maximum SNR (magnitude/standard deviation) of 50 in the coil images. 
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When A>1, the standard deviation is therefore expected to increase, and thus the SNR of 

the reconstructed images is expected to decrease in turn.  

When the complex-valued Gaussian noise was added to each TR of the time 

series, a complex-valued coil covariance structure,  , was also induced between the coil 

arrays. The covariance matrix,  , used in this illustration was derived from the same  

 

Table 2.1: Coil correlation structure estimated from a human subject data set. 

a) Correlation between real components of each coil (ΨRR) 

1 0.6496 0.1819 -0.3027 0.4453 0.4415 -0.2778 -0.5478
0.6496 1 0.6483 -0.1925 0.5118 0.4825 -0.0915 -0.1967
0.1819 0.6483 1 0.2368 0.5997 0.5342 0.0868 0.0375

-0.3027 -0.1925 0.2368 1 0.2471 0.3889 0.4605 0.3363
0.4453 0.5118 0.5997 0.2471 1 0.7886 -0.4482 -0.4809
0.4415 0.4825 0.5342 0.3889 0.7886 1 -0.2639 -0.4627

-0.2778 -0.0915 0.0868 0.4605 -0.4482 -0.2639 1 0.7266
-0.5478 -0.1967 0.0375 0.3363 -0.4809 -0.4627 0.7266 1

 
b) Correlation between imaginary components of each coil (ΨII) 

1 0.6448 0.0705 -0.4013 0.4243 0.4314 -0.4087 -0.6343
0.6448 1 0.5261 -0.3035 0.4472 0.4278 -0.2055 -0.2564
0.0705 0.5261 1 0.2677 0.5352 0.4847 0.1056 0.0966

-0.4013 -0.3035 0.2677 1 0.224 0.3418 0.502 0.3966
0.4243 0.4472 0.5352 0.224 1 0.7672 -0.4848 -0.479
0.4314 0.4278 0.4847 0.3418 0.7672 1 -0.299 -0.4764

-0.4087 -0.2055 0.1056 0.502 -0.4848 -0.299 1 0.7586
-0.6343 -0.2564 0.0966 0.3966 -0.479 -0.4764 0.7586 1

 
c) Correlation between real and imaginary components of each coil (ΨRI) 

-0.078 0.4349 0.6323 0.4003 0.148 0.1643 0.514 0.5416
-0.56 -0.0859 0.5932 0.6195 0.0736 0.0809 0.5715 0.5988

-0.6769 -0.625 0.0573 0.8011 -0.1161 -0.0461 0.584 0.5626
-0.3838 -0.558 -0.7516 0.0023 -0.7741 -0.5255 0.3833 0.3465
-0.2494 -0.1737 0.1329 0.7752 -0.0281 0.3376 0.5983 0.3519
-0.2629 -0.1743 0.0524 0.5261 -0.3949 -0.0192 0.8141 0.4769
-0.4865 -0.484 -0.4965 -0.3295 -0.5473 -0.8054 0.0304 0.4048
-0.473 -0.4974 -0.4931 -0.3255 -0.2916 -0.4477 -0.3657 0.0095
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experimentally acquired human subject resting-state data set that was used for estimating 

the coil B-field profiles. To observe the structure of the coil covariance, the matrix   

was converted to a correlation structure and presented in Table. 2.1. Upon observation, 

the structure in Table 2.1 is not an identity matrix, as assumed in most applications of the 

SENSE model. Based on the skew symmetric structure assumed by the SENSE model in 

Eq. [2.5], the imaginary covariance between coils is changed from the structure in Table 

2.1b to 
I
 

R
 in Table 2.1a, and the covariance between the real and imaginary 

components of the coil images is converted from the structure in Table 2.1c to the 

negative of the estimated imaginary structure in Table. 2.1b. 

2.4.2 Data Reconstruction and Processing 

As performed when reconstructing experimentally acquired data with the SENSE 

model, the coil B-field sensitivity profiles, SC, and the estimated covariance between 

coils, ̂ , used in Eq. [2.2] are estimated from the fully sampled calibration data. The 

fully sampled data set generated with A=1 was therefore used for calibration in this study. 

To estimate the coil B-field sensitivity profiles, a mean image for each of the NC=8 coils 

was derived by taken the mean over the individual coil time series. To normalize these 

mean coil images and remove any anatomical structure, a single “body coil” image was 

derived by averaging the mean coil images into a single image. Each of the NC=8 mean 

coil images was then divided by the simulated body coil image. The result of this process 

is the estimated coil B-field sensitivity profiles illustrated in Fig. 2.9g that have no 

anatomical structure and describe the decrease in B-field strength with distance from each 

coil. The procedure used for estimating the covariance between coils, ̂ , is outlined in 
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Appendix A. With estimates of both SC and ̂ , the aliased coil images in each TR of the 

time series with A=1, A=2, and A=3 were reconstructed into full FOV combined images 

with the SENSE model in Eq. [2.2]. As most fcMRI studies use spatial filtering to 

increase CNR (Lowe & Sorenson, 1997), smoothing was performed by convolving each 

of the reconstructed image with a Gaussian smoothing kernel that had a fwhm of 3 

voxels. The weights of the smoothing kernel were normalized such that the smoothed 

images would be of the same signal strength as the unsmoothed images. 

2.4.3 Results 

 The mean magnitude and phase images from the reconstructed time series with 

A=1, A=2, and A=3 are presented in Fig. 2.10a, Fig. 2.10b, and Fig. 2.10c respectively. 

Due to the fact that the number of coils is more than double that of the highest 

acceleration factor, the system of equations in Eq. [2.1] is very over-determined. As such, 

there is no apparent difference in either the mean magnitude or mean phase images of the 

three different data sets. When the NC=8 aliased coil images are combined into a single 

un-aliased image with SENSE, the standard deviation of the combined image will be 

lower than that of the individual coil images. This is apparent in Fig. 2.10a for A=1, 

where each reconstructed coil image had a standard deviation of 1, while the SENSE 

reconstructed image has a standard deviation (on average) that is close to 0.2. 

Consequently, the SNR of the combined fully sampled data set in Fig. 2.10a is increased 

from 50 in the uncombined coil images to 200 in the SENSE combined image. Upon 

observation of the standard deviation and SNR for the SENSE reconstructed time series 

with A=1, A=2, and A=3, presented in Fig. 2.10a, Fig. 2.10b, and Fig. 2.10c respectively, 

there is an apparent increase in the standard deviation with an increase in the acceleration  
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Figure 2.10: Mean magnitude and phase, standard deviation and SNR for SENSE reconstructed images 
with a) A=1, b) A=2, c) A=3, as well as d) A=1, e) A=2, and f) A=3 with smoothing. 
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factor. This is due to the fact that the noise added to the k-space array for each coil image 

in the time series had a standard deviation of p
x
p

y
 96 96 , and thus when k-space was 

sub-sampled by A=2 and A=3, the standard deviation of the inverse Fourier reconstructed 

coil images was increased within the regions of aliasing by a factor of 2  and 3  

respectively. In areas of the reconstructed images with A=2 and A=3 in which there was 

no aliasing (such as the sides of the phantom), the standard deviation is more on the order 

of that in Fig. 2.10a where A=1. A consequence of this increase in the standard deviation 

in the previously aliased regions of the phantom is the notable decrease in the SNR of 

SENSE reconstructed images in Fig. 2.10b and 2.10c for A=2 and A=3, by comparison to 

that of a reconstruction with A=1 in Fig. 2.10a. 

 As almost all current fMRI and fcMRI studies use spatial filtering to increase 

CNR, each of the 500 images in the SENSE reconstructed time series with A=1, A=2 and 

A=3 were smoothed using a Gaussian smoothing kernel with a fwhm of 3 voxels. As with 

the unsmoothed images, the mean magnitude and phase images from the reconstructed 

time series with A=1, A=2, and A=3, presented in Fig. 2.10d, Fig. 2.10e, and Fig. 2.10f 

respectively, show no noticeable differences between them. As the desired effect of 

spatial smoothing is to reduce the standard deviation, and in turn the noise, the standard 

deviations for all acceleration factors are significantly reduced (note the scale difference 

between the standard deviations in Figs. 2.10a-2.10c and those in Figs. 2.10d-2.10f). All 

standard deviation and SNR images in Fig. 2.10 have been masked to focus on the 

behavior within the phantom. The “ring” of high standard deviation around the phantom 

in the reconstructed images with A=2 in Fig. 2.10e and A=3 in Fig. 2.10f results from a 

decreased standard deviation within the phantom by comparison to that in space. As with 
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the unsmoothed reconstructed images, the SNR of the smoothed SENSE reconstructed 

images decreases with an increase in the acceleration factor. As the standard deviation in 

all images in Fig. 2.10 increases in the regions of the phantom that were aliased for A=2 

and A=3, the SNR is notably lower in these aliased regions in turn.  

By constructing the SENSE unfolding operator, U, in Eq. [2.14] for acceleration 

factors of A=1, A=2 and A=3, the theoretical correlations induced by the entire SENSE 

reconstruction process were determined by inserting the operator OSE for each 

acceleration factor into Eq. [1.9]. Through Eq. [1.9] the theoretical correlations induced 

between the real un-aliased voxel values, between the imaginary un-aliased voxel values, 

and between the real and imaginary un-aliased voxel values are determined. To observe 

these correlations about a single voxel of interest (VOI), j, one merely reshapes the jth 

rows in the respective quadrants of the matrix generated in Eq. [1.9] into py×px matrices. 

As an identity covariance structure was assumed between spatial frequencies in 

generating the time series of images in each coil for each acceleration factor, there is no 

inherent structure in the original data. Any correlation structure noted in either the 

theoretical induced correlations determined by Eq. [1.9] or those estimated from the 

SENSE reconstructed Monte Carlo (MC) time series will therefore be a direct result of 

the SENSE reconstruction process. 

The theoretical correlations induced about a VOI in the anterior of the brain 

phantom, highlighted by a pink circle, by the SENSE unfolding process for a data set 

with no sub-sampling (A=1) are presented on top of a magnitude reconstructed image 

underlay in Fig. 2.11a with a threshold of ±0.125. As this data set was generated with no 

sub-sampling, there was no un-aliasing performed in the reconstruction process. As such,  
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Figure 2.11: Presented on a magnitude brain phantom underlay and threshold to ±0.125 are real, 
imaginary, real/imaginary and magnitude-squared correlations a) theoretically induced by SENSE with 
A=1, b) estimated from MC data with A=1, c) theoretically induced by SENSE with A=2, d) estimated from 
MC data with A=2, e) theoretically induced by SENSE with A=3, and f) estimated from MC data with A=3.  
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there is no correlation induced by the SENSE model between the real component of the 

VOI and the real component of any other voxel, between the imaginary component of the 

VOI and the imaginary component of any other voxel, or between the real component of 

the VOI and the imaginary component of any other voxel. While magnitude-only data has 

become the gold standard in many fMRI and fcMRI studies, the reconstruction of 

magnitude data is not a linear operation, and thus the correlations induced by such a 

process are not presented here. However, the square of magnitude-only data is a linear 

process, and the correlation structures of magnitude-only and magnitude-squared data are 

asymptotically equivalent (and visually indistinguishable) (Nencka et al., 2009; Rowe 

and Nencka, 2009). As such, the correlations induced by the SENSE reconstruction with 

A=1 about the VOI in magnitude-squared data is presented in Fig. 2.11a. As with the real 

and imaginary induced correlation structures, there is no correlation induced between the 

VOI and any other voxel since no un-aliasing was performed. To validate the theoretical 

correlations induced by the SENSE model with A=1, the real, imaginary, real/imaginary 

and magnitude-squared correlations about the VOI were also estimated from the MC 

timeseries reconstructed with A=1, and are presented in Fig. 2.11b. As predicted by the 

theoretical correlations in Fig. 2.11a, there is no apparent correlation structure induced 

between the VOI and any other voxel that is more than a byproduct of the random noise 

added to the data set. 

The theoretical correlations induced by the SENSE unfolding process with A=2 

and A=3 are presented about a VOI in the center of the pink circles in Fig. 2.11c and Fig. 

2.11e respectively. Prior to the SENSE reconstruction, the VOI selected in Fig. 2.11c was 

aliased with a single aliased VOI (aVOI) due to the two-fold aliasing with A=2, and the 



 

 

54

VOI selected in Fig. 2.11e was previously aliased with two aVOIs due to the three-fold 

aliasing with A=3. The green circles in Fig. 2.11 highlight the locations of each aVOI. 

Upon observation, there are negative real, imaginary and magnitude squared correlations 

induced between the VOI and aVOI by a SENSE reconstruction with A=2 in Fig. 2.11c, 

while the SENSE reconstruction with A=3 induces a negative real, imaginary and 

magnitude squared correlations between the VOI and the aVOI in the center of the 

phantom and a positive correlation between the VOI and the aVOI in the anterior of the 

phantom. As with the fully sampled data set, there is no apparent correlation between the 

real component of the VOI and the imaginary component of any other voxel for SENSE 

reconstructions with A=2 or A=3. To validate the theoretical correlations induced by the 

SENSE model with A=2 and A=3, the real, imaginary, real/imaginary and magnitude 

squared correlations estimated from the MC reconstructed time series are presented in 

Fig. 2.11d for A=2, and in Fig. 2.11f for A=3. As predicted by the theoretical correlations 

induced by SENSE with A=2 and A=3 in Fig. 2.11c and Fig. 2.11e, there are correlations 

of the same sign noted between the VOI and aVOIs in Fig. 2.11d and Fig. 2.11f. As with 

the correlations estimated from the time series reconstructed with A=1, there are 

additional random low correlations between the VOI and other voxels spread throughout 

the phantom for reconstructions with both A=2 and A=3 that are merely a result of the 

noise added when generating the data. 

 When a Gaussian smoothing operator, Sm, with a fwhm of 3 voxels is applied 

after the SENSE unfolding process, as in Eq. [2.16], the correlations induced by SENSE 

for acceleration factors of A=1, A=2, and A=3 together with smoothing are determined by 

inserting the operator SmOSE for each acceleration factor into Eq. [1.9]. The theoretical  
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Figure 2.12: Presented on a magnitude underlay and threshold to ±0.125 are smoothed real, imaginary, 
real/imaginary and magnitude-squared correlations a) theoretically induced by SENSE with A=1, b) 
estimated from MC data with A=1, c) theoretically induced by SENSE with A=2, d) estimated from MC 
data with A=2, e) theoretically induced by SENSE with A=3, and f) estimated from MC data with A=3.  
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correlations induced by SENSE with A=1, A=2, and A=3 together with smoothing are 

presented in Fig. 2.12a, Fig. 2.12c, and Fig. 2.12e respectively. Upon comparison to the 

unsmoothed counterparts in Fig. 2.11, all SENSE induced correlations between the VOI 

and aVOIs are of the same sign and appear to be spread to the neighboring voxels of both 

the VOI and the neighboring voxels of the aVOIs. This implies that while the VOI may 

be artificially aliased with an aVOI by the SENSE model, the addition of smoothing 

induces a correlation between the VOI and neighboring voxels of the aVOIs. The 

theoretical correlations induced by SENSE reconstructions with A=1, A=2 and A=3 

together with smoothing are validated by observing the MC correlations estimated from 

the smoothed reconstructed time series for A=1 in Fig. 2.12b, for A=2 in Fig. 2.12d, and 

for A=3 in Fig. 2.12f. As with the estimated unsmoothed MC correlations, the structure of 

the estimated MC correlations between each VOI and aVOI after smoothing match the 

corresponding theoretical SENSE induced correlations for each acceleration factor. There 

are once again additional random low correlations between the VOI and other voxels 

spread throughout the phantom for all acceleration factors that are merely a result of the 

noise that was added when generating the data. 

2.4.4 Theoretical Functional Connectivity Simulation 

To replicate an fcMRI study, a Hamming band pass filter was applied to the time 

series of every voxel in the smoothed SENSE reconstructed images with A=1, A=2, and 

A=3 to maintain temporal frequencies between 0.01 and 0.08 Hz. In many fcMRI studies, 

a cluster of voxels in a particular region defines the seed VOI. For this study, the VOIs 

selected in Fig. 2.12 were expanded to 2×2 clusters of voxels in the same locations within 

the anterior of the phantom. To determine functional connectivity about the 2×2 seed 



 

 

57

region, the voxel time series were averaged over space to form a single mean time series 

for the VOI, v. The correlation coefficient, cc, between the seed region time series, v, and 

the time series for each other voxel, s, in the Hamming band pass filtered images 

reconstructed with each acceleration factor were evaluated using the standard Pearson’s 

coefficient of linear correlation, 

cc 
(v(t)V) (s(t) S)

t1

500



v(t)V 2

t1

500

  s(t) S 2

t1

500


,            [2.18] 

where V and S  are the temporal means of voxels v and s respectively.  Using Eq. [2.18], 

the correlation coefficients between the real components of v and s, between the 

imaginary components of v and s, between the real component of v and the imaginary 

component of s, and between the magnitude-squared components of v and s were 

determined for the SENSE reconstructed images with A=1, A=2, and A=3.  

 An identity covariance structure was used between spatial frequencies in 

generating the time series of images in each coil for each acceleration factor because the 

null hypothesis in an fcMRI study assumes no correlation exists between voxels. Should 

a statistically significant correlation be determined between two brain regions, the null 

hypothesis is rejected and functional connectivity is assumed between those regions. The 

fcMRI correlation coefficients determined by Eq. [2.18] for the SENSE reconstructed 

time series with A=1 are presented in Fig. 2.13a with a threshold of ±0.35 (p≈0.05) 

(Greicius et al., 2003). As there was no un-aliasing performed on this data set, the 

“connectivity” noted about the seed VOI is random, and purely a result of the noise added 

to the data. For the SENSE reconstructed time series that were sub-sampled with A=2 in 

Fig. 2.13b and with A=3 in Fig. 2.13c, the same induced correlation structure noted in  
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Figure 2.13: Estimated real, imaginary, real/imaginary and magnitude-squared correlations denoting 
functional connectivity in time series reconstructed by SENSE with a) A=1, b) A=2, and c) A=3 after a 
temporal Hamming band pass filter was applied to each voxel to maintain frequencies between 0.01 and 
0.08 Hz. Correlations are all presented on a smoothed magnitude underlay and threshold to ±0.35. 

 
 
Fig. 2.11 and Fig. 2.12 are noted between the VOI and aVOIs. As the correlations in Fig. 

2.13 are estimated from SENSE reconstructed data sets that have been subjected to a 

Hamming band pass filter to maintain temporal frequencies between 0.01 and 0.08 Hz, 

these correlations would reject the null hypothesis in a fcMRI study, implying that the 

previously aliased voxels are functionally connected. As the data in this illustration was 

generated with an identity covariance between voxels, all correlations between the seed 

VOIs in Fig. 2.13 and any other voxels therefore indicate false positives. This implies 

that the SENSE induced correlations are statistically significant and reside in the 

frequency spectrum commonly associated with functional connectivity. Moreover, the 
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position of the selected seed VOI and the aVOIs align themselves very closely to the 

commonly investigated Default Mode Network in the brain (Raichle et al., 2001; Raichle 

et al., 2007) in Fig. 2.2, and could therefore corrupt fcMRI conclusions with the potential 

for incurring Type I & II errors, depending on the sign of the induced correlations and the 

sign of the correlations inherent in the acquired data. 

2.5 Experimental Illustration of SENSE Induced Correlations 

2.5.1 Data Acquisition and Reconstruction 

To validate the statistical implications of the SENSE model explored in the 

previous section, a non-task human subject fcMRI data set of 510 TRs was acquired with 

each of NC=8 receiver coils through an echo planar imaging (EPI) pulse sequence in a 

3.0T General Electric Signa LX magnetic resonance imager. The data set was comprised 

of four axial slices with 96×96 voxels that were 2.0×2.0×2.5mm in dimension. Each TR 

in the time series was 1 s in length with an echo time of 45.4 ms, an effective echo 

spacing of 816 μs, excited by a flip angle of 45°, and an acquisition bandwidth of 125 

kHz. Of the 510 TRs, the first 20 were discarded to account for T1 effects and varying 

echo times, resulting in 490 TRs acquired under the same conditions. To correct the 

Nyquist “ghosting” that can result from sampling the odd and even lines of k-space in 

different directions in an EPI acquisition scheme, the center row of k-space for each TR 

in each receiver coil was acquired with three navigator echoes. These extra rows of k-

space were used to estimate and adjust the error in the center frequency and group delay 

offsets between the odd and even lines of k-space (Nencka et al., 2008). As factors such 

as respiration and out of field motion can create dynamic fluctuations in the main B-field 
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of the scanner when using EPI acquisition techniques, the global temporal phase structure 

was corrected in each coil to account for field shifts associated with gradient heating and 

RF phase variations (Hahn et al., 2009; Hahn et al., 2012). Additionally, to account for 

the phase drift in B-field gradients, a plane was fit to and subtracted from the phase in 

each image in a time series in each coil using the technique outlined in (Jesmanowicz et 

al., 2011).  

 To observe the difference between the same data set being fully sampled with 

A=1 and reconstructed by the SENSE model with A=3, sub-sampling was performed 

retrospectively by deleting rows of k-space with the PE direction oriented as anterior-

posterior. The fully sampled data set was used for estimating coil B-field sensitivity 

profiles, S, together with the covariance between coils, Ψ, that are used for reconstructing 

the data set sub-sampled by A=3 with Eq. [2.2]. For a baseline comparison, the data set 

with A=1 acquired by the NC=8 coils was combined into a single time series using Eq. 

[2.2]. After reconstruction, each image in the data sets with A=1 and A=3 were spatially 

filtered using a Gaussian smoothing kernel with a fwhm of 3 voxels. To observe 

functional connectivity, a Hamming band pass filter was then applied to the time series of 

every voxel in the smoothed images reconstructed by SENSE with A=1 and A=3 to 

maintain temporal frequencies between 0.01 and 0.08 Hz. 

2.5.2 Experimental Results 

The mean magnitude, mean phase, standard deviation and SNR for the data sets 

reconstructed by SENSE with A=1 and A=3 and subsequently smoothed with a Gaussian 

kernel are presented in Fig. 2.14a and Fig. 2.14b respectively. As with the theoretical 

illustration, the mean magnitude reconstructed images for A=1 and A=3 are visually 
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similar, which is to be expected since the number of coils is more than double A=3, and 

thus the spatial localization matrix, S, in Eq. [2.2] is very over determined. Unlike the 

magnitude, however, there are notable differences in the mean phase within the brain of 

the images reconstructed with A=1 and A=3. As the SENSE un-aliasing process makes 

use of coil B-field sensitivity estimates, this difference in the phase is most likely the 

result of inhomogeneities in the acquired coil B-fields. It is of note that the large FOV of 

the acquired data set makes the size of the brain small relative to the size of the image. 

This means that although the full FOV image is folded over on itself A=3 times through 

the aliasing process, the brain itself only experiences two-fold aliasing, with one of the 

A=3 aliased voxels falling in space. As noted in the theoretical illustration, the reduced 

FOV of k-space in the data set sub-sampled by A=3, results in a standard deviation in Fig.  

 

 

Figure 2.14: Mean magnitude and phase, standard deviation and SNR for images of a human subject 
reconstructed by SENSE with a) A=1 and b) A=3 together with smoothing. 
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2.14b that is greater in the areas of two-fold aliasing than that of the fully sampled data 

set in Fig. 2.14a. Given that SNR is derived by the ratio of the mean magnitude and 

standard deviation in each voxel, the increase in standard deviation with an increase in A 

results in a decreased SNR for A=3 in Fig. 2.14b compared to that for A=1 in Fig. 2.14a. 

The comparison between the real, imaginary, real/imaginary and magnitude-

squared correlations induced by a SENSE reconstruction with A=1 versus A=3 is 

performed in three ways. First, the theoretical correlations induced by the SENSE 

reconstruction operators, OSE, together with a smoothing operator, Sm, in Eq. [2.16] were 

determined through Eq. [1.9] and are presented in Fig. 2.15a for A=1 and Fig. 2.15d for 

A=3. Second, the correlations estimated directly from the experimentally acquired human 

subject data sets (EXP) reconstructed with the SENSE model together with smoothing are 

presented in Fig. 2.15b for A=1 and in Fig. 2.15e for A=3. Finally, the correlations 

estimated about a 2×2 seed region, determined with Eq. [2.18], in the reconstructed time 

series after a Hamming band pass filter was applied to each voxel’s time series are 

presented in Fig. 2.15c for A=1 and in Fig. 2.15f for A=3. All correlations in Fig. 2.15 are 

presented on top of a magnitude underlay with a pink circle highlighting each VOI and 

green circles highlighting the aVOI’s. To illustrate the complete theoretical structure, the 

images in Fig. 2.15a and Fig. 2.15d show all correlations induced about the VOI by the 

SENSE model, even if there is a correlation induced between the VOI and voxels in 

space. All correlation in Figs. 2.15b-c and Figs. 2.15e-f, however, are masked to observe 

correlations between the VOI and voxels within the brain only. The theoretical 

correlations induced by SENSE are presented with a threshold of ±0.125 to illustrate the 

general induced correlation structure, while the correlations estimated from the  
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Figure 2.15: Correlations about a VOI for a human subject data set a) theoretically induced by SENSE 
with A=1, b) estimated from EXP data with A=1, c) fcMRI correlations estimated from Hamming band pass 
filtered images reconstructed by SENSE with A=1, d) theoretically induced by SENSE with A=3, e) 
estimated from EXP data with A=3 and f) fcMRI correlations estimated from Hamming band pass filtered 
images reconstructed by SENSE with A=3. Correlations in a) and d) are threshold to ±0.125 and 
correlations in b-c) and e-f) are threshold to ±0.35. 
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reconstructed images with and without band pass filtering are presented with a threshold 

of ±0.35 (p≈0.05) (Greicius et al., 2003).  

As the theoretical correlations presented in Fig. 2.15a are for a SENSE 

reconstruction with A=1 together with smoothing, the only correlation structure of note is 

that induced between the VOI and its immediate neighbors by the Gaussian smoothing 

kernel. The estimated EXP correlations for data reconstructed with A=1 together with 

smoothing in Fig. 2.15b show positive real, imaginary and real/imaginary correlations in 

the vicinity of the VOI with negative real, imaginary and real/imaginary correlations 

across the midbrain region. As the correlations estimated from magnitude-squared data 

all appear to be positive and strongest in the vicinity of the VOI, the negative real, 

imaginary and real/imaginary correlations are most likely a byproduct of the phase in the 

reconstructed images. This could result from inhomogeneities in either the B-fields of the 

coils that acquired the data or the estimates of the B-field sensitivities that are used to 

reconstruct the data. When the time series of each voxel in the smoothed images 

reconstructed by SENSE with A=1 are band pass filtered to the frequency spectrum 

commonly associated with fcMRI, the correlations representing connectivity in Fig. 2.15c 

are slightly diminished but still resemble the structure of their un-filtered counterparts in 

Fig. 2.15b. 

With the VOI located in the anterior region of the brain, the aVOIs prior to a 

SENSE reconstruction with A=3 fall both within the anterior of the brain and in space 

above the brain. The correlations induced by a SENSE reconstruction with A=3 between 

the VOI and the real, imaginary, real/imaginary and magnitude-squared components of 

all other voxels are presented in Fig. 2.15d. As with the theoretical illustration, the real 
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and imaginary induced correlations are both positive and negative while the correlations 

induced between the VOI and aVOIs in magnitude-squared data are all positive. Unlike 

the data set used in the theoretical illustration, there are notable positive and negative 

correlations induced between the real component of the VOI and the imaginary 

components of the aVOIs. It is apparent that the estimated EXP correlations for data 

reconstructed with A=3 together with smoothing in Fig. 2.15e appear to be slightly 

different to the corresponding EXP correlations estimated from data with A=1 in Fig. 

2.15b. These differences are partly a result of the difference in phase between the images 

reconstructed with A=1 in Fig. 2.14a and the images reconstructed with A=3 in Fig. 

2.14b, but most importantly are a result of the real, imaginary, real/imaginary and 

magnitude squared correlations induced by the SENSE reconstruction between the VOI 

and the aVOI within the brain. The correlations noted within the green circles of Fig. 

2.15e match the sign of and shape their theoretically induced counterparts in Fig. 2.15d.  

When the time series of each voxel in the smoothed images reconstructed by SENSE with 

A=3 are band pass filtered to the frequency spectrum commonly associated with fcMRI, 

the correlations representing functional connectivity in Fig. 2.15f still show positive 

correlations between the VOI and the aVOI in the green circle. This validates the fcMRI 

correlations in the theoretical illustration in Fig. 2.13c, suggesting that the artificial 

correlations induced by the SENSE model reside in the frequency spectrum commonly 

associated with functional connectivity. As the fcMRI correlations shown in Fig. 2.15c 

for a data set with no un-aliasing (A=1) exhibit no positive correlations between the VOI 

and the location of where an aVOI would be in the anterior of the brain, these regions 

would not be assumed to be functionally connected. However, should a neuroscientist not 
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account for the implications of the reconstruction and processing operations performed 

on their data, the notable correlations between the VOI and aVOI after a SENSE 

reconstruction with A=3 in Fig. 2.15f (which are of no biological origin) would reject the 

null hypothesis in a functional connectivity study, suggesting that these two regions are in 

fact functionally connected when they are not.  

2.6 Discussion 

The SENSE model is one of the most common pMRI models used in most clinical 

GE MRI scanners. With an array of receiver coils placed around an object in the scanner, 

the SENSE model offers an attractive means of un-aliasing aliased coil images into a 

single full FOV image by exploiting the overlap of coil B-fields for spatial localization. 

As such, many studies (including those funded by the $35m Human Connectome Project) 

utilize the SENSE model with little to no regard as to the degree to which the model 

changes the statistical properties of the data. The real-valued isomorphic framework 

outlined in this chapter provides a novel means of precisely quantifying the structure of 

the correlations artificially induced by the SENSE model without the need for time-

consuming MCMC simulations that can only estimate the structure.  

The correlations theoretically induced by the SENSE model have been validated 

through both theoretical MC and experimental illustrations. The results of both 

illustrations have shown that when images are sub-sampled with an array of receiver coils 

by an acceleration factor of A>1, and subsequently un-aliased by the SENSE model, there 

are unavoidable correlations of no biological origin induced between the A previously 

aliased voxels. As these correlations still exceed a threshold of ±0.35 after the 

conventional Hamming band pass filtering of each voxel’s time series to frequencies 
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between 0.01 and 0.08 Hz, the non-biological correlations artificially induced by the 

SENSE model would be mistaken for regions of apparent functional connectivity with 

95% confidence when they are not. When sub-sampling is performed from 

anterior/posterior, these correlations can fall within the commonly explored default mode 

network, while sub-sampling from left/right could result in these correlations falling near 

or within the motor cortices. As such, there is ultimately a need for new methods to 

accelerate data without inducing such misleading correlations. In the meantime, it is 

necessary for scientists conducting an fcMRI study that employs models such as SENSE 

to at least quantify and be aware of the presence of these correlations between regions 

they may be investigating. 
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Chapter 3:   A Statistical Investigation of the GRAPPA pMRI Model 

3.1 The GRAPPA Model 

Unlike the SENSE model, where the un-aliasing of aliased coil images is 

performed in the image domain, the GRAPPA model is characterized as a k-space 

technique because the interpolation of missing coil measurements occurs in the spatial-

frequency domain. The original GRAPPA model (Griswold, et al., 2002) represents a 

more generalized implementation of the VD-AUTO-SMASH approach (Heidemann, et 

al., 2001), utilizing a variable density (VD) acquisition scheme, only differing in the way 

in which the missing lines of k-space are repopulated. With AUTO-SMASH (Jakob, et 

al., 1998) and VD-AUTO-SMASH, a collection of fully sampled spatial frequencies are 

acquired either in the center of k-space or separately in full FOV calibration scans and 

used to generate a single composite array of spatial frequencies from the sub-sampled k-

space arrays acquired with multiple receiver coils.  Using the acquired spatial frequency 

measurements from all coils, the GRAPPA model generates a full FOV uncombined 

spatial frequency array for each receiver coil by performing an interpolation of missing 

lines of k-space within each coil array.  

When a uniform sub-sampling of k-space is performed by an acceleration factor 

of A in the PE direction, such as that in Fig. 1.1, every Ath row of k-space is acquired. 

This spaces the acquired rows AΔky apart and leaves (A-1) missing rows between 

measurements. With VD acquisition schemes, additional rows of auto-calibration signal 

(ACS) measurements are acquired within the center portion of k-space. These rows of 

ACS measurements are positioned where blocks of (A-1) rows of k-space would 
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generally be sub-sampled. This allows one to fit the k-space measurements from a 

collection of Nrow rows in a single column of all NC coils, Fl, to the (A-1) additionally 

acquired calibration measurements in a single coil, Fcalib. From this fitting process, a set 

of interpolation weights, w, can be estimated and used to interpolate the missing spatial 

frequencies for each coil ξ = [1,2,…NC] by  
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In Eq. [3.1], m denotes the index of the row being interpolated, mΔky denotes the 

frequency offset from the acquired frequency in column kx and row ky, the number of 

rows above (U) and below (D) the calibration measurements, Fcalib, sum to a total of Nrow 

rows in the interpolation kernel, and A is the acceleration factor by which the region of k-

space is sub-sampled.  Since its derivation in (Griswold, et al., 2002), the one-

dimensional interpolation in Eq. [3.1] has been adapted (Griswold, 2004; Wang et al., 

2005; Griswold, et al., 2006; Brau et al., 2008) to incorporate more than a single column 

in the interpolation by 
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In Eq. [3.2], the number of columns to the left (L) and right (R) of Fcalib sum to a total of 

Ncol columns in the interpolation kernel. If the column index, c, is set to zero (L=R=0), 

Eq. [3.2] becomes one-dimensional, as in Eq. [3.1]. Once the interpolation kernel 

weights, w, in Eq. [3.1] or Eq. [3.2] are determined from the fitting the acquired k-space 

measurements to the calibration measurements, they can be used to interpolate all 

missing frequencies in all coils results in a complete array of spatial frequencies for each 
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coil, which if combined in either the image or frequency domains produces a single full 

FOV image after inverse Fourier reconstruction. 

To reduce artifacts in the reconstructed images, interpolation weights need to be 

derived from a dataset with a sufficient SNR by using training data either in the form of 

additional ACS lines in the center of k-space, or through full FOV pre-calibration scans 

(Larkman, 2007). In theory, if multiple ACS lines are acquired in the center of k-space, 

with the remainder of k-space sub-sampled uniformly, “auto-calibration” is achieved in 

the interpolation of missing spatial frequencies for a single data set within a time series. 

This has a potential advantage over the SENSE model, where calibration images are 

acquired before the sub-sampled data set and used to reconstruct the entire time series, as 

each image becomes independent, with no effects of motion and other temporally varying 

artifacts. Furthermore, the additionally acquired ACS lines can be incorporated into the 

final reconstructed image and allow higher acceleration factors to be used in the sub-

sampled region of k-space. However, despite their advantages, VD acquisition schemes 

suffer from varying effective inner-echo spacing if acquired using an EPI pulse sequence. 

As such, a uniform sub-sampling scheme is often used (as in this dissertation), with 

interpolation weights in Eq. [3.2] estimated from full FOV pre-calibration scans. 

For a given collection of Ncol columns and Nrow rows of acquired spatial 

frequencies, the contribution from each acquired measurement is determined by the 

relative distance between that measurement and the block of (A-1) missing measurements 

to be interpolated, as described in Eq. [3.2]. If the spacing between all acquired k-space 

measurements is constant, as can be assumed with an EPI pulse sequence, the weights 

used in repopulating the missing lines of k-space in the GRAPPA interpolation can be 
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considered to be shift invariant (Griswold et al., 2002).  This effectively implies that the 

same kernel of interpolation weights can be used for all missing spatial frequency 

measurements that have the same spacing between the acquired measurements. Illustrated 

in Fig. 3.1, for an application of Eq. [3.2] with to an array of NC coils using a kernel of 

size Nrow rows by Ncol columns, sub-sampled with A=2, Eq. [3.2] can be applied to 

interpolate all coils at once using a matrix representation of Eq. [3.2] by 

fcalib =w fl.                               [3.3] 

 
 

 

Figure 3.1: Fitting the sampled spatial frequencies in a) all NC coils with an interpolation kernel of size Ncol 
columns and Nrow rows, b) to a vector of all NC calibration measurements, fcalib, with the of sampled spatial 
frequencies, fl, for a column-wise implementation of the 2D GRAPPA operator. 

 
 

Illustrated in Fig. 3.1b, with red dots denoting ACS calibration measurements, 

fcalib in Eq. [3.3] is a (A-1)NC×1 column vector with NC sub-vectors of the (A-1) complex-

valued calibration k-space measurements from each coil. In this dissertation, a column-

wise application of Eq. [3.2] is employed. As shown with black dots denoting the 

sampled measurements in Fig. 3.1b, the vector fl in Eq. [3.3] is constructed by first 

stacking the complex-valued acquired spatial frequencies from the NC coils into vectors. 
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Moving through the kernel from top to bottom and left to right, the Nrow vectors of length 

NC in each column are stacked into Ncol vectors, which are in turn stacked into the single 

vector in Fig. 3.1b, fl, of length NrowNcolNC . Using a least squares estimation, one can 

solve for the (A-1)NC×NrowNcolNC matrix of complex-valued weights in Eq. [3.3] by  

w = fcalib fl
H (fl fl

H)-1.               [3.4] 

To interpolate (A-1) missing spatial frequencies in NC coils with a kernel of size 

Nrow by Ncol, the estimation of interpolation weights requires at least Nfits≥NrowNcolNC(A-1) 

fits between acquired and calibration measurements in Eq. [3.2]. Shifting through the 

available calibration data using the techniques outlined in (Griswold et al., 2002; Breuer 

et al., 2009; Park et al., 2005; Park et al., 2012), the vector fcalib and fl in Eq. [3.3] for each 

of the Nfit fits are stacked into the columns of matrices Fcalib=[fcalib,1,…fcalib,Nfits] and 

Fl=[fl,1,…fl,Nfits] respectively, allowing for the interpolation weights to be determined by  

w = Fcalib Fl
H (Fl Fl

H)-1.              [3.5] 

The interpolation weights in Eq. [3.5] are of a higher rank than those in Eq. [3.4], and can 

therefore more appropriately account for (among other things) measurement error and 

noise, the oscillations between positive and negative spatial frequencies, and the variation 

in amplitude between high frequencies at the edge of k-space low frequencies in the 

center of k-space. 

3.2 Real-Valued GRAPPA Isomorphism 

As the interpolation process performed by the GRAPPA model in Eq. [3.1] and 

Eq. [3.2], by definition, induces a local covariance between the acquired and interpolated 

spatial frequency measurements, this covariance will become a global covariance 

between the voxels in the inverse Fourier reconstructed image. The interpolation kernel 
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weights, w, in Eq. [3.1] and Eq. [3.2] are generated from fully sampled spatial frequency 

measurements, either in the form of pre-calibration scans or additional ACS lines in the 

center of k-space. As these measurements are derived from the Fourier transform of coil 

B-field sensitivities, the GRAPPA interpolation essentially performs a sensitivity 

encoding (Pruesmann et al., 1999) in k-space by convolving the sub-sampled k-space 

measurements with the Fourier transform of the B-field sensitivities of each of the NC 

receiver coils. As such, the covariance induced between voxels in the image 

reconstructed by the GRAPPA interpolation process is expected to be greatest between 

previously aliased voxels, similar to those induced by the SENSE model in the previous 

chapter, with an additional covariance structure that is lower in value and induced 

throughout the reconstructed image.  

To quantify the true structure of the induced covariance (and in turn correlation), 

an isomorphic representation of the complex-valued GRAPPA model is presented to 

interpolate all missing complex-valued spatial frequencies in all coils at once using real-

valued matrix operators.  Similarly to the isomorphic representation of the SENSE model 

in Chapter 2, representing the interpolation process undertaken in the GRAPPA model as 

a series of real-valued matrices enables one to observe the statistical implications of each 

step in the process as well as the implications of the process as a whole. Furthermore, the 

GRAPPA interpolation process depends on a variety of parameters that include the 

acceleration factor, the number of coils and the size of the interpolation kernel. A 

framework of this kind can therefore provide a means of investigating the degree to 

which each parameter influences the correlation structure induced by the GRAPPA 

model. 
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When voxels are assumed to have an identity covariance structure in the SENSE 

model, the un-aliasing process is performed on each aliased voxel separately. This means 

that no two aliased voxels implement the same acquired measurements or sensitivities 

values during the un-aliasing process. When an interpolation kernel used in the GRAPPA 

model is shifted from interpolating a block of (A-1) missing spatial frequencies in one 

row and column to interpolating a block of (A-1) missing spatial frequencies in a 

neighboring row or column, the same acquired spatial frequency measurements might be 

used in both interpolations. This complicates the linearization of the GRAPPA model 

compared to that of SENSE, as there are many ways in which the real-valued 

isomorphism of the GRAPPA model can be formatted. In this dissertation, the GRAPPA 

interpolation process is performed on a column-by-column basis (as opposed to 

interpolating on either a row-by-row or coil-by-coil basis) and thus the initial data vector, 

fcoil, as used in the SENSE model in Fig. 2.3 and Eq. [2.6], is permuted accordingly.  

Re-illustrated on the right side of Fig. 3.2, the complex-valued array of sub-

sampled spatial frequencies, Fξ,C, from each of ξ=[1,…,NC] receiver coils in an array is 

vectorized by stacking the rows of the real component of Fξ,C into a vector, fξ,R, stacking 

the rows of the imaginary component of Fξ,C into a vector, fξ,I, and then concatenating the 

real and imaginary component vectors for coil ξ into vectors, fξ = [fξ,R
T, fξ,I

T]T. The real-

valued vectors of spatial frequencies for each of the NC receiver coils are finally 

concatenated into a single real-valued vector, fcoil, with alternating sub-vectors of the real 

and imaginary spatial frequencies from all NC coils. To perform the GRAPPA 

interpolation, a complex permutation, PC1
, which is different from PC in the SENSE 

model in Eq. [2.8], is applied to reorder fcoil to having all real spatial frequencies from all  
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Figure 3.2: The real-valued vector, fcoil, formed by vectorizing and concatenating the real and imaginary 
components of the sub-sampled k-space arrays from each of NC coils is permuted by PC1

 to having all real 

values from all NC coils stacked upon all imaginary values from all NC coils, and then permuted by the 
GRAPPA sorting permutation, PG1

, to being ordered first by column, then by row, and finally by coil. 

 
 
NC coils stacked upon all imaginary spatial frequencies from all NC coils, as illustrated by 

PC1 
fcoil in Fig. 3.2. In order to interpolate the missing rows of k-space on a column-by-

column basis, the vector, PC1 
fcoil, is permuted once more by a GRAPPA sorting 

permutation, PG1
, such that the resulting vector,  

fG = PG1
 PC1 

fcoil,                              [3.6] 

has spatial frequencies ordered first by column, then by row, and finally by coil, as 

illustrated on the left side of Fig. 3.2. 
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Figure 3.3: The complex-valued GRAPPA interpolation operator, GC, with kernels of size (Ncols×Nrows): 
2×1 (green), 4×1 (green and blue), 2×3 (green and red), and 4×5 (green, blue, red, and black). 

 
 

With the permuted spatial frequency vector, fG, ordered by column, the 

interpolation weights, w, can be appropriately segmented and placed along various 

diagonals of the matrix GC in Fig. 3.3 to perform the interpolation. In Fig. 3.3, the toy 

example from Fig. 3.2 is expanded to having px columns, with py=12 rows that are sub-

sampled by A=2 in NC coils. For each block of (A-1)NC missing spatial frequencies, the 

complex-valued weights, signified by the blocks of varying color in Fig. 3.3, are 
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positioned such that the appropriate rows and columns of acquired measurements are 

employed in the interpolation in Eq. [3.2]. In Fig. 3.3, the 1-dimensional complex-valued 

GRAPPA interpolation performed in Eq. [3.1], with a kernel of size 2×1 (Ncols×Nrows), is 

represented by the green blocks, while an interpolation with a kernel of size 4×1 is 

represented by a combination of the green and blue blocks. The vertical red line in the 

center of these kernels denotes the “middle” of the kernel, and thus weights to the left of 

this line will be applied to rows of acquired spatial frequencies above the (A-1)NC 

missing spatial frequencies, and weights to the right of this line will be applied to rows of 

acquired spatial frequencies below the missing frequencies. For the 2-dimensional 

GRAPPA model in Eq. [3.2] to be applied using a matrix operator, the matrices of 

weights, w, need to be partitioned and placed in such a way that the partitions perform a 

linear combination of the appropriate measurements in fG, corresponding to the 

neighboring columns of the (A-1)NC missing spatial frequencies being interpolated. The 

2-dimensional complex-valued GRAPPA interpolation with a kernel of size 2×3 is 

represented in Fig. 3.3 by a combination of the green and red blocks, while an 

interpolation with a kernel of size 4×5 is represented by a combination of the green, blue, 

red and black blocks. With py/A=6 acquired rows, there are six total rows to be 

interpolated, and thus each column listed down the left side of Fig. 3.3 has six blocks, one 

for each missing row. To maintain all acquired rows in the refilled array, NC×NC real-

valued identity matrices are positioned between the blocks of weights. The result of 

combining the six blocks of weights for the missing rows and the six identity matrices for 

the acquired rows is a total of py=12 rows in the interpolated frequency vector. While one 

could utilize a variety of techniques to refill the measurements near the edge of k-space 
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(zero-filling, symmetry, wraparound etc.), partial kernels were used in this dissertation 

for simplicity, with weights estimated specifically for each edge condition.  

To apply the complex-valued GRAPPA matrix operator, GC=(GR+iGI), in Fig. 3.3 

to the real-valued permuted vector, fG, in Eq. [3.6], a real-valued representation of GC is 

formed by  

G 
G

R
G

I

G
I

G
R















, 

where GR and GI are the real and imaginary components of GC. The product GfG results in 

a vector of length 2NCpxpy with a combination of both sampled and interpolated spatial 

frequencies, ordered in the same fashion as fG. The refilled vector of spatial frequencies 

therefore needs to be re-permuted to the original format of fcoil using the reverse of the 

operations in PC1 
and PG1 

with permutations PC2 
and PG2 

respectively. The permutations 

PC2 
and PG2 

are of a larger dimension than PC1 
and PG1

 given the combination of both 

acquired and interpolated values in GfG.  The resulting vector, 

ffull = PC2
 PG2 

G fG, 

therefore contains full FOV spatial frequencies for each of the NC coils, with vectors of 

the real frequency values for each coil, stored by row, stacked upon vectors of the 

imaginary values for the corresponding coil, in an order similar to that of fcoil in Fig. 3.2.  

To reconstruct the vector of coil spatial frequencies, ffull, into a vector of coil 

voxel values, the real-valued matrix representation of the complex-valued inverse Fourier 

transform, Ω, in Eq. [1.3] is used. At this stage, one can either inverse Fourier reconstruct 

each coil image using a Kronecker product, (INC
Ω), and apply a combination matrix, C, 

to perform the combination of coil images in the image domain, 
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y = C(INC
Ω) ffull,         

or, to reduce the demand on computational resources, combine the coil frequencies in k-

space and inverse Fourier reconstruct the combined spatial frequencies to get a single 

combined image vector of voxel values, 

y = ΩCffull.                 [3.7] 

In most studies, a root-sum-of-squares (RSS) combination of coil images is 

performed with the phase portion of the reconstructed data discarded (Griswold et al., 

2002). However, the RSS combination is not a linear operation, and it has been shown 

that the phase portion of the reconstructed data can provide important biological 

information about the brains vasculature (Menon et al., 2002; Rowe and Logan, 2004; 

Rowe and Logan, 2005; Rowe et al., 2005; Nencka et al., 2007; Rowe, 2009). As such, 

the combination matrix used in this dissertation, C, performs a complex linear 

combination, generating a 2pxpy×1 vector of real combined spatial frequencies stacked 

upon a 2pxpy×1 vector of imaginary combined spatial frequencies in Eq. [3.7]. The 

combined full FOV vector of spatial frequencies, Cffull, is the exact same size and in the 

same order as the vector f in Eq. [1.3]. 

3.3 GRAPPA Induced Correlations 

The complete set of matrix operators used in the GRAPPA image reconstruction 

isomorphism is  

OG = ΩCPC2
PG2

GPG1
PC1

,                           [3.8] 

and thus the final reconstructed image vector, y, can be obtained from the original vector 

of observed k-space measurements, fcoil, by 
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y = OG fcoil.              [3.9] 

Additional operators for pre-processing in k-space, OK, and post-processing in image 

space, OI, can be incorporated into Eq. [3.8] by 

OG = OIΩCPC2
PG2

GPG1
PC1

OK.                        [3.10] 

As no pre-processing operations are performed in this dissertation, the assumption that 

OK=I will be made unless stated otherwise. The data vector fcoil in Eq. [3.9] is described 

by the sum of a vector of mean spatial frequency measurements, E[fcoil]=f0, with added 

measurement error that has the covariance structure, cov(fcoil)=Γ.  When the GRAPPA 

reconstruction operator in Eq. [3.8] is applied to the vector fcoil, the reconstructed image 

vector, y, in Eq. [3.9] will have a mean of E[y]=OG f0 and a modified covariance of  

ΣG = cov(y) = OGΓOG
T.          [3.11]   

In order to determine the covariance structure induced solely by the GRAPPA 

reconstruction operators in Eq. [3.8], the covariance matrix, Γ, is assumed to be identity, 

simplifying Eq. [3.11] to 

ΣG = OG OG
T            [3.12] 

 = OI Ω C PC2 
PG2 

G PG1 
PC1 

PC1
T PG1

T GTPG2
TPC2

T CT ΩTOI
T. 

 
Under the assumption that Γ=I, any non-zero terms in the off diagonal elements of ΣG 

denote an artificial covariance (and in turn correlation) induced by the GRAPPA model 

between voxels in the reconstructed image vector, y. It is important to note that such an 

induced covariance is purely a result of the GRAPPA interpolation and reconstruction 

process, and is of no biological origin whatsoever. 

Since all of the permutations in Eq. [3.8] simply rearrange the data that they pre-

multiply, they are orthonormal and do not induce any covariance,  

PG1
PG1

T= PC1
PC1

T= I. 
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The covariance of the images reconstructed using the GRAPPA image reconstruction 

operators in Eq. [3.12] therefore simplifies to 

ΣG = ΩCPC2
 PG2 

G GTPG2
TPC2

TCTΩT.                [3.13]  

As the GRAPPA operator, G, interpolates missing spatial frequency measurements from 

acquired measurements, it is not orthogonal, and thus the product GGT results in an 

induced covariance structure that is not strictly diagonal. While the subsequent 

permutations, PG2 
and PC2

, are orthonormal, inducing an identity covariance when 

multiplied by their respective transposes, the fact that they pre-multiply the non-

orthogonal GRAPPA operator, G, means that the each permutation will rearrange the 

GRAPPA induced covariance structure, GGT. By themselves, both the inverse Fourier 

transform operator, Ω, and the complex averaging operator, C, are orthogonal, resulting 

in diagonal covariance structures when multiplied by their respective transposes. As with 

the permutations, PG2
 and PC2

, however, the data vectors that the operators Ω and C pre-

multiply each have a covariance structure that is not identity. This means that the 

applications of both Ω and C will further alter the covariance induced by the GRAPPA 

operator, G, that was re-ordered by the permutations PG2
 and PC2

. 

3.3.1 The Effects of Kernel Size on GRAPPA Induced Correlations 

While the covariance (and correlation) induced by both the SENSE and GRAPPA 

models is dependent on the acceleration factor, A, and the number of receiver coils, NC, 

the GRAPPA interpolation is also dependent on the dimensions of the interpolation 

kernel, Ncols×Nrows. As such, an investigation is performed on the degree to which 

variations in both the acceleration factor and the dimensions of the interpolation kernel 
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affect the correlations induced by the GRAPPA model about a seed voxel in the 

reconstructed images. The correlation induced between all voxels in y, solely by the 

GRAPPA image reconstruction process, is derived by 

corr(OGOG
T) = DG

-1/2OGOG
TDG

-1/2,              [3.14] 

where the operator OG from Eq. [3.8] is used with no additional pre- or post-processing, 

and DG=diag(OGOG
T) is a diagonal matrix with elements that are the reciprocal square 

root of the variances drawn from the diagonal of the covariance matrix OGOG
T. When the 

theoretical correlation matrix determined by Eq. [3.14] is partitioned into the four 

quadrants in Eq. [1.10], the correlations induced between all real measurements in y, 

between all imaginary measurements, and between all real and imaginary measurements 

can be obtained. Additionally, provided with the correlations in Eq. [3.14] and a mean 

reconstructed image vector, the correlations induced between magnitude-squared 

measurements can be obtained using the method outlined in (Nencka et al., 2009; Rowe 

and Nencka, 2009). 

Presented in Fig. 3.4 are the real, imaginary, real/imaginary and magnitude 

squared correlations theoretically induced by the GRAPPA model about a VOI in the 

center of the pink circles for widely used acceleration factors of A=2 and A=3, and 

interpolation kernels of size 4×1, 2×3 and 4×5. Using a Shepp-Logan phantom for an 

underlay, the structure of the correlations in Fig. 3.4 were accentuated by applying a 

threshold of ±10-7, selected to be very close to zero, and any additional correlations 

outside of the induced structure (resulting from machine size error for values near zero) 

were set to zero. As the GRAPPA model effectively performs a spatial localization in k-

space by using a truncated convolution kernel that is derived from the Fourier transform  
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Figure 3.4: Correlations induced between real voxel values, imaginary voxel values, between the real and 
imaginary voxel values and between magnitude-squared voxel values for a GRAPPA reconstruction with 
acceleration factors of A=2 and A=3 using interpolation kernels of size a) 4×1, b) 2×3, and c) 4×5. 
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of the NC coil B-field sensitivity profiles, the real, imaginary and magnitude-squared 

correlations in Fig. 3.4 are strongest between the VOI and the aVOIs, in the centers of the 

green circles, as expected. The theoretical correlations induced between the VOI and 

aVOIs are stated adjacent to the respective voxel in each image of Fig. 3.4, and appear, 

on average, to be inversely proportional to the acceleration factor and size of the kernel. 

The correlations induced between the VOI and the two aVOIs with A=3 are lower in 

strength than those induced between the VOI and the aVOI with A=2, which is most 

likely the result of the correlation being distributed between the aVOIs. When a kernel 

incorporates more rows and columns of k-space measurements into the interpolation, the 

relative weighting of each measurement is decreased, which is likely the reason why the 

induced correlations for kernels of size 4×5 appear lower than those of size 2×3. In all 

images in Fig. 3.4, there is a notable vertical band of correlations induced about the VOI 

and the column of voxels in which the VOI resides. This correlation results from 

interpolations performed across rows in the PE direction in which data was sub-sampled. 

For the 2×3 and 4×5 two-dimensional kernels, there are additional correlations induced 

between the VOI and voxels in the rows in which both the VOI and the aVOIs reside. 

These correlations are a result of the interpolation performed across columns in the fully 

sampled FE direction. Upon close observation, these vertical and horizontal bands exhibit 

an approximately sinc correlation structure with amplitudes and periods relative to the 

dimensions of the truncated rectangular kernels. With the local correlation between 

neighboring spatial frequencies in k-space induced by a rectangular convolution kernel, it 

is understandable to observe a sinc correlation structure in the image domain after the 

spatial frequencies are inverse Fourier reconstructed. The negative magnitude-squared 
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correlation induced between the VOI and aVOIs in Fig. 3.4 with both A=2 and A=3 

results from a combination of the expected values and the covariance between the two 

previously aliased voxels. The sign of the magnitude-squared correlation between the 

VOI and aVOI can therefore change from one voxel to the next. 

3.4 Theoretical Illustration of GRAPPA Induced Correlations 

3.4.1 Data Generation 

 To explore the statistical implications of the GRAPPA reconstruction process, the 

same three time series generated in section 2.4.1 for a statistical investigation of the 

SENSE model were reconstructed with the GRAPPA model. The time series of 500 TRs 

with no sub-sampling performed, A=1, is once again used for both determining the 

interpolation weights used in the GRAPPA model and serves as a baseline for 

comparisons with higher acceleration factors. In section 2.4.1, the data was generated to 

have a maximal SNR of 50 in the 96×96 fully sampled inverse Fourier reconstructed 

images for the NC=8 coils. This was done by scaling the magnitude of the coil images to 

having a maximum of 50 and adding normally distributed random noise to the k-space 

array for each coil with a mean of zero and a standard deviation of p
x
p

y
 96 96 .  The 

noise added to each of the three data sets generated in section 2.4.1 also assumed the 

covariance structure listed in Table 2.1 between the coils. This covariance structure was 

estimated from experimentally acquired data and used in the SENSE un-aliasing process 

in Eq. [2.2]. The GRAPPA model, however, does not employ any such covariance 
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structure in the interpolation process in Eq. [3.2], even if the data itself is acquired or 

generated with a non-identity covariance between coils.  

3.4.2 Data Reconstruction and Processing 

 To interpolate the missing spatial frequencies in the data sets sub-sampled by A=2 

and A=3, a 4×5 GRAPPA interpolation kernel was used. The weights used in the 

GRAPPA interpolation in Eq. [3.2] were determined for the interpolations with both A=2 

and A=3 by inserting the fully sampled data set with A=1 into Eq. [3.5]. Once the 

interpolation weights for each acceleration factor were determined, the missing lines of k-

space in the sub-sampled data sets were interpolated from the acquired lines using Eq. 

[3.2]. With NC fully sampled arrays of k-space for the data set generated with A=1, and 

NC refilled arrays of k-space for the data sets sub-sampled by A=2 and A=3, a combined 

k-space array for each data set was formed with a complex-valued average performed 

over the coil dimension. The combined array of spatial frequencies in each of the 500 

TRs for all three acceleration factors were then inverse Fourier reconstructed into time 

series of full FOV combined images. As most fcMRI studies use spatial filtering to 

increase CNR (Lowe & Sorenson, 1997), smoothing was performed by convolving each 

reconstructed image in the three time series with a Gaussian smoothing kernel that had a 

fwhm of 3 voxels. 

3.4.3 Results 

 The mean magnitude and phase images from the reconstructed time series with 

A=1, A=2, and A=3 are presented in Fig. 3.5a, Fig. 3.5b, and Fig. 3.5c respectively. 

Unlike the magnitude and phase of the SENSE reconstructed images in Fig. 2.10, the  
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Figure 3.5: Mean magnitude and phase, standard deviation and SNR for GRAPPA reconstructed images 
with a) A=1, b) A=2, c) A=3, as well as d) A=1, e) A=2, and f) A=3 with smoothing. 



 

 

88

mean magnitude and phase reconstructed images with A=2 in Fig. 3.5b and A=3 in Fig. 

3.5c show apparent signs of residual aliasing as a result of the GRAPPA reconstruction 

process. Upon close observation, the aliasing is noticeable within the phantom in both the 

magnitude and phase, but is most apparent in the space surrounding the phantom in the 

phase for both acceleration factors. To reconstruct data with A=1 in the GRAPPA model, 

the operator G in Eq. [3.8] is treated as an identity matrix, as no interpolation is 

performed, and a complex-valued averaging of interpolated k-space arrays is performed 

with the operator C before an inverse Fourier reconstruction. With such a combination, 

the standard deviation for data reconstructed with A=1 in the GRAPPA model in Fig. 

3.5a is relatively uniform throughout the phantom. In the SENSE reconstruction with 

A=1 in Fig. 2.10a, the standard deviation appears to have a “smooth” texture throughout 

the phantom due to the coil sensitivity weighting in the combination of the coil images. 

As with the un-aliasing process performed by the SENSE model, the interpolation of 

missing spatial frequencies in sub-sampled arrays results in full FOV reconstructed 

images that have an increased standard deviation. As illustrated in Fig. 3.5b for A=2 and 

in Fig. 3.5c for A=3, there is an apparent increase in the standard deviation with 

acceleration factor. While the regions of increased standard deviation in images 

reconstructed with the SENSE model in Fig. 2.10 are clearly defined by the areas of 

aliasing, the regions of increased standard deviation after a GRAPPA reconstruction are 

not as clearly defined. Although these regions of increased standard deviation in the 

GRAPPA reconstructed images are still predominantly within regions that were 

previously aliased, there is also a notable increase in the standard deviation in the regions 

without aliasing. The result of this increase in standard deviation with acceleration factor 
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is marked by a decrease in the SNR of GRAPPA reconstructed images. As the 

acceleration factor increases from A=1 in Fig. 3.5a to A=2 in Fig. 3.5b to A=3 in Fig. 

3.5c, the SNR decreases within all regions of the phantom in which the standard 

deviation is increased. 

 After spatial filtering is performed using a Gaussian smoothing kernel with a 

fwhm of 3 voxels, the effects of aliasing in the mean magnitude images for A=2 in Fig. 

3.5e and for A=3 in Fig. 3.5f appear to be diminished by the smoothing process. Upon 

very close observation, aliasing can still be noted within the phantom after a GRAPPA 

reconstruction with A=3 in Fig. 3.5f, but the effects of aliasing are still apparent above 

and below the phantom in space in the mean phase reconstructed images for both A=2 

and A=3. As the incentive for performing spatial filtering is to decrease the noise in 

reconstructed images, the standard deviation within the phantom with A=1 after 

smoothing in Fig. 3.5d is noticeably lower than that without smoothing in Fig. 3.5a (note 

the change in scale). As the acceleration factor increases from A=2 in Fig. 3.5e to A=3 in 

Fig. 3.5f, the increase in standard deviation, is notable within the same regions as that 

without smoothing in Fig. 3.5b and Fig. 3.5c. With a decrease in standard deviation that 

results from smoothing, the SNR of the smoothed GRAPPA reconstructed images is 

increased. However, the same decrease in SNR with an increase in acceleration factor is 

notable when comparing the SNR for A=1 in Fig. 3.5d to the SNR of A=2 in Fig. 3.5e and 

A=3 in Fig. 3.5f. 

When data is acquired with A=1, there is no interpolation performed and the 

operator G in Eq. [3.8] is replaced with an identity matrix. Since all four permutation 

matrices in Eq. [3.8] are orthonormal and both the inverse Fourier reconstruction  



 

 

90

 

Figure 3.6: Presented on a magnitude brain phantom underlay and threshold to ±0.125 are real, imaginary, 
real/imaginary and magnitude-squared correlations a) theoretically induced by GRAPPA with A=1, b) 
estimated from MC data with A=1, c) theoretically induced by GRAPPA with A=2, d) estimated from MC 
data with A=2, e) theoretically induced by GRAPPA with A=3, and f) estimated from MC data with A=3.  
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operator, Ω, and the combination matrix, C, are orthogonal, the resulting correlation 

induced by the GRAPPA model with A=1 is an identity matrix. This is presented in Fig. 

3.6a, with a mean magnitude reconstructed image for an underlay and a threshold of 

±0.125, where there is no correlation induced by the GRAPPA model noted between the 

VOI in the center of the pink circle and any other voxel. To validate the lack of 

correlations induced by GRAPPA with A=1, correlations estimated from the MC time 

series reconstructed by GRAPPA with A=1 in Fig. 3.6b show no statistically significant 

correlation between the VOI and any other voxel that is more than a consequence of the 

random noise added to the generated time series of images. The theoretical correlations 

induced by the GRAPPA model using a 4×5 interpolation kernel with A=2 and A=3 are 

presented in Fig. 3.6c and Fig. 3.6e respectively. As observed in Fig. 3.4, these 

theoretically induced correlations show low correlations within both the rows and column 

of the VOI and aVOIs. These correlations exhibit a sinc pattern that is a result of the 

rectangular truncated interpolation kernels used in the GRAPPA interpolation process. 

The real, imaginary and magnitude-squared correlations for A=2 in Fig. 3.6c and for A=3 

in Fig. 3.6e are greatest in value in the locations of the aVOIs and unity within the VOIs. 

This is due to the spatial localization performed through an interpolation process that 

derives interpolation weights from fully sampled data. It is of note that the correlation 

induced between the VOI and aVOI with A=2 in Fig. 3.6c are positive, while the similar 

correlations induced by the SENSE model in Fig. 2.11 are negative. To validate these 

theoretical correlations induced by GRAPPA with A>1, the correlations estimated from 

the MC time series reconstructed by GRAPPA with A=2 are presented in Fig. 3.6d and 

the MC time series reconstructed by GRAPPA with A=3 are presented in Fig. 3.6e. When 
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comparing the theoretical correlations with A=2 in Fig. 3.6c to the estimated MC 

correlations in Fig. 3.6d, the estimated correlations with the greatest value are found in 

the aVOIs in the center of the green circles, but the sinc correlation structure is no longer 

present.  When comparing the theoretical correlations with A=3 in Fig. 3.6e to the 

estimated MC correlations in Fig. 3.6f, however, the estimated correlations with the 

greatest value are still found in the aVOIs in the center of the green circles, but the sinc 

correlation structure is still apparent in the column containing both the VOI and aVOIs.   

When the operator OI in Eq. [3.10] is replaced with a Gaussian smoothing 

operator, Sm, that has a fwhm of 3 voxels, and the operator OK is replaced with an 

identity matrix, the correlations induced by the resulting collection of operators are 

presented in Fig. 3.7. The theoretical correlations induced by GRAPPA using A=1 

together with smoothing are presented in Fig. 3.7a with a mean magnitude reconstructed 

image for an underlay and a threshold of ±0.125. Similar to a SENSE reconstruction with 

A=1 together with smoothing in Fig. 2.11a, the operator Sm is the only operator that is not 

orthogonal when reconstructing data with A=1, and thus there are a real, imaginary and 

magnitude-squared correlations induced between the VOI and its immediate neighbors. 

The spread of these correlations about the VOI is relative to the size of the smoothing 

kernel. This correlation structure is validated in Fig. 3.7b, where the only significant 

correlation structure between the VOI and any other voxel, estimated from the smoothed 

MC time series, is between the VOI and its immediate neighbors. The theoretical 

correlations induced by the GRAPPA model using a 4×5 interpolation kernel with A=2 

and A=3 together with a smoothing operator are presented in Fig. 3.7c and Fig. 3.7e 

respectively. The bands of low induced correlation with a sinc structure, as noted in Fig.  
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Figure 3.7: Presented on a magnitude underlay and threshold to ±0.125 are smoothed real, imaginary, 
real/imaginary and magnitude-squared correlations a) theoretically induced by GRAPPA with A=1, b) 
estimated from MC data with A=1, c) theoretically induced by GRAPPA with A=2, d) estimated from MC 
data with A=2, e) theoretically induced by GRAPPA with A=3, and f) estimated from MC data with A=3. 
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3.6c and Fig. 3.6e, are no longer apparent after smoothing is incorporated, but the 

correlations induced between the VOI and aVOIs are still greatest in value. Upon 

comparison to the unsmoothed counterparts in Fig. 3.6, all GRAPPA induced correlations 

with A>1 between the VOI and aVOIs are of the same sign and appear to be spread to the 

neighboring voxels of both the VOI and the neighboring voxels of the aVOIs. This 

implies that while the VOI may be artificially correlated with an aVOI by the GRAPPA 

model, the addition of smoothing induces a correlation between the VOI and neighboring 

voxels of the aVOIs. Unlike the combination of smoothing with a SENSE reconstruction 

of A=2 in Fig. 2.12c, the correlations induced by a GRAPPA reconstruction with A=2 

together with smoothing are all positive. The correlations induced by GRAPPA with A=3 

between the VOI and the aVOI in the central region of the phantom are both positive and 

negative while the correlations induced between the VOI and the aVOI in the posterior 

region of the phantom are positive. This structure is similar to that induced by the SENSE 

model with A=3. The correlations induced by the GRAPPA model with A>1 are 

validated by correlations estimated from the GRAPPA reconstructed MC time series with 

A=2 in Fig. 3.7d, and with A=3 in Fig. 3.7f. Upon comparing Figs. 3.7c and 3.7d for A=2 

with Figs. 3.7e and 3.7f for A=3, the correlations induced about the VOI appear to be 

most apparent with the aVOIs. It is interesting to note that all correlations between the 

VOI and aVOIs for A=3 are positive, while the theoretical induced correlation between 

the VOI and aVOI are both positive and negative. 

3.4.4 Theoretical Functional Connectivity Simulation 

To replicate an fcMRI study, a Hamming band pass filter was applied to the time 

series of every voxel in the smoothed data sets reconstructed by GRAPPA with A=1, A=2 
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and A=3 to maintain temporal frequencies between 0.01 and 0.08 Hz. For this 

dissertation, the same 2×2 clusters of voxels as used in the SENSE illustration were 

selected for VOIs in the anterior of the phantom. To determine functional connectivity 

about the 2×2 seed region, the voxel time series were averaged over space to form a 

single mean time series for the VOI, v. The correlation coefficient, cc, between the seed 

region time series, v, and the time series of each other voxel, s, in the Hamming band 

pass filtered images for each acceleration factor were evaluated using the standard 

Pearson’s coefficient of linear correlation in Eq. [2.18]. Through Eq. [2.18], the 

correlation coefficients between the real components of v and s, between the imaginary 

components of v and s, between the real component of v and the imaginary component of 

s, and between the magnitude-squared components of v and s were determined for the 

GRAPPA reconstructed images with A=1, A=2 and A=3.  

The fcMRI correlation coefficients determined by Eq. [2.18] for the GRAPPA 

reconstructed time series with A=1 are presented in Fig. 3.8a with a threshold of ±0.35  

(p≈0.05) (Greicius et al., 2003). As all data in this theoretical illustration was generated 

with an identity correlation structure, there is no apparent structure in the band pass 

filtered time series reconstructed by GRAPPA with A=1. The real, imaginary and 

magnitude-squared functional connectivity correlations about the VOI in fig 3.8a are 

predominantly in the local neighborhood of the VOI, with random sporadic correlations 

spread throughout the phantom that are a result of the added noise. For the GRAPPA 

reconstructed time series with A=2 in Fig. 3.8b and A=3 in Fig. 3.8c, the same structure 

noted in the theoretical induced correlations in Fig. 3.6 and Fig. 3.7 are noted between the  
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Figure 3.8: Estimated real, imaginary, real/imaginary and magnitude-squared correlations denoting 
functional connectivity in time series reconstructed by GRAPPA with a) A=1, b) A=2, and c) A=3 after a 
temporal Hamming band pass filter was applied to each voxel to maintain frequencies between 0.01 and 
0.08 Hz. Correlations are all presented on a smoothed magnitude underlay and threshold to ±0.35.  

 

VOI and aVOIs. Since the data generated in this simulation assumed an identity 

covariance between voxels, the correlations observed with A=2 in Fig. 3.8b and A=3 in 

Fig. 3.8c indicate artificial “connectivity” induced by the GRAPPA reconstruction 

process between brain regions. 

As the correlations in Fig. 3.8 are derived from time series that have been 

subjected to a Hamming band pass filter to maintain temporal frequencies between 0.01 

and 0.08 Hz, these correlations would reject the null hypothesis in a fcMRI study, 

implying that the previously aliased voxels are functionally connected. As with the 

SENSE illustration, the original data in this illustration was generated with an identity 
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covariance between voxels, and thus all correlations between the seed VOIs and any 

other voxel in Fig. 3.8 indicate false positives. This implies that the GRAPPA induced 

correlations are statistically significant and reside in the frequency spectrum commonly 

associated with functional connectivity. The position of the seed VOI and the aVOIs in 

the GRAPPA reconstructed images align themselves very closely in the commonly 

investigated Default Mode Network in the brain (Raichle et al., 2001; Raichle et al., 

2007) in Fig. 2.2, and could therefore corrupt fcMRI conclusions. Depending on the sign 

of the induced correlations and the sign of the correlations inherent in the acquired data, 

these non-biological artificially induced correlations could lead to potential Type I & II 

errors. 

3.5 Experimental Illustration of GRAPPA Induced Correlations 

3.5.1 Data Acquisition and Reconstruction 

To validate the statistical implications of the GRAPPA model that were explored 

in the previous section, the same non-task human subject fcMRI data set that was used 

for the experimental illustration of the SENSE model in the previous chapter was 

reconstructed with the GRAPPA model. This data set included 510 TRs that were 

acquired with each of NC=8 receiver coils through an EPI pulse sequence in a 3.0T 

General Electric Signa LX magnetic resonance imager. The imaged region of the brain 

was acquired in four axial slices with 96×96 voxels that were 2.0×2.0×2.5mm in 

dimension. Each TR in the time series was 1 s in length with an echo time of 45.4 ms, an 

effective echo spacing of 816 μs, excited by a flip angle of 45°, and an acquisition 

bandwidth of 125 kHz. The first 20 of the 510 TRs were discarded to account for T1 
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effects and varying echo times, resulting in 490 TRs acquired under the same conditions. 

A Nyquist ghost correction was performed by acquiring the center row of k-space for 

each TR in each receiver coil with three navigator echoes from which the error in the 

center frequency and group delay offsets between the odd and even lines of k-space were 

estimated and adjusted accordingly (Nencka et al., 2008). To account for dynamic 

fluctuations in the homogeneities of the main B-field that arise from factors such as 

respiration and out of field motion, the global temporal phase structure was corrected in 

each coil to account for field shifts associated with gradient heating and RF phase 

variations that EPI acquisition techniques are susceptible to (Hahn et al., 2009; Hahn et 

al., 2012). Additionally, to account for the drift in B-field gradients, a plane was fit to and 

subtracted from the phase in each image in a time series in each coil using the technique 

outlined in (Jesmanowicz et al., 2011).  

 To observe the difference between the same set of data being fully sampled with 

A=1 to being sub-sampled by A=3 and reconstructed by the GRAPPA model, sub-

sampling was performed retrospectively by deleting rows of k-space with the PE 

direction oriented as anterior-posterior. The weights used in a two-dimensional 4×5 

GRAPPA interpolation in Eq. [3.2] were determined for the interpolation with A=3 by 

inserting the fully sampled data set with A=1 into Eq. [3.5]. Once the interpolation 

weights were determined, the missing lines of k-space in the sub-sampled data set were 

interpolated from the acquired lines using Eq. [3.2]. With NC=8 fully sampled arrays of k-

space for the data set acquired with A=1, and NC refilled arrays of k-space for the data 

sets sub-sampled by A=3, a combined k-space array for each data set was formed with a 

complex valued average performed over the coil dimension. The combined array of 
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spatial frequencies in each of the 490 TRs for both A=1 and A=3 were then inverse 

Fourier reconstructed into time series of full FOV combined images. After 

reconstruction, each image in both data sets were spatially filtered using a Gaussian 

smoothing kernel with a fwhm of 3 voxels. To observe functional connectivity, a 

Hamming band pass filter was then applied to the time series of every voxel in the 

smoothed GRAPPA reconstructed images with A=1 and A=3 to maintain temporal 

frequencies between 0.01 and 0.08 Hz. 

3.5.2 Experimental Results 

The mean magnitude, mean phase, standard deviation and SNR for the data sets 

reconstructed by GRAPPA with A=1 and A=3 and smoothed with a Gaussian kernel are 

presented in Fig. 3.9a and Fig. 3.9b respectively. With the size of the brain being small 

relative to the FOV, there are not noticeable signs of aliasing in the mean magnitude 

images as were observed in Fig. 3.5. When the same data set with A=3 was reconstructed 

with the SENSE model in Fig. 2.14, there were noticeable differences between the mean 

phase within the brain by comparison to the data set with A=1. This was likely due to the 

un-aliasing of voxels using coil sensitivities estimates of inhomogeneous B-fields. Such 

distinctions are not apparent when comparing the mean phase images for data sets with 

A=1 and A=3 reconstructed with the GRAPPA model in Fig. 3.9. Although the sub-

sampled images are folded over on themselves A=3 times through the aliasing process, 

the relatively small size of the brain compared to the FOV means that the brain itself only 

experiences two-fold aliasing, with one of the A=3 aliased voxels falling in space. As 

noted in the theoretical illustration in Fig. 3.5, the reduced dimensions of k-space in the 

data set sub-sampled by A=3 results in a standard deviation in Fig. 3.9b that is greater in 
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the areas of two-fold aliasing than that of the data set with A=1 in Fig. 3.9a. Given that 

SNR is derived by the ratio of the mean magnitude and standard deviation in each voxel, 

the increase in standard deviation with an increase in A results in a decrease in the SNR 

for images reconstructed from data with A=3 in Fig. 3.9b by comparison to images 

reconstructed from data with A=1 in Fig. 3.9a. 

 

 

Figure 3.9: Mean magnitude and phase, standard deviation and SNR for images of a human subject 
reconstructed by the GRAPPA model with a) A=1 and b) A=3 together with smoothing. 

 
 

As with the SENSE model, the comparison between the real, imaginary, 

real/imaginary and magnitude-squared correlations induced by an application of the 

GRAPPA model with A=1 versus A=3 is performed in three ways. First, the theoretical 

correlations induced by the GRAPPA reconstruction operators, OG, together with a 

smoothing operator, Sm, in Eq. [3.10] were determined through Eq. [3.14] and are 

presented in Fig. 3.10a for A=1, and Fig. 3.10d for A=3. When data is acquired with A=1, 
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there is no interpolation performed and thus the operator G in Eq. [3.10] is replaced with 

an identity matrix. Second, the correlations estimated directly from the experimentally 

acquired data sets (EXP) reconstructed with the GRAPPA model together with 

smoothing are presented in Fig. 3.10b for A=1 and in Fig. 3.10e for A=3. Finally, the 

correlations estimated about a 2×2 seed region, determined with Eq. [2.18], in the 

reconstructed time series after a Hamming band pass filter was applied to each voxel’s 

time series are presented in Fig. 3.10c for A=1 and in Fig. 3.10f for A=3. The images in 

Fig. 3.10a and Fig. 3.10d illustrate the theoretical structure of the correlations induced by 

the GRAPPA model, even if there is a correlation induced between the VOI and voxels in 

space, while all correlation in Figs. 3.10b-c and Figs. 3.10e-f are masked to observe 

correlations between the VOI and other voxels within the brain only. All correlations in 

Fig. 3.10 are presented on top of a magnitude underlay with a pink circle highlighting 

each VOI and green circles highlighting the aVOI’s. The theoretical correlations induced 

by GRAPPA are presented with a threshold of ±0.125 to display the general structure of 

the correlations induced by the GRAPPA model, while the EXP correlations estimated 

from the reconstructed images with and without band pass filtering are presented with a 

threshold of ±0.35 (p≈0.05) (Greicius et al., 2003).  

As the theoretical correlations presented in Fig. 3.10a are for a GRAPPA 

reconstruction with A=1 together with smoothing, the only correlation structure of note is 

that induced between the VOI and its immediate neighbors by the Gaussian smoothing 

kernel. As noted with the SENSE model in Fig. 2.15, the estimated EXP correlations for 

data reconstructed with A=1 together with smoothing in Fig. 3.10b show positive real, 

imaginary and real/imaginary correlations in the vicinity of the VOI with negative real,  
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Figure 3.10: Correlations about a VOI for a human subject data set a) theoretically induced by GRAPPA 
with A=1, b) estimated EXP correlations with A=1, c) fcMRI correlations estimated from Hamming band 
pass filtered images reconstructed by GRAPPA with A=1, d) theoretically induced by GRAPPA with A=3, 
e) estimated EXP correlations with A=3 and f) fcMRI correlations estimated from Hamming band pass 
filtered images reconstructed by GRAPPA with A=3. Correlations in a) and d) are threshold to ±0.125 and 
correlations in b-c) and e-f) are threshold to ±0.35. 
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imaginary and real/imaginary correlations across the midbrain region. As the correlations 

estimated from magnitude-squared data all appear to be positive and are strongest in the 

vicinity of the VOI, the negative real, imaginary and real/imaginary correlations are most 

estimated from magnitude-squared data all appear to be positive and are strongest in the 

vicinity of the VOI, the negative real, imaginary and real/imaginary correlations are most 

likely a byproduct of B-field inhomogeneities that are manifested in the phase of the 

reconstructed images. When the time series of each voxel in the smoothed images 

reconstructed by GRAPPA with A=1 are band pass filtered to the frequency spectrum 

commonly associated with fcMRI, the correlations representing functional connectivity in 

Fig. 3.10c still resemble the structure of their un-filtered counterparts in Fig. 3.10b. It is 

of note that the negative structures in the real, imaginary and real/imaginary fcMRI 

correlations in Fig. 3.10b appear to be amplified after band pass filtering the GRAPPA 

reconstructed time series with A=1 in Fig. 3.10c, while the magnitude-squared fcMRI 

correlations are diminished to the anterior region of the brain. When band pass filtering 

was performed for the SENSE model, all fcMRI correlation structures appeared to be 

diminished by comparison to the corresponding estimated EXP correlations. This 

suggests that the B-field inhomogeneities that manifest themselves in the phase of the 

images combined in k-space through the GRAPPA model with A=1 reside within the low 

frequency spectrum associated with functional connectivity. 

With the VOI located in the anterior region of the brain, the aVOIs prior to an 

application of the GRAPPA model with A=3 fall both within the anterior of the brain and 

in space above the brain. The correlations induced by an application of the GRAPPA 

model with A=3 between the VOI and the real, imaginary, real/imaginary and magnitude-
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squared components of all other voxels are presented in Fig. 3.10d. As with the 

theoretical illustration, the real and imaginary induced correlations are all positive while 

the correlations induced between real and imaginary components of the VOI and aVOIs 

are both positive and negative. Unlike the theoretical illustration, the theoretical 

correlations induced between the VOI and aVOIs in magnitude-squared data in Fig. 3.10d 

are all negative. There are notable differences when comparing the estimated EXP 

correlations for data reconstructed with A=3 together with smoothing in Fig. 3.10e to the 

corresponding EXP correlations estimated from data with reconstructed with A=1 in Fig. 

3.10b. The strong negative correlations noted with A=1 in Fig. 3.10b are not as apparent 

with a GRAPPA reconstruction with A=3 in Fig. 3.10e, but there is rather a cluster of 

voxels within the region of the aVOI that exhibit positive real and imaginary correlation 

structures and negative real/imaginary and magnitude-squared correlation structures. As 

the shape and sign of the voxels within the aVOI correlated to the VOI match their 

respective theoretical induced structure in Fig. 3.10d, and more importantly are not 

present with A=1 in Fig. 3.10b, they are most likely a result of the GRAPPA 

reconstruction process. When the time series of each voxel in the smoothed time series 

reconstructed by GRAPPA with A=3 is band pass filtered to the frequency spectrum 

commonly associated with fcMRI, the correlations representing connectivity in Fig. 3.10f 

still show positive real and imaginary correlations between the VOI and the aVOI and 

negative correlations between the real and imaginary components of the VOI and aVOI. 

Interestingly, the VOI and aVOI in the band pass filtered magnitude-squared data set 

reconstructed with A=3 exhibit a strong positive correlation structure when the 

correlations without band pass filtering in Fig. 3.10e do not exhibit this positive structure. 
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As the fcMRI correlations in Fig. 3.10c for a data set with no sub-sampling (A=1) show 

no positive correlations between the VOI and the location of where aVOI would be in the 

anterior of the brain, these regions would not be assumed to be functionally connected in 

the data set reconstructed with A=1. Should a neuroscientist not account for the 

implications of the reconstruction and processing operations performed on their data, the 

notable correlations between the VOI and aVOI after a GRAPPA reconstruction with 

A=3 in Fig. 3.10f (which are of no biological origin) would reject the null hypothesis in a 

functional connectivity study, suggesting that these two regions are in fact functionally 

connected when they are not.  

3.6 Discussion 

The GRAPPA model is one of the most common pMRI models used in most 

clinical SIEMENS MRI scanners. By exploiting a uniform spacing between discrete 

spatial frequency measurements, the GRAPPA model offers an attractive means of 

estimating the sub-sampled spatial frequencies in each coil through an interpolation 

kernel that incorporates acquired measurements both within a coil and between coils. As 

with the SENSE model, many studies (including those funded by the $35m Human 

Connectome Project) utilize the GRAPPA model to reconstruct accelerated acquisitions 

of k-space with little to no regard as to the degree to which the model changes the 

statistical properties of the data.  

The real-valued isomorphic framework outlined in this chapter provides a novel 

means of precisely quantifying the structure of the correlations artificially induced by the 

GRAPPA model without the need for time-consuming MCMC simulations that can only 

estimate the induced correlation structure. To validate the correlations theoretically 
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induced by the GRAPPA model, however, both theoretical MC and experimental 

illustrations were performed in this dissertation. As the GRAPPA interpolation induces a 

local correlation between spatial frequencies, this correlation becomes global after an 

inverse Fourier reconstruction. Since the GRAPPA model uses a truncated convolution 

kernel derived from the Fourier transform of fully sampled coil sensitivities, the 

correlations induced between voxels of the reconstructed images are greatest in strength 

between previously aliased voxels, as noted with the SENSE model. Unlike the SENSE 

model, the rectangular interpolation kernel used in the GRAPPA model has also been 

shown to induce low correlations within the rows and column of both the VOI and aVOIs 

that exhibit a sinc structure, making it more difficult to precisely isolate the voxels that 

are artificially correlated by the GRAPPA model than by the SENSE model. 

As the correlations induced by the GRAPPA model still exceed a threshold of 

±0.35 after the reconstructed voxel time series in both theoretical and experimentally 

acquired data are Hamming band pass filtered to frequencies of 0.01 and 0.08 Hz, failure 

to account for these correlations would result in regions of the brain mistakenly assumed 

to be functionally connected, with 95% confidence, when they are not. As with the 

SENSE model, when sub-sampling is performed from anterior/posterior, these 

correlations can fall within the commonly explored default mode network, while sub-

sampling from left/right could result in these correlations falling within the motor 

cortices. As such, there is ultimately a need for new methods to accelerate data without 

inducing such misleading correlations. In the meantime, it is necessary for scientists 

conducting an fcMRI study that employs models such as GRAPPA to at least quantify 



 

 

107

and be aware of the presence of these correlations between regions they may be 

investigating. 
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Chapter 4:  Informed RF Coil Design for Region Specific fcMRI Studies 

4.1 RF Coil Design Theory 

While the artificial correlations induced by pMRI models such as SENSE and 

GRAPPA, as discussed in the previous two chapters, are a byproduct of reconstructing 

accelerated acquisitions of k-space, a far more commonly explored consequence of this 

process is the loss in SNR. As described in Eq. [1.6], the inverse Fourier transformation 

of a py×px array of independent spatial frequency measurements from k-space to image 

space scales the covariance of the k-space measurements by a factor of 1/pypx. Thus, 

when the array of independent spatial frequencies is reduced to a dimension of (py/A)×px, 

the scaling factor of the covariance is increased from 1/pypx to A/pypx. With the SNR in a 

voxel evaluated as the ratio of the voxel’s mean and its standard deviation, the resulting 

SNR of a SENSE (or GRAPPA) reconstructed image is therefore reduced by a factor of 

A . Given that this increase in the standard deviation is unavoidable, many studies focus 

primarily on the additional reduction in SNR that results from the amplification of noise 

in SENSE reconstructed images caused by the overlap of coil B-fields.  

If a phased array is comprised of adjacent rectangular coils, such as the 

conventional “birdcage” array illustrated in Fig. 4.1a with NC=8 coils, the B-field of each 

coil has an effective depth of sensitivity that is roughly equivalent to the outer dimensions 

of the coil. As the red rectangular coil in Fig. 4.1a has a narrower width than height, the 

depth of sensitivity, illustrated in Fig. 4.1b, is approximately that of the width of the coil. 

When the B-field contribution for each of the NC coils in Fig. 4.1a are combined, the 

SNR distribution in SENSE reconstructed images is typically lower in both the central 
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and peripheral regions of the reconstructed images, as these regions are far away from the 

center of each coil (Chen et al., 2007). By this notion, the physical geometry of a phased 

array affects the profiles of coil B-fields and in turn the SNR in SENSE reconstructed 

images, SNRSE. The optimization of RF coil arrays designed for SENSE imaging has 

therefore been an area of study for several years.  

 

 

Figure 4.1: a) A “birdcage” array of NC=8 rectangular coils with b) magnetic fields generated by the first 
coil (red) as viewed from anterior to posterior through the center (y,z) plane and top/down through the 
center (x,y) plane. 

 

4.1.1 Estimation of RF Coil Magnetic Fields 

Consider the closed wire loop resembling an RF coil in Fig. 4.2a. If a current, I, 

flows around the loop, a magnetic field, B, is generated by the current. Due to the counter  



 

 

110

 

Figure 4.2: Using a) a current flowing through a loop of wire in a counter clockwise direction, b) the B-
field generated by each coil can be is estimated by representing the coil as a collection of NV connected 
vertices, and c) using Biot-Savart to sum to contribution of each segment at every point in space. 

 
 
clockwise direction of flow, the B-field generated by the current is projected “out of the 

page”. Based on this principle, if each coil in Fig. 4.2b is treated as a closed loop of wire 

with a current flowing in the counter clockwise direction, then the B-field of each coil 

will project into the center of the array. To estimate the B-field generated by the array, 

each coil element in Fig. 4.2b is represented as a collection of NV connected vertices, with 

the space surrounding the array represented as a 3-dimensional lattice. With the array 

represented in this fashion, the B-field generated by a single coil at each point in space 

can be approximated by the Biot-Savart law (Griffiths, 1999) through a sum of the B-

field generated by each wire segment, dl, that make up the coil, 
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In Eq. [4.1], μ0=4π×10-7 NA-2 is the permeability of free space, τ is the displacement  
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vector from the wire segment, dl, to the point in space, ̂  is the unit vector of τ, θ1 and θ2 

are the angles between the point in space and the two ends of the wire segment, as 

illustrated in Fig. 4.2c. 

4.1.2 The Notion of Coil Symmetry 

Using a cylindrical coordinate system with a fixed coil radius, r, each vertex that 

defines the geometry of the coil in Fig. 4.2b has a specific location defined by 

coordinates (ϕ,z). If the geometry of each of the NC coils in the array is defined by NV 

connected vertices, the total number of parameters to be optimized is 2NCNV. As the 

number of vertices defining a complete array of coils increases linearly with the number 

of coils in the array, constraints are placed on the resolution that can be employed in 

defining the coil deformations due to an increased computational load. To decrease both 

computational time and demand, it has become conventional to assume that RF coil 

arrays exhibit symmetry both within a coil and between coils. As illustrated in Fig. 4.3a, 

an individual coil can be fully symmetric, assume a mirrored symmetry from left to right, 

assume symmetry from the top down, or exhibit no symmetry at all. Similarly, all coils in 

the array, illustrated in Fig. 4.3b, can assume a full radial symmetry, have a mirrored 

symmetry about a single plane (such as the sagittal plane), or exhibit no symmetry at all. 

The birdcage array in Fig. 4.1a is an example of an array that assumes both full symmetry 

within each coil and a full radial symmetry between coils. Assuming such a fully 

symmetric array allows for the optimization to be simplified and performed on a single 

coil, with at most 2NV parameters. For each iteration of an optimization algorithm, the 

coordinates of the NV vertices in one coil are shifted to new locations, producing a unique 

B-field for the new geometry of the coil. The B-fields of the remaining NC-1 coils are  



 

 

112

 

Figure 4.3: The types of symmetry that can be assumed a) within an individual coil and b) between all 
coils (when viewed from the top). 

 
 
then simulated as a rotation of the B-field generated by the first coil around a cylinder.  

With such constraints on coil symmetry, the variables defining an RF coil array become 

the coil radius, the length of the coils, the number of coils, and the shape of the coils 

(rectangular, oval, butterfly, etc.). 

When there is no symmetry assumed between coils, as shown in Fig. 4.3b, the 

total number of parameters to be optimized would be 2NCNV, and the B-field for all NC 

coils would need to be estimated in each iteration of an optimization algorithm. For the 

assumption of sagittal symmetry, the left and right halves of the array exhibit a mirrored 

symmetry, and thus the total number of parameters to be optimized would reduce to 

NCNV. However, because the current flows through each coil in a counter clockwise 
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direction, as illustrated in Fig. 4.2a, the B-fields for the coils on the right half of the array 

would not simply be a rotation of those on the left half. As such, the B-field for all NC 

coils would still need to be estimated in each iteration of an optimization algorithm. 

4.1.3 A New Perspective on RF Coil Design 

Unlike birdcage RF coil arrays, the human brain is not fully symmetric, and ROIs 

are rarely in the very center of the brain. As such, almost all constraints on coil symmetry 

are relaxed in this dissertation, thereby allowing for each coil element in a phased array to 

be individually optimized for a given ROI. However, as it is becoming common for 

pMRI studies to use arrays with an increasingly larger number of coils, that are each 

defined by a greater number of vertices, the number of parameters to be optimized can 

become excessive when each coil has to be individually optimized. This dissertation 

therefore introduces a novel approach of using spatial normalization (Friston et al., 1995; 

Ashburner et al., 1999) to morph an array of coils into an optimal configuration with sine 

and cosine basis functions. In this approach, the number of parameters is limited to twice 

the number of basis functions, irrespective of the number of coils and vertices. Albeit the 

number of coils and vertices will affect the computation time for each iteration in the 

optimization algorithm, but the number of parameters to be optimized is dramatically 

decreased. 

Almost all coil optimization studies use a cost function that minimizes the overall 

g-factor in SENSE reconstructed images, thereby maximizing SNRSE. However, since the 

SENSE model utilizes coil B-field sensitivities for spatial localization, both the un-

aliasing process and the correlations that were shown to be induced by that process in 

Chapter 2 (Bruce et al., 2011; Bruce et al., 2012; Bruce et al., 2013) are by definition 
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functions of coil geometry (Bruce et al., 2013; Bruce et al., 2014). As such, this 

dissertation also introduces a revised cost function to be used in the parameter estimation 

that, when minimized, produces an array of coils that has both an improved SNRSE and a 

minimal influence of SENSE induced correlations in functional connectivity studies that 

analyze the SENSE reconstructed images. 

4.2 A New Cost Function for Informed RF Coil Design 

If the values for a single complex-valued aliased voxel, j, in each of NC aliased 

coil images are placed in a vector, ajC, the complex-valued weighted least squares 

estimation of the un-aliased voxel values, vjC, by the SENSE model in Eq. [2.2] can be 

rewritten as 

v jC  S jC
H1S jC 1

S jC
H1ajC

v jC U jCa jC .
            [4.2] 

If the aliased voxel, j, is in the kth row of the aliased coil images, with the PE direction 

oriented as anterior/posterior (sub-sampling from the bottom of the image to the top), 

then the A un-aliased voxel values in vjC will be located in rows [k, k+py/A, k+2py/A, … 

k+(A-1)py/A]. When solving Eq. [1.11] for the geometry factor, gj,  

g j 
SNR

full , j

SNR SE , j A
 S jC

H1S jC 
j , j

1

S jC
H1S jC 

j , j
1,         [4.3] 

the result is a vector of length A with a g-factor value for each of the A un-aliased voxels 

in Eq. [4.2]. The g-factor effectively measures the condition of the unfolding matrix, Uj, 

in Eq. [4.2] and provides a real-valued measurements of the noise amplification that 

results from an overlap of coil B-fields in each of the A un-aliased voxels in vCj. 

Theoretically, the maximal value of SNRSE is unbounded, and 1/SNRSE could approach 
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zero when an optimal coil geometry is achieved. The g-factor, however, is always unity 

in voxels that were not previously aliased, irrespective of the SNR in that voxel, and is a 

value that is no less than one when in a voxel that was previously aliased. This places a 

convenient lower bound in the optimization, and since a minimization of the g-factor 

simultaneously maximizes SNRSE, it has become the de-facto metric for optimizing RF 

coil designs for SENSE imaging.  

While the g-factor may be a real-valued measure of the noise amplification in 

images reconstructed by the SENSE model, the model itself is applied to complex-valued 

aliased voxel measurements. In most fcMRI studies, the SENSE reconstructed images are 

converted to magnitude-only images for analysis, but recent studies have shown that 

important biological information can be derived from the phase portion of a complex-

valued time series (Rowe and Logan, 2004; Rowe and Logan, 2005; Rowe, 2005; Nencka 

et al., 2009; Menon et al., 2012), and thus the implications of the SENSE unfolding on 

both the real and imaginary components of the un-aliased voxels is necessary. Equivalent 

to the technique used in Chapter 2, the SENSE unfolding process in Eq. [4.2] can be 

represented in a real-valued form by stacking the real components of the complex-valued 

vectors ajC=aRj+iaIj and vjC=vRj+ivIj on top of the corresponding imaginary components, 

and representing the unfolding matrix, UjC=URj+iUIj, in a skew-symmetric form by 
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Assuming the voxels in the vector aj have an ideal identity covariance structure, the 

artificial covariance that is induced solely by the SENSE unfolding process between the  

voxels in vj is  

Σj = cov(vj) = UjUj
T.             [4.4] 

The covariance matrix in Eq. [4.4] can be converted to a real-valued correlation matrix 

representing the induced correlation between the real and imaginary parts of the complex-

valued reconstructed voxels by 

corr(U
j
U

j
T )  D1/2U

j
U

j
T D1/2 

corr
j ,RR

corr
j ,RI

corr
j ,IR

corr
j ,II














,         [4.5] 

where D is a diagonal matrix with elements drawn from the diagonal of UjUj
T. The four 

quadrants of the correlation matrix in Eq. [4.5] denote the correlations induced between 

the real components of vjC, between the imaginary components of vjC, and between the 

real and imaginary components of vjC. It is of note that the artificially induced 

correlations in Eq. [4.5] are of no biological origin and have been shown in Chapter 2 to 

influence conclusions drawn in functional connectivity studies by making regions of the 

brain that were previously aliased with one another appear to be either correlated or 

uncorrelated when they are not (Bruce and Rowe, 2013; Bruce and Rowe, 2014). Since 

the unfolding matrix, Uj, is derived from coil B-field sensitivities, SjC, and a covariance 

between coils, ΨC, it is therefore entirely dependent on coil-geometry. If the SENSE 

model is to be used for accelerating the acquisition of fcMRI data sets, then there is a 

natural need for coils to be optimized using a metric that not only minimizes the 

conventional g-factor in Eq. [4.3], but minimizes the theoretical SENSE induced 

correlations in Eq. [4.5] as well. 
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In a conventional RF coil design study, the g-factor is determined in each voxel 

within an ROI, and the geometry that exhibits an overall g-factor that is closest to one is 

deemed optimal for the given ROI. If the SENSE model induced no covariance between 

voxels, the 2A×2A correlation structure in Eq. [4.5] would be an identity matrix. A 

generalized likelihood ratio statistic for the degree to which voxels are uncorrelated can 

therefore be used as a metric for determining the overall correlation induced by SENSE 

about all voxels in an ROI (Rowe, 2003). To perform such a test, the 2A×2A covariance 

matrix for every voxel j=[1,…p] within an ROI, Σj, is first placed along the diagonal of a 

large block diagonal covariance matrix 

 .           [4.6] 

In a test for the degree to which voxels within the ROI are correlated with their 

previously aliased counterparts, the null-hypothesis assumes that the SENSE induced 

covariance in Eq. [4.6] is a strictly diagonal matrix, H0: Σ = diag(Σ), with off-diagonal 

terms Σjk=0, while the alternative hypothesis H1: Σ ≠ diag(Σ) assumes that a covariance 

has been induced between previously aliased voxels j and k, Σjk≠0. Failure to reject H0 

would indicate that the voxels un-aliased by SENSE in Eq. [4.2] are independent, while a 

rejection of H0 would denote a statistically significant covariance (or correlation) has 

been induced. If a matrix, Y, is comprised of the p aliased voxels within the ROI, X is a 

p×2 design matrix, and the maximum likelihood estimates of the coefficients, β, and the 

covariance, Σ, under the null and alternative hypotheses are  
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,  and  ,  

then the generalized likelihood ratio statistic for dependence between voxels is  

           [4.7] 

The ratio in Eq. [4.7] of the strictly diagonal covariance matrix assumed in H0,  , and the 

covariance matrix with SENSE induced off-diagonal elements in H1, ̂ , simplifies to a 

matrix, R, with the overall correlation structure induced between voxels. After converting 

to a log-likelihood ratio for dependence, the statistic in Eq. [4.7] is further simplified to  

             [4.8]

 

 
If the 2A×2A correlation matrix for every voxel j=[1,…p] in the ROI, Rj = corr(UjUj

T), are 

theoretically derived through Eq. [4.5] and placed along the diagonal of a larger block 

diagonal correlation matrix,  

, 
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then based on the properties that the determinant of a block diagonal matrix is the product 

of the determinants of each block, and that the logarithm of a product is the sum of the 

logarithms, Eq. [4.8] simplifies to a scalar by 

 p
2

ln R   p
2

ln Rj
j1

p














 p
2

ln R   p
2

ln
j1

p

 Rj .

            [4.9]
 

 
If Rj is an identity matrix, then the determinant of the correlation induced about voxel vj is 

one, and thus the contribution from that voxel, j, to the statistic in Eq. [4.9] is zero after 

taking the logarithm. By contrast, any increase in the strength of the correlations induced 

by SENSE will be exponentially weighted through the logarithm within the sum in Eq. 

[4.9], which is more appropriate than a simple linear combination of induced correlations 

since correlation strength increases quadratically.  

For a cost function that appropriately combines both the traditional geometry 

factor and the SENSE induced correlations, the cost function of the g-factor is first 

defined by subtracting 1 from the average g-factor over the p voxels in the ROI, 

H
g


1

p
g

j
1

j1

p

 . 

Given the lower bound of the g-factor being one, Hg approaches zero when a unit g-factor 

is achieved. For a metric of the overall SENSE induced correlation in an ROI to be on the 

same order as Hg, the likelihood ratio statistic in Eq. [4.9] is scaled by 1/p2, defining the 

cost function for the correlations induced about all voxels in an ROI by the SENSE 

model as 

H
corrSE

 
1

2 p
ln

j1

p

 R
j
. 



 

 

120

Like Hg, the cost function HcorrSE 
 approaches zero when no correlation is induced by the 

SENSE model. As both cost functions Hg and HcorrSE
 approach zero when optimized, a 

joint cost function can be expressed as 

H = wgHg + wcorrSE
 HcorrSE

,                     [4.10] 

where wg and wcorrSE
 are the weights for the g-factor and SENSE induced correlation cost 

functions respectively. These weights can be derived through a calibration study for each 

choice of NC, A, and the size/location of the ROI. Such a calibration is described in the 

Methods section of the theoretical simulation to follow.  

 As the SENSE reconstruction process is not an orthogonal operation, the statistical 

properties of SENSE reconstructed images are altered by the un-aliasing process both 

within a voxel and between voxels. The g-factor provides a measure of the degree to 

which the overlap of coil B-field sensitivities amplifies the noise (increases the standard 

deviation) within each voxel of the reconstructed images. The minimization of Hg in Eq. 

[4.10] would therefore allow for an improved SNRSE to be achieved in each voxel by 

diminishing the effects of the SENSE reconstruction process on the standard deviation of 

each individual voxel’s time series. By contrast, a minimization of HcorrSE
 in Eq. [4.10] 

reduces the artificially induced correlation (or covariance) between voxels. When a 

collection of A voxels become highly correlated as a result of the SENSE un-aliasing 

process, it becomes increasingly difficult to deduce meaningful information from the time 

series of all A voxels. If, for example, the A voxels un-aliased by the SENSE model 

became perfectly correlated as a result of the process, then there would only be one time 

series worth of meaningful information for all of the A voxels together. As such, the 

lower the SENSE induced correlations, as achieved by minimizing HcorrSE
, the more 
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meaningful functional connectivity information can be obtained from the A un-aliased 

voxels given the same number of sub-sampled measurements. 

 

4.2 Adapting Spatial Normalization to Morph an RF Coil Array 

In many fMRI and fcMRI studies, data is collected for groups of subjects to find 

common trends in cognitive brain activity. Issues faced by these studies include the fact 

that each patient in the group could have a brain that is a different size and positioned 

differently in the scanner from one patient to the next. To achieve spatial normalization 

of the brain images for the entire group, statistical parametric mapping (SPM) uses cosine 

basis functions to fit the brain scans for each patient to a template image (Friston et al., 

1993; Friston et al., 1995; Ashburner et al., 1999). This is done by first defining the shape 

and size of a template image of the brain, and then systematically morphing the acquired 

images for each subject in the grouped data until the spatial locations of the brain regions 

of all subjects are in the same location. An iterative Gauss-Newton nonlinear least 

squares estimation process is typically performed in which the residual squared 

difference between images from each subject and the template is minimized.  

While there is no “template image” to morph an RF coil array onto, the basic 

concept of spatial normalization can be applied to optimizing RF coil arrays by treating 

the ideal g-factor and SENSE induced correlations within an ROI as a template. Ideally, 

there would be a unit g-factor in every voxel within the ROI, with an identity correlation 

structure induced by the SENSE reconstruction process, thereby achieving H=0 in Eq. 

[4.10]. To morph a cylindrical array of rectangular RF coils into an optimal arrangement 

using spatial normalization, the array of NC=8 coils in Fig. 4.4a is “unrolled” onto a 2-  
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Figure 4.4: An array of NC=8 rectangular coils arranged in a) 3-dimensional cylindrical coordinates and b) 
“unrolled” onto a 2-dimensional Cartesian plane, (ϕ,z). 

 
 
dimensional plane in Fig. 4.4b with the horizontal dimension corresponding to the angle 

of displacement from the center of the first coil, ϕ, and the vertical dimension 

corresponding to the height of the coil, z. If the loop of each coil is defined by edges 

joined at a collection of vertices, each with coordinate locations (ϕ,z), then these vertices 

can be shifted into new locations through the spatial normalization process, checking the 

“fit” of the array with the ideal template conditions through Eq. [4.10]. 

At each (ϕ,z) location, spatial transformations are performed both vertically and 

horizontally through a linear combination of smooth cosine and sine basis functions. The 

choice of cosine and/or sine basis functions depends on the required behavior of the 

transformations at the boundaries. If points at the boundaries over which the 

transformation is performed are not allowed to shift, then a collection of sine basis 

functions should be used in the transformation. By contrast, if there are no such 

constraints placed on the boundaries, then a collection of cosine basis functions would be 

more appropriate. If there are no constraints on the symmetry of an RF coil array, then 

Fourier basis functions would be the most appropriate choice for transformations in the ϕ-

dimension as it would invoke a wrap around condition at the boundaries.  
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As illustrated in Fig. 4.4a, the brain exhibits approximate bilateral/sagittal 

symmetry, making it reasonable to reduce the computational load by placing a symmetry 

constraint about the sagittal plane, as illustrated in Fig. 4.3b, where the left half of the 

array is a mirror image of the right half. This can be done by centering the anterior coil at 

the top of the array, ϕ=π/2, as shown in Fig. 4.4b, and centering the posterior coil at the 

bottom of the array, ϕ=±3π/2. The horizontal period of the half-array in Fig. 4.4b is thus 

pϕ=π, while the period of the z-dimension is defined as twice the coil radius, pz=2r, which 

is the length of the coil. This effectively reduces the image to be morphed to the left half 

of Fig. 4.4b. With the array defined in this manner, deformations in the ϕ-dimension need 

to be constrained at the ϕ=-3π/2 and ϕ=π/2 boundaries, while there are no constraints on 

deformations in the z-dimension at any boundary. To constrain deformations in the ϕ-

dimension, a collection of sine basis functions with a period of pϕ=π can be used such that 

the deformations are zero at the ϕ=-3π/2 and ϕ=π/2 boundaries. In addition to the 

boundary constraints in the ϕ-dimension, the basis functions have to also exhibit both 

symmetry and asymmetry about ϕ=0. If the basis functions are all symmetric about ϕ=0 

then the deformed array will always exhibit a mirrored symmetry about the coronal plane 

as well as the sagittal plane. By contrast, if all basis functions are asymmetric about ϕ=π, 

then the array can never exhibit coronal symmetry. Since the goal of this study is for the 

shape of the array to be defined by the size and location of the ROI, the optimization 

algorithm needs to be able to morph an array of rectangular coils into any shape, 

irrespective of whether or not the final array is symmetric or asymmetric about the 

coronal plane. As there are no constraints on the deformations in the z-dimension, the 

deformations can be defined using a collection of cosine basis functions. For a collection 
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of Jϕ bases in the ϕ-dimension and Jz bases in the z-dimension, the 2-dimensional 

deformation fields are therefore defined with a combination of sine and cosine basis 

functions by 
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z
) 

2

p

2

p
z

q()sin
 j

p












cos

 ( j
z
1)z

p
z











Q
z
(,z, j , j

z
) 

2

p

2

p
z

cos
 ( j 1)

p












cos

 ( j
z
1)z

p
z









.

         [4.11] 

The windowing function, q(ϕ), in Eq. [4.11] is defined by  
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,         [4.12] 

and is designed to constrain the function Qϕ to zero when ϕ=-3π/2 and ϕ=π/2. In Eq. 

[4.12], the horizontal shift, 
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8
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


 , 

centers both of the sine functions in q(ϕ) such that q(ϕ) tapers from zero at ϕ=-3π/2 and 

ϕ=π/2 to one at ϕ=-3π/2+pϕ/φ and ϕ=π/2-pϕ/φ, where φ is an even integer.  

If Tϕ and Tz are Jz×Jϕ coefficient matrices for deformations in the ϕ and z 

dimensions respectively, then the coordinates for each vertex, (ϕ,z), are morphed to a new 

set of vertex coordinates (ϕnew,znew) by 
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Figure 4.5: a) Jϕ=5 and Jz=5 two-dimensional basis functions, Qϕ, b) weighted by coefficients stored in a 
matrix, Tϕ, to achieve an overall combined horizontal deformation field applied to the vertices of a coil 
array, and c) two-dimensional basis functions, Qz, d) weighted by coefficients stored in a matrix, Tz, to 
achieve an overall combined vertical deformation field applied to the vertices of a coil array. For horizontal 
deformations in a) and b), black deformations signify a shift to the left and white deformations signify a 
shift to the right. For vertical deformations in c) and d), black deformations signify a downward shift and 
white deformations signify an upward shift. 

 
 
For a collection Jϕ=5 and Jz=5 basis functions, the 2-dimensional deformations for the ϕ-

dimension, Qϕ, are illustrated in Fig. 4.5a, which when combined using coefficients, Tϕ, 

results in an overall deformation field for the ϕ-dimension in Fig. 4.5b. In both Fig. 4.5a 

and Fig. 4.5b, the black deformations signify shifts to the left while white deformations 

signify shifts to the right. Illustrated in Fig. 4.5c are the 2-dimensional deformations for 

the z-dimension, Qz, which when combined using coefficients, Tz, results in an overall 
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deformation field for the z-dimension in Fig. 4.5d. Similarly in both Fig. 4.5c and Fig. 

4.5d, the black deformations signify downward shifts while white deformations signify 

upward shifts.  

As the Jz×Jϕ basis functions Qϕ and Qz in Eq. [4.11] remain constant, the 

coefficient matrices, Tϕ and Tz, are the parameters to be estimated in the optimization of 

an RF coil array through spatial normalization. In the morphing of brain images with 

SPM, an iterative application of Eq. [4.11] is performed in a Gauss-Newton algorithm to 

determine the least squared residuals between the updated and template images, and is 

thus performed in the same domain as the images themselves. For RF coil optimization, 

however, the parameters Tϕ and Tz update the vertex coordinates of each coil in an array, 

B-fields are then approximated for each coil in the array using a technique such as Biot-

Savart, and finally the cost function in Eq. [4.10] is evaluated to assess the geometry of 

that vertex shift. While the domain in which the parameters are applied differs by several 

nonlinear transformations to the domain in which the cost function is evaluated, the basic 

principle of SPM is upheld as the goal is to morph the array until the spatial 

normalization with a template image is achieved, as determined by H=0 in Eq. [4.10]. 

4.3 Theoretical Simulation 

4.3.1 Methods 

Setup 

To simulate the optimization of an RF coil’s geometry for specific brain regions, a 

conventional “birdcage” array of NC=8 rectangular coils, illustrated in Fig. 4.6a, was used 

as an initial array to be morphed. The cylindrical array was given a radius of r=14 cm, 
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with each coil in the array being 28 cm (2r) in length, and the first coil (in red) was 

centered at ϕ=π/2 in the anterior of the array. The physical geometry of each individual 

coil was described by a collection of NV=22 connected vertices, each with a (ϕ,z) 

location. With NC=8 coils, this implies a total of 2NCNV=352 vertex coordinates to be 

optimized. As the 3-dimensional brain phantom in the center of the array in Fig. 4.6a 

exhibits approximate bilateral symmetry, the RF coil arrays in this dissertation are 

assumed to be symmetric about the sagittal plane. If conventional RF coil design studies 

(Chen et al., 2007) were to only assume sagittal symmetry, the vertices of each coil 

would be individually shifted and the number of coordinates that would need to be 

optimized would be NCNV=176. To improve upon this large number of parameters, the 

morphing of RF coil arrays into geometries optimized for specific brain regions is 

performed using spatial normalization in this dissertation with a collection of Jϕ=5 and 

Jz=5 two-dimensional basis functions used for the horizontal and vertical displacements. 

The coefficient matrices in Eq. [4.13], Tϕ and Tz, are therefore both 5×5 in dimension, 

which leaves a total of 50 parameters to be optimized. 

 

Regions of Interest 

The overarching goal of this study is to develop RF coils that are optimized for 

specific regions of the brain that are not necessarily in the very center. To most 

effectively illustrate the ability to morph an RF coil array into an optimal arrangement 

using both spatial normalization and the cost function in Eq. [4.10], two ROIs were 

selected that are commonly investigated in both fMRI and fcMRI studies. The first ROI 

is the Default Mode Network (DMN) in Fig. 2.2b, which has become a very popular 

network of apparent functional connectivity observed when a patient is at rest (Raichle et  



 

 

128

 

Figure 4.6: a) 3-dimensional brain phantom placed in a birdcage array of NC=8 rectangular coils with ROIs 
representing b) the Default Mode Network, and c) the occipital lobe. d) The aliasing pattern through the 
center axial plane of the 3-dimensional brain phantom with an acceleration of A=3, with aliasing patterns of 
e) the Default Mode Network ROI and the f) occipital lobe ROI. 

 
 
al., 2001; Raichle et al., 2007). Many fMRI and fcMRI studies on this network of brain 

regions have linked a lack of apparent connectivity between these regions with signs of 

Alzheimer’s disease and autism, while signs of over activity in these regions have been 

linked with schizophrenia (Castelli et al., 2002; Just et al., 2004; Just et al., 2007; 

Buckner et al., 2008; Broyd et al., 2009; Assaf et al., 2010; Spencer et al., 2012; Lynch et 

al., 2013). Since the DMN spans a collection of regions along the center of the brain, the 

ROI for this study is defined by the three ellipsoids in Fig. 4.6b. These ellipsoids were 

selected to vary in shape and size along the center of the brain, and are slightly above the 
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center axial plane. The second ROI selected for this study is the occipital lobe (OCCIP) 

in the anterior region of the brain. Part of the visual cortex, various fMRI studies have 

associated functional activity within the occipital lobe with both epilepsy and seizures 

(Loiseau et al., 1991; Manford et al., 1992; Berg et al., 1999; Jallon et al., 2001; Taylor et 

al., 2003). The OCCIP ROI for this study is defined by the single ellipsoid in the 

posterior of the brain phantom in Fig. 4.6c. While both the DMN and OCCIP are in 

relatively well-defined regions of an individual’s brain, not all subjects will have brains 

that are the same shape and size. As such, the ellipsoids that define the DMN and the 

OCCIP in Fig. 4.6 were chosen to encompass the general area of each ROI. 

 

Sub-Sampling Scheme and Orientation 

For this study, the PE direction was defined as anterior/posterior and sub-

sampling was simulated with an acceleration factor of A=3. When the 3-dimensional 

brain phantom in Fig. 4.6a is sub-sampled by A=3, the aliasing pattern through the center 

axial plane is illustrated in Fig. 4.6d. In Fig. 4.6d, the blue region represents voxels with 

no aliasing, the yellow region represents voxels with a two-fold aliasing, and the red 

region represents voxels with a three-fold aliasing. This sampling scheme was selected 

because of the position of the ROIs. The three ellipsoids that form the DMN ROI span 

across the center of the brain from anterior to posterior and will therefore become aliased 

with one another when sub-sampling is performed, as illustrated in Fig. 4.6e. When un-

aliased with SENSE, there will be an artificially induced correlation between regions that 

could be mistaken for functional connections within the DMN ROI when they are not. 

When sub-sampled by A=3, the OCCIP ROI will become aliased with the mid-brain 

region and the frontal lobe, as illustrated in Fig. 4.6f. Due to this aliasing pattern, any 



 

 

130

activity within the OCCIP ROI could corrupt functional activation and connectivity maps 

in the mid-brain and frontal lobe, and likewise any functional activity in the 

aforementioned regions could corrupt functional activation and connectivity maps in the 

OCCIP ROI. 

 

Magnetic Field Estimation 

Throughout both the calibration of the cost function and the iterative optimization 

algorithm used in this study, every minor variation in the coefficient matrices, Tϕ and Tz, 

in Eq. [4.13] results in a new set of coil vertex coordinates, and thus an entirely new coil 

geometry. As such, B-fields have to be estimated for every array that is generated. To 

estimate the B-fields for each coil, the cylindrical coordinates of the vertices that define 

each coil in the array, (ϕ,z), are first converted to Cartesian coordinates by x=rcos(ϕ)  and 

y=rsin(ϕ). The 3-dimensional Cartesian array is then positioned in a 42×42×42 lattice 

with (x,y,z) coordinates ranging from –r to r, such as that in Fig. 4.2b. With a unit current 

flowing through a single coil in a counter clockwise direction, the B-field generated by 

that coil at every point in the lattice is estimated by the Biot-Savart integration in Eq. 

[4.1]. Once the B-fields for all NC=8 coils are determined, the g-factor and SENSE 

induced correlation cost functions in Eq. [4.10] are evaluated within the ROI’s. 

4.3.2 Calibration of the Cost Function 

The two ROIs selected for this study are different in both size and shape, and will 

therefore be aliased with different regions of the brain after sub-sampling is performed. 

The SENSE un-aliasing process will therefore result in different g-factor and SENSE 

induced correlation values within each ROI. It is for this reason that the weights, Hg and 
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HcorrSE
, in Eq. [4.10] need to be calibrated for each ROI separately. To determine these 

weights, 10,000 random coil arrays were generated using Jϕ=5 and Jz=5 2-dimensional 

basis functions with 5×5 coefficient arrays that were uniformly distributed, 

T /z
~ U 

1

J /z

,
1

J /z









 .           [4.14] 

For each of the 10,000 trials, the randomly generated coefficients in Eq. [4.14] were used 

to shift the vertices of the rectangular array in Fig. 4.6a using Eq. [4.13], after which B- 

fields for each coil were estimated and finally the cost functions Hg and HcorrSE
 for both  

 

 

Figure 4.7: Variations in the cost functions Hg (blue) and HcorrSE (red) in each of 10,000 calibration trials 
for a) the DMN ROI and b) the OCCIP ROI, with scatter diagrams showing the relatively high linear 
correlation between the two cost functions, ρ, of c) the DMN ROI and d) the OCCIP ROI. 
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the DMN and OCCIP ROIs were evaluated. Plots of the two cost functions for the two 

ROIs over each of the 10,000 arrays are presented in Fig. 4.7. Upon observation in Fig. 

4.7, it is apparent that arrays for each ROI that exhibit an increase in either Hg or HcorrSE 

are not always marked by a similar increase in the other function, but there is an apparent 

correlation between the two cost functions, ρ=corr(Hg, HcorrSE
), for both the DMN and for 

the OCCIP ROIs, as presented in Table 4.1. For this particular selection of NC, A, Jϕ/z and 

the locations of the two ROIs, HcorrSE 
is always greater in value and has a greater 

variability than Hg, and thus one would choose weights wg>wcorrSE
 such that minor 

variations in HcorrSE
 do not overshadow significant variations in Hg. Using the 

methodology proposed by Bates and Granger (1969) for combining forecasting models, 

weights that account for the difference in variability between the two cost functions can 

be derived by 

wg 
 corrSE

2  g ,corrSE

 g
2  corrSE

2  2 g corrSE

  and  wcorrSE


 g
2  g ,corrSE

 g
2  corrSE

2  2 g corrSE

.       [4.15] 

 

Table 4.1: Correlations between cost functions Hg and HcorrSE
 and weightings used the cost function 

H=wgHg+wcorrSE
 HcorrSE

 for both the DMN ROI and OCCIP ROI. 

ROI ρ wg wcorrSE

DMN 0.84 0.775 0.225 
OCCIP 0.49 0.818 0.182 

 
 
 
From the 10,000 random coil arrays generated in this calibration study, the weights for 

the DMN and OCCIP ROIs are presented in Table 4.1. The linear correlation between the 

cost functions in Table 4.1, ρ=corr(Hg, HcorrSE
), is notably higher between the g-factor 
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and SENSE induced correlations for the DMN than that of the OCCIP ROI. This is 

because HcorrSE
 is considerably more variable than Hg for the OCCIP ROI by comparison 

to that of the DMN ROI. As such, the weighting of Hg through wg for the OCCIP ROI is 

very high relative to wcorrSE
. While wg for the DMN ROI is also much greater than wcorrSE

, 

the difference is not as great because the variability of HcorrSE
 is lower for the DMN ROI 

than that of the OCCIP ROI. If the selection of NC, A, Jϕ/z and the location of the ROI 

produced two cost functions that did not exhibit such a high correlation, the covariance 

term in Eq. [4.15] would be reduced and the weights would be primarily determined by 

the variances of the two cost functions.  

4.3.3 Optimization with an Iterated Conditional Modes Algorithm 

With the cost function weights in Table 4.1 inserted into Eq. [4.10], the arrays that 

minimized Eq. [4.10] for both the DMN and OCCIP ROIs were determined through a 

combination of a stochastic optimization approach and a deterministic Iterated 

Conditional Modes (ICM) optimization algorithm. Using the 10,000 arrays generated for 

both the DMN and OCCIP ROIs in the calibration process, the overall cost function in 

Eq. [4.10] was re-evaluated for each morphed array. From the 10,000 arrays, the 

Narray=15 arrays with the lowest overall cost were then inserted into the ICM algorithm in 

an attempt to further refine the optimization. When morphing an RF coil array with Jϕ=5 

and Jz=5 basis functions, the coefficient matrices, Tϕ and Tz, comprise a total of 50 

parameters to be optimized. The ICM algorithm is a deterministic algorithm that 

iteratively determines the configuration of the 50 parameters that maximizes the joint 
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probability of each parameter conditioned on the rest (Besag, 1986). For an arbitrary 

ROI, the ICM algorithm is performed using the following steps: 

1) Generate a Jϕ×Jz array of initial coefficients for Tϕ and a Jϕ×Jz array of initial 

coefficients for Tz. 

2) Of the 2JϕJz coefficients, vary the first coefficient over a grid of values while 

holding the other 2JϕJz -1 coefficients constant. 

3) Evaluate the cost function in Eq. [4.10] at each point on the grid in step 2).  

4) Set the first coefficient to the value in 2) that minimized Eq. [4.10]. 

5) Move to the next coefficient. 

6) Repeat steps 3)-5) until all coefficients have been individually optimized 

conditioned on the rest being held constant. 

7) Refine the grid of values used in step 2). 

8) Repeat steps 2)-7) until an appropriate level of convergence has been achieved. 

9) Repeat steps 1)-8) for a total of Narray initial starting arrays, Tϕ and Tz. 

For both ROIs, the ICM algorithm was performed for the best Narray=15 initial starting 

arrays from the calibration trials. In each iteration, the coefficients were varied in step 2) 

by adding the starting value of the coefficient for that iteration to each of 10 values in a 

grid. For the first iteration, the 10 grid values varied uniformly between -1/Jϕ/z and 1/Jϕ/z, 

with the range incrementally reduced in each successive iteration. On average, the ICM 

algorithm reached convergence within 6 iterations of varying the 15 starting arrays. As 

the cost function in Eq. [4.10] is effectively defined over a 50-dimensional space, 

convergence to various local minima of Eq. [4.10] was achieved with the lowest of the 15 

trials deemed the optimal coil geometry for this study. It is of note, however, that almost 
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all of the arrays that were subjected to the ICM algorithm resulted in geometries that 

shared the same basic design characteristics. 

4.4 Results  

Presented in Fig. 4.8 are the morphed arrays that were optimized for the DMN 

ROI. For a baseline comparison, the cost function in Eq. [4.10] was evaluated for 

imaging the DMN ROI using a conventional birdcage array in Fig. 4.8a. The overall cost 

produced by the birdcage array within the DMN ROI was H=0.332, which is a 

combination of an average g-factor cost of Hg=0.2987 and a SENSE induced correlation 

cost of HcorrSE
=0.4779. Presented in Fig. 4.8a is the g-factor profile throughout the center 

axial plane of the DMN ROI after a SENSE reconstruction with an acceleration factor of 

A=3, with the mean g-factor over each of the three regions of the DMN ROI within the 

center axial plane listed adjacent to the respective region. Of the 10,000 arrays generated 

in the calibration process, the array with the lowest overall g-factor in the DMN ROI is 

presented in Fig. 4.8b. For this array, the g-factor cost evaluated throughout the DMN 

ROI was Hg=0.2103, the cost of the SENSE induced correlation about the ROI was 

HcorrSE
=0.3748, and the combined cost of the array was H=0.2473. Upon observation, 

both the g-factor throughout the center plane of the DMN ROI and the mean g-factor 

within each of the three regions are noticeably lower than those of the birdcage array in 

Fig. 4.8a and the array with the lowest SENSE induced correlations in Fig. 4.8c. The 

combined vertical and horizontal deformations used to morph the array with a minimal g-

factor is presented as a vector field under the unrolled morphed array in Fig. 4.8b. It is 

apparent that the anterior coil in red is still fairly rectangular in shape, such as that in the  
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Figure 4.8: Coil geometry, spatial normalization deformation fields and the g-factor through the center 
axial plane of the DMN ROI for a) a birdcage array, arrays drawn from 10,000 random arrays in a 
calibration study that had b) a minimal g-factor cost, Hg, c) a minimal SENSE induced correlation cost, 
HcorrSE

, and d) an array derived through an ICM algorithm that minimizes the combined cost, H. 
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birdcage array in Fig. 4.8a, but the coils on the left and right as well as the anterior coil 

are all slightly wider in the center than at the top or bottom. Of the 10,000 calibration 

arrays, the array with the lowest overall SENSE induced correlation about the DMN ROI, 

HcorrSE
=0.3463, is presented in Fig. 4.8c, where the cost of the g-factor, Hg=0.2219, is 

slightly greater than the array with an optimal g-factor in Fig. 4.8b, but lower than the 

birdcage array in Fig. 4.8a. The deformation field that morphed the array to achieve a low 

overall SENSE induced correlation in Fig. 4.8c shows both anterior and posterior coils 

that are wider at the bottom than the top. Of the arrays that were subjected to the ICM 

algorithm, the array that simultaneously optimized the g-factor and SENSE induced 

correlations is presented in Fig. 4.8d. This array had an overall cost of H=0.2338, which 

is considerably lower than the conventional birdcage array in Fig. 4.8a, and also achieved 

lower costs for both the g-factor and SENSE induced correlations than those in Fig. 4.8b 

and Fig. 4.8c respectively. When comparing the g-factor through the center axial plane of 

the DMN ROI for the conventional birdcage array in Fig. 4.8a to that of the optimized 

array in Fig. 4.8d, it is apparent that the use of a conventional array with rectangular coils 

is not optimal for imaging the commonly investigated DMN ROI. An array with coils in 

the anterior and posterior that are wide in the center and very narrow near the top and 

bottom, and coils on the left and right that are narrower in the center than near the top and 

bottom clearly results in a lower g-factor throughout the DMN ROI, and the correlations 

induced by a SENSE reconstruction with A=3 are also significantly reduced. 

Unlike the DMN ROI, the OCCIP ROI is only defined in one region in the 

anterior of the phantom, but becomes aliased with both the mid brain region and frontal 

lobe prior to a SENSE reconstruction with A=3. The arrays that were optimized for the  
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Figure 4.9: Coil geometry, spatial normalization deformation fields and the g-factor through the center 
axial plane of the OCCIP ROI for a) a birdcage array, arrays drawn from 10,000 random arrays in a 
calibration study that had b) a minimal g-factor cost, Hg, c) a minimal SENSE induced correlation cost, 
HcorrSE

, and d) an array derived through an ICM algorithm that minimizes the combined cost, H. 
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OCCIP ROI are presented in Fig. 4.9. The cost within the OCCIP ROI resulting from the 

use of a conventional birdcage array in Fig. 4.9a was estimated to be H=0.2328, with a g-

factor cost of Hg=0.1862 and an overall SENSE induced correlation cost of 

HcorrSE
=0.4422. The g-factor throughout the center axial plane of the OCCIP ROI in Fig. 

4.9a shows a mean g-factor within the ROI in the center plane to be 1.199, with the g-

factor in the regions aliased with the ROI represented by dashed ovals. Of the 10,000 

random arrays generated in the calibration study, the array with the lowest overall g-

factor in the OCCIP ROI is presented in Fig. 4.9b. As the OCCIP ROI is in the posterior 

of the brain phantom, the anterior coil is narrowest in the center with the coils adjacent to 

the anterior coil wider in the center than near the top and bottom. Combined with a 

narrow posterior coil that is narrowest in the center, the overall cost of the g-factor for 

this array was Hg=0.1345, with the cost of the SENSE induced correlations being 

HcorrSE
=0.3762, and a combined cost of H=0.1785. It is of note in the g-factor throughout 

the center plane produced by the array in Fig. 4.9b that the mean g-factor within the 

OCCIP ROI itself is lower than that of any other array, but the mean g-factor within the 

regions aliased with the OCCIP ROI are not. Of the 10,000 random arrays generated in 

the calibration study, the array with the lowest overall SENSE induced correlation about 

the OCCIP ROI is presented in Fig. 4.9c. As with the array with a minimal g-factor in 

Fig. 4.9b, the coil in the anterior of the array in Fig. 4.9c is widest in the center and 

narrow near the top and bottom, but unlike the array with a minimal g-factor, the array 

with a minimal SENSE induced correlation also has a posterior coil that is widest in the 

center. This array resulted in an overall cost for the SENSE induced correlations of 

HcorrSE
=0.3287, with a g-factor cost of Hg=0.1761, and a combined cost of H=0.2038. Of 
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the arrays that were subjected to the ICM algorithm, the array that simultaneously 

optimized the g-factor and SENSE induced correlations in the OCCIP ROI is presented in 

Fig. 4.9d. This array had an overall cost of H=0.1601, which is considerably lower than 

the conventional birdcage array in Fig. 4.9a, and also achieved a lower g-factor cost than 

any other array in Fig. 4.9. Despite the mean g-factor in the center plane being lower 

within the OCCIP ROI in Fig. 4.9b than in Fig. 4.9d, the mean g-factor in the regions 

aliased with the ROI are lower for the array in Fig. 4.9d than any other array. To achieve 

such low g-factors and SENSE induced correlations in the OCCIP ROI, the array in Fig. 

4.9d has very narrow anterior and posterior coils that are narrowest near the bottom, with 

coils adjacent to the anterior coil that are wider in the upper half than the lower half. It is 

interesting to note that the anterior coil becomes so narrow in the upper half that a 

bottleneck is formed, but as with the array optimized for the DMN ROI in Fig. 4.8d, the 

array that produced a favorable g-factor and SENSE induced correlation for the OCCIP 

ROI is by no means comprised of symmetric rectangular arrays. 

4.5 Discussion 

The use of multiple RF coils in a phased array has become common practice in 

fMRI and fcMRI studies where there are constraints on the spatial and temporal 

resolution of the data that can be acquired. In general, studies that develop RF coil arrays 

are predicated on two assumptions. First, the overarching goal of an optimized RF coil 

array is to achieve the maximum possible SNR throughout the image, and second, such a 

SNR results from using a symmetric array with coils that produce the most uniform B-

fields throughout the volume. As almost all fMRI and fcMRI studies use generic RF coil 

arrays for imaging all regions of the brain, these two assumptions have appeared to be 
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justified. However, the increasing popularity of both fMRI and fcMRI has lead to many 

studies being performed on specific disorders that are associated with specific brain 

regions. As the human brain is not fully symmetric, and such regions of interest are not 

always in the very center, the assumption that RF coils need to be symmetric in 

traditional RF coil design studies are no longer fully justified. Additionally, with an 

estimation of correlations between brain regions being the mechanism for deducing 

regions with apparent functional connectivity, the fact that pMRI models such as SENSE 

induce artificial correlations between brain regions makes the use of maximizing the SNR 

as a sole optimization benchmark insufficient.   

While the traditionally used g-factor and the correlations induced by the SENSE 

model are both functions of coil sensitivity profiles and the covariance between coils, the 

results outlined in this dissertation show that these two consequences of the SENSE un-

aliasing process are not perfectly interconnected. The results of this study have illustrated 

through two different ROIs that the geometry of an RF coil array optimized for a minimal 

g-factor is not the same as the geometry of an RF coil array that induces a minimal 

correlation between voxels un-aliased by the SENSE model. It has been shown that a new 

cost function that combines the average g-factor in an ROI with a likelihood ratio test 

statistic for the degree to which the SENSE un-aliasing process induces a correlation 

about voxels in the ROI can be used to derive coil geometries that are more appropriate 

for fcMRI studies of the default mode network and the occipital lobe. Since the default 

mode network is a task-negative network, where functional activity is noted while a 

patient is at rest and is deactivated while the subject performs a task, the correlations 

induced by SENSE can make regions of the network appear to be activated when they are 
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not. As the occipital lobe becomes aliased with both the mid-brain and frontal lobe, any 

true cognitive activity within one of these regions could lead to false activation statistics 

within the other two regions due to the artificial correlations induced by SENSE between 

the three regions. In most fcMRI studies, an effort to reduce these correlations would be 

made through adjusted image reconstruction models, but the results of this dissertation 

indicate that the correlations induced about voxels in either of the two ROIs by the 

SENSE model can also be reduced with an adjustment to coil geometry. As such, studies 

that develop RF coil arrays for fMRI and fcMRI studies would be more effective when 

using a combined cost function, such as the one presented here. 

Conventional birdcage arrays of rectangular receiver coils are mostly used to 

acquire images of the brain because the overlap of B-field sensitivities is relatively 

uniform and results in images with a uniform signal throughout the volume. Given that it 

is the overlap of coil B-fields that results in an amplification of noise in the SENSE 

reconstructed images, as measured through the g-factor, an ideal coil geometry would 

have B-field sensitivity profiles for each coil that resemble pieces of a pie, never 

overlapping and non-decreasing with distance from the coil. As such a geometry is 

almost impossible to achieve, there will always be an overlap of coil B-fields. For a 

birdcage array of rectangular coils that are all the same shape and size, these areas of 

overlap will be evenly spaced within an axial plane through the volume. However, with 

an individual coil’s effective depth of sensitivity approximately equivalent to the coil’s 

width, having coils of varying width and size can shift these areas of overlapping B-fields 

to different locations within the brain. By morphing a conventional birdcage array into 

different geometries, the results of this dissertation have indicated that a collection of 
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coils that vary in width can yield more optimal g-factor maps for a ROI in a specific 

location.   

As more and more fcMRI studies are being conducted on patients with specific 

brain disorders, associated with specific brain regions, there is a natural need for purpose  

built coils. While the argument can be made that most patients will have brains differing 

in size and shape, an RF coil array designed through the methods outlined in this 

dissertation would be optimized for the general location of the ROI. Theoretically, a 

future study could be aimed at developing RF coils that are first optimized for general 

regions of the brain, but can be further deformed and optimized for specific patients. A 

study of that kind is well beyond the scope of this dissertation, but the principles outlined 

in this dissertation could be used for developing the initial array. Using spatial 

normalization with sine and cosine basis functions to morph a conventional birdcage 

array into an optimized geometry is a novel approach as it not only lowers the number of 

parameters to be optimized but also maintains “smoothness” between adjacent coils, 

preventing any overlap of coil edges. When morphing an array with spatial normalization 

is combined with the new cost function that simultaneously measures the g-factor and 

SENSE induced correlations, the RF coil geometries achievable through the methods 

outlined in this dissertation could achieve improved statistical properties in the images 

used in fcMRI studies by comparison to those achievable through conventional RF coil 

design approaches.  
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Chapter 5:  Conclusion 

Since the advent of noninvasive methodologies such as fMRI and fcMRI being 

used to observe cognitive brain activity, tremendous amounts of funding and effort have 

been devoted towards better understanding the human brain. Through mechanisms such 

as the BOLD contrast between oxygenated and deoxygenated hemoglobin, 

neuroscientists have been able to observe cognitive brain activity while a subject either 

performs a task in fMRI or remains at rest with fcMRI. As both fMRI and fcMRI make 

use of snapshot imaging techniques to observe fluctuations in the BOLD contrast in 

intervals on the order of 1-2 seconds, the acquired images generally have low spatial and 

temporal resolutions. To improve these resolutions, many studies have been aimed at 

devising methods of accelerating data acquisition through multi-coil pMRI techniques. 

Since the overarching goal in most of these studies is to accelerate data acquisition while 

maintaining a sufficient SNR, the statistical implications that image reconstruction with 

pMRI models can have on fMRI and fcMRI data are commonly overlooked. The work 

outlined in this dissertation has therefore been aimed at precisely quantifying the 

correlations that the two most commonly used pMRI reconstruction models, SENSE and 

GRAPPA, induce into the images that they reconstruct.  

5.1 Summary of Presented Work 

Most studies that explore the statistical implications of processing operations 

make use of time-consuming MCMC simulations that can only estimate the degree to 

which an operation changes the covariance structure of the acquired data. By representing 

each step necessary to carry out both the complex-valued SENSE and GRAPPA models 
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in terms of real-valued matrix operators, the degree to which the covariance of the 

originally acquired complex-valued data is modified by both individual operations and 

the collection of operations that comprise each model can be quantified both precisely 

and directly. Through the real-valued linear isomorphism of the complex-valued SENSE 

model derived in this dissertation, it has been shown that the process of un-aliasing a 

collection of aliased coil images into a full FOV composite image induces a correlation 

between voxels that were previously aliased. Through the real-valued linear isomorphism 

of the complex-valued GRAPPA model, it has been shown that the local correlation that 

the interpolation of missing spatial frequencies induces between spatial frequencies 

results in a global correlation between voxels after an inverse Fourier reconstruction. 

Since the GRAPPA model interpolates missing spatial frequencies using a truncated 

convolution kernel with weights derived from fully sampled coil sensitivities, these 

correlations are strongest in regions of the un-aliased image that were previously aliased, 

similar to those observed induced by the SENSE model. Unlike the SENSE model, 

however, there are additional low correlations induced by the GRAPPA model that 

exhibit a sinc structure within the rows and columns of the previously aliased voxels. 

When coupled with spatial filtering, as is commonly performed in most fMRI and fcMRI 

studies to improve the CNR, the correlations induced between previously aliased voxels 

by both the SENSE and GRAPPA models become spread to neighboring voxels in the 

vicinity of the previously aliased voxels. 

The theoretical correlation structures induced by both the SENSE and GRAPPA 

models were validated through both theoretical MC simulations and experimentally 

acquired human subject data. The data reconstructed in the theoretical MC simulations 
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was generated with an identity covariance structure between voxels, and thus any 

correlations present between voxels of the reconstructed images would be a result of the 

two pMRI models. When estimated from the MC reconstructed time series, the 

theoretical correlations were clearly present both before and after the voxel time series 

were band pass filtered with a Hamming window to maintain frequencies between 0.01 

and 0.08 Hz. These results suggested that if two previously uncorrelated voxels are 

spaced py/A apart when the PE direction is oriented as anterior/posterior in images 

reconstructed by the SENSE or GRAPPA models, the null hypothesis in an fcMRI study 

would be mistakenly rejected, assuming the voxels are functionally connected when they 

are not. In a time series of images acquired for a human subject, there is a true inherent 

covariance between voxels in the reconstructed images that fcMRI studies try to estimate 

and use to make inferences about functional connectivity. It was shown, however, that 

when two voxels are uncorrelated and spaced py/A apart in images that were fully 

sampled, that they become correlated when the same data set is reconstructed by SENSE 

and GRAPPA with A=3. As with the theoretical MC simulation, these correlations 

exceeded a threshold of ±0.35 (p≈0.05) after filtering each voxel’s time series to the 

frequency spectrum commonly associated with functional connectivity. With the PE 

dimension oriented as anterior/posterior, these artificially induced non-biological 

correlations can align themselves with the commonly investigated default mode network. 

Similarly, if the PE dimension is oriented left/right, the artificially induced correlations 

will align themselves with the left and right hemispheres of the brain, potentially between 

regions such as the motor cortices. As both the default mode network and motor cortices 

are regions that are known to exhibit true biological correlations, the non-biological 
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correlations induced by the SENSE or GRAPPA models could either artificially 

accentuate or diminish these correlations, resulting in Type I or Type II errors in an 

fcMRI study.  

Accounting for the correlations induced by the SENSE model could be performed 

through either improved reconstruction models or advances in MR hardware. As 

reconstruction models of this kind do not yet exist, the third component of this 

dissertation explored the degree to which informed RF coil designs could be used to 

improve the statistical implications of the SENSE model in specific brain regions. In 

conventional RF coil design studies, the g-factor is the de facto metric for optimization as 

it provides a measure of the SNR drop in SENSE reconstructed images. As both the g-

factor and SENSE induced correlations are functions of coil B-field sensitivity profiles 

and the covariance between coils, they are both by definitions function of coil geometry. 

Through a novel application of a likelihood ratio test statistic for dependence between un-

aliased voxels, a new cost function was derived for optimizing RF coils used to image 

specific regions of the brain with the SENSE model. A coil geometry that minimizes this 

cost function would not only exhibit a lower amplification of noise within an ROI, as 

measured through the g-factor, but would also have a reduced impact of SENSE induced 

correlations about the ROI when the reconstructed images are analyzed in an fcMRI 

study. To achieve such coil geometries, the constraints typically placed on coil symmetry 

were relaxed, and a conventional birdcage array of rectangular coils was morphed into 

optimal geometries using spatial normalization with a collection of sine and cosine basis 

functions. The proof of concept for such an optimization of RF coils was performed for 

both an ROI resembling the default mode network as well as an ROI within the occipital 
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lobe in a 3-dimensional human brain phantom. For both ROIs, it was shown that an array 

with a minimal g-factor does not necessarily have the same geometry as an array 

designed to minimize the correlations induced about the ROI by the SENSE 

reconstruction. The coil geometries that simultaneously minimized both the g-factor and 

SENSE induced correlations showed significantly improved statistics within the ROIs by 

comparison to those achievable through a conventional birdcage array. This suggests that 

while it may be convenient to use the same RF coil array for imaging all regions of the 

brain, such an array may not be optimal if the ROI is within a region that is aliased prior 

to a SENSE reconstruction. As most degenerative brain disorders are commonly 

associated with specific brain regions, it would therefore be more appropriate to make use 

of hardware that is purpose built for those regions. 

5.2 Avenues of Future Work 

5.2.1 Accounting for pMRI Induced Correlations 

 The real-valued linear isomorphisms presented in this dissertation for the 

complex-valued SENSE and GRAPPA models provide a perfect starting point for 

precisely quantifying the correlations induced by each model. At the very least, a 

neuroscientist or statistician analyzing fcMRI data that has been reconstructed with one 

of these pMRI models can use this framework to determine areas in which artificially 

induced non-biological correlations could result in misleading inferences. Ideally, pMRI 

models such as SENSE and GRAPPA would be able to accelerate data acquisition while 

simultaneously preserving the statistical properties of the acquired data. As such, future 

efforts could be devoted towards the development of new models that either induce lower 
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correlations or can simultaneously account for such correlations during the reconstruction 

process. Through Bayesian adaptations of either the SENSE or GRAPPA models, the 

artificially induced covariance structure, quantified through a framework such as the one 

presented in this dissertation, together with an estimate of the true covariance in fully 

sampled calibration data could be used as priors when reconstructing sub-sampled data. 

Such models would therefore be able to more accurately distinguish between correlations 

that are biological in nature and those that are artificially induced.  

 To further accelerate data acquisition, recent studies have developed “multi-band” 

image reconstruction models in which data acquisition is accelerated by simultaneously 

acquiring multiple slices of the volume at once. With models of this kind, the slice 

separation process induces correlations between voxels in the slice dimension, rather than 

in-plane correlations induced by models such as SENSE and GRAPPA. As such, it would 

be of interest to develop a linear isomorphism that can precisely quantify the correlations 

of multi-band methodologies (Rowe et al., 2013). Furthermore, more recent studies have 

combined multi-band imaging techniques with the traditional SENSE and GRAPPA 

models. With such a combination, the un-aliasing process would induce correlations both 

within each slice and between slices in a 3-dimensional structure. Artificially induced 

correlations with a structure of this kind can have significant implications in whole brain 

imaging where functional connectivity is estimated between all regions of the brain. 

5.2.2 RF Coil Design 

 The methods outlined in the fourth chapter of this dissertation provide a novel 

means of using spatial normalization to derive RF coil geometries with optimized g-

factor values and SENSE induced correlations within an ROI. The use of Biot-Savart to 
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estimate coil B-fields, however, is only applicable for coils used in lower field MRI 

scanners. As such, the use of a full-field electromagnetic solver, such as the HFSS 

software package, would be necessary for designing RF coils to be used in MRI scanners 

with higher field strengths. As fcMRI studies performed in different institutions will be 

conducted on patients in MRI scanners with a variety of field strengths, it would 

therefore be necessary for RF coils used for imaging a specific ROI to be optimized at 

each field strength. Additionally, the RF coil arrays presented in this dissertation made 

use of NC=8 receiver coils for simplicity. As most current studies that employ pMRI 

techniques use phased arrays with anything up to 128 coils, it would be necessary to 

explore the statistical properties within an ROI of images reconstructed by SENSE with 

different numbers of coils. Moreover, the initial array morphed into optimal arrangements 

for the two ROIs in this dissertation used a single ring of rectangular coils placed around 

a cylinder, yet the idea can be adapted to morph either multiple tiers of coils placed above 

one another around a cylinder, or coils in a “soccer ball” shaped array. Finally, with each 

variation of coils designed for SENSE imaging in a specific ROI, the theoretical results 

of both this dissertation and future studies should be validated through the fabrication and 

application of a physical coil. Once a coil has been fabricated, the statistical properties 

within an ROI of both static phantoms and human subjects should be compared with 

those of a conventional birdcage array. 
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Appendix A: Estimation of the Coil and Voxel Covariance Structures 

Consider a time series of NTR complex-valued arrays of k-space that are py×px in 

dimension and acquired in each of NC receiver coils. When sub-sampling is performed in 

the PE dimension by a factor of A, the data can be stored in a single array, KC, that is 

(py/A)×px×NC×NTR in dimension. As the SENSE model is performed in the image 

domain, each (py/A)×px sub-sampled array in the NC coils and NTR TRs of the time series 

need to first be inverse Fourier reconstructed into an array of aliased images, YC, that is of 

the same dimension as KC. To observe the covariance between voxels, the array YC is 

reshaped by stacking the rows of the (py/A)×px aliased image for each coil and each TR 

into vectors of length (py/A)px. The resulting array, VC, is of dimension (pypx/A)×NC×NTR 

and ordered first by voxel, then by coil and finally by TR. In order to determine a real-

valued representation of the complex-valued coil and voxel covariance structures, the real 

components of the aliased image vectors for all coils in VC are stacked upon the 

imaginary components of the aliased image vectors for all coils in VC, forming a real-

valued array, V, that is of dimension (pypx/A)×2NC×NTR. The true covariance structure of 

a data array ordered in this fashion is    , where 
 
denotes the true covariance 

between voxels, and 
 
denotes the true covariance between coils. As the SENSE model 

typically assumes that there is no covariance structure between voxels in the 

reconstruction, the overall covariance of the data in V is simplified to   I
rp
 , where 

rp=(pypx/A). This implies that the covariance between coils,  , is the same for all voxels 

in the aliased images, and thus an initial estimate of   can be achieved through 

̂ 
1

NTR rp
(V

t
V )T I

rp
1(V

t
V )

t1

NTR

 .          [A.1]  
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In Eq. [A.1], Vt denotes the (pypx/A)×2NC array of aliased images, in real-valued vector 

form, for all NC coils in the tth TR, and V denotes the (pypx/A)×2NC mean of V taken over 

the third dimension. With the array V organized in a real-valued form, with the real 

aliased voxel values for all coils stacked upon all imaginary aliased voxel values for all 

coils, the 2NC×2NC estimated coil covariance structure, ̂ , in Eq. [A.1] is of the form 

̂ 
̂

RR
̂

RI

̂ IR ̂ II














.            [A.2] 

To observe the structure of the covariance structure in Eq. [A.2], ̂  was estimated from 

an experimental data set of a spherical phantom filled with an agar gel, acquired with 

NC=8 coils, converted to a correlation matrix, and presented in Table A.1. While some 

studies may assume that ̂  is an identity matrix, it is apparent that the off-diagonal 

values presented in Table A.1 (and Table 2.1) are not zero, and thus the assumption that 

̂  is an identity matrix cannot be made. When   is estimated from complex-valued data 

and used in the complex-valued application of the SENSE model in Eq. [2.2], the 

structure in Eq. [A.2] is reformatted to being of the form 

ˆ̂ 
̂

RR
̂

II

̂ II ̂RR














,            [A.3] 

where ̂
II
 in Eq. [A.2] becomes ̂

RR
, ̂

RI
 in Eq. [A.2] becomes ̂

II
, and ̂

IR
 in Eq. 

[A.2] becomes ̂
II
. Based on the values in Table A.1, it is clear that the skew symmetric 

form of the covariance between coils in Eq. [A.3] is not the same as that estimated from 

real data, and thus a more accurate application of the SENSE model would employ the 

estimated covariance between coils in Eq. [A.2].   
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Table A.1: Coil correlation structure for a spherical agar phantom. 

a) Correlation between real components of each coil (ΨRR) 

1 0.5804 -0.2306 -0.4294 0.212 0.133 0.0514 -0.1356
0.5804 1 0.0761 -0.5283 0.2969 0.2157 0.1433 0.0897

-0.2306 0.0761 1 -0.1689 0.3166 0.2146 0.2902 0.3102
-0.4294 -0.5283 -0.1689 1 -0.7171 -0.2353 0.2858 0.3901

0.212 0.2969 0.3166 -0.7171 1 0.4214 -0.2744 -0.3673
0.133 0.2157 0.2146 -0.2353 0.4214 1 0.2556 -0.365

0.0514 0.1433 0.2902 0.2858 -0.2744 0.2556 1 0.0414
-0.1356 0.0897 0.3102 0.3901 -0.3673 -0.365 0.0414 1

 
b) Correlation between imaginary components of each coil (ΨII) 

1 0.6508 0.0358 -0.4093 0.3945 0.3652 0.512 -0.4146
0.6508 1 0.2202 -0.55 0.3598 0.2584 0.397 -0.1637
0.0358 0.2202 1 0.0067 0.5803 0.5548 0.5023 0.0969

-0.4093 -0.55 0.0067 1 -0.0963 0.1701 0.1077 0.2011
0.3945 0.3598 0.5803 -0.0963 1 0.6803 0.4268 -0.2942
0.3652 0.2584 0.5548 0.1701 0.6803 1 0.6003 -0.2536

0.512 0.397 0.5023 0.1077 0.4268 0.6003 1 -0.3807
-0.4146 -0.1637 0.0969 0.2011 -0.2942 -0.2536 -0.3807 1

 
c) Correlation between real and imaginary components of each coil (ΨRI) 

0.0818 0.5241 0.5554 -0.0764 0.271 0.1971 0.2105 0.4473
-0.2906 0.0225 0.7617 0.0271 0.3325 0.2861 0.2049 0.3258
-0.5258 -0.7473 -0.009 0.7784 -0.1691 0.0438 -0.0735 0.3462
-0.1254 -0.1321 -0.7718 -0.3041 -0.6875 -0.6872 -0.587 0.0847
0.1001 -0.0353 0.4504 0.5238 0.471 0.6553 0.5654 -0.1971
0.1875 -0.0121 0.1825 0.2318 0.0359 0.2698 0.5223 -0.156
-0.136 -0.2451 -0.1278 0.0841 -0.3898 -0.4441 -0.118 0.4014

-0.7412 -0.5297 -0.2939 0.1013 -0.3829 -0.3757 -0.7552 0.4718
  
 
 

In addition to the inappropriate assumption that the covariance structure assumed 

by the complex-valued application of the SENSE model in Eq. [A.3] is equivalent to that 

in Eq. [A.2], the assumption that   I
rp

 
in Eq. [A.1] is also inappropriate. To illustrate 

that the acquired sub-sampled data does not have an identity voxel covariance structure, 
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the covariance between voxels can be found using the initial estimate of the covariance 

between coils in Eq. [A.1] by 

̂ 
1

NTR NC

(V
t
V )̂1(V

t
V )T

t1

NTR

 .          [A.4]  

When   I
rp

 
is assumed, the covariance about the center voxel in an aliased image is 

presented in Fig. A.1a with A=1 and Fig. A.1b with A=3. When ̂  in Eq. [A.4] is 

estimated from a spherical phantom, the covariance estimated about the center voxel is 

presented in Fig. A.1c with A=1 and in Fig. A.1d with A=3. When comparing the 

estimated covariance structures in Figs. A.1a and A.1b to those in Figs. A.1c and A.1d, it 

is immediately apparent that the assumption of   I
rp

 in Figs. A.1a and A.1b is 

inappropriate. To further validate that   I
rp

, ̂
 
in Eq. [A.4] was also estimated from a 

human subject data set, and the covariance estimated about the center voxel of the human 

subject is presented in Fig. A.1e with A=1 and in Fig. A.1f with A=3. Once again, a  

 

 

Figure A.1: An identity covariance, as assumed in the SENSE model, presented about the center voxel 
with a) A=1 and b) A=3, with the covariance estimated about the center voxel of a spherical phantom with 
c) A=1, and d) A=3, as well as the covariance estimated about the center voxel of a human subject with e) 
A=1 and f) A=3. 
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comparison between the identity covariance structures assumed in Figs. A.1a and A.1b to 

the estimated covariance structures for a human subject in Figs. A.1e and A.1f, illustrates 

that the assumption of   I
rp
 in Figs. A.1a and A.1b is inappropriate. 

As almost all applications of the SENSE model assume that   I
rp
, and that the 

coil covariance structures in Eq. [A.2] and Eq. [A.3] are equivalent, a real-valued 

application of the complex-valued SENSE model for un-aliasing all voxels at once in Eq. 

[2.11] is 

U  ST I
rp
 ˆ̂ 1

S






ST I

rp
 ˆ̂ 1

.          [A.5] 

For a real-valued application of the complex-valued SENSE model for un-aliasing all 

voxels at once using coil and voxel covariance structures estimated from the data itself, 

Eq. [2.11] would be more appropriately defined by 

U  ST ̂  ̂ 1
S



 ST ̂  ̂ 1

.          [A.6] 

The advantage of representing the SENSE unfolding operation in terms of the real-valued 

operator U in Eq. [2.11], Eq. [A.5] and Eq. [A.6] is that the un-aliasing process is 

performed on all aliased voxels in the aliased coil images at once, and more importantly, 

the correlations induced by that process can be precisely quantified. However, it is of 

note that the operator U in Eq. [A.5] is a block diagonal matrix with rp “unfolding” 

blocks of size 2A×2NC along the diagonal. This is important because the matrix is very 

sparse and it allows for the SENSE un-aliasing process to be performed on a voxel-by-

voxel basis if desired. While the assumptions in Eq. [A.6] are more mathematically 

correct than those in Eq. [A.5], the operator in Eq. [A.6] is a full matrix of size 

2pxpy×2NC(pxpy/A), and the only way in which a non-identity form of 
 
can be applied is 
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through this formalism. To un-alias a 96×96 array of spatial frequencies, sub-sampled by 

a factor of A=2 in NC=8 receiver coils, the unfolding matrix in Eq. [A.5] would be have 

4608 diagonal blocks of size 4×16, and require 0.0003 GB of RAM to be stored in 

memory as a sparse array with double precision. By contrast, the full unfolding matrix in 

Eq. [A.6] would be 18432×73728 in dimension, and require 10.125 GB of RAM to be 

stored in memory as a full array with double precision. It has been shown in Bruce et al. 

(2012) that while Eq. [A.6] offers a more mathematically correct application of the 

SENSE model than under the typical assumptions in Eq. [A.5], the differences in the 

statistical properties of the reconstructed images are not significant enough to make the 

dramatic increase in computational resources worthwhile. 
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