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Outline



Most	multi‐band	models	for	accelerating	fMRI	data	acquisition	are	faced	by	
two	limiting	factors:
‐ Acceleration	factor,	A,	limited	to	no	more	than	the	number	of	coils.
‐ The	origin	of	a	BOLD	signal	increase	within	one	of	several	slices	aliased	

together	cannot	be	determined	from	one	measurement.
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Most	multi‐band	models	for	accelerating	fMRI	data	acquisition	are	faced	by	
two	limiting	factors:
‐ Acceleration	factor,	A,	limited	to	no	more	than	the	number	of	coils.
‐ The	origin	of	a	BOLD	signal	increase	within	one	of	several	slices	aliased	

together	cannot	be	determined	from	one	measurement.

1SPECS:	Separation	of	Parallel	Encoded	Complex‐valued	Slices
‐ Enables	higher	acceleration	factors	by	improving	the	aliasing	matrix	rank
‐ Minimal	induced	correlations
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Most	multi‐band	models	for	accelerating	fMRI	data	acquisition	are	faced	by	
two	limiting	factors:
‐ Acceleration	factor,	A,	limited	to	no	more	than	the	number	of	coils.
‐ The	origin	of	a	BOLD	signal	increase	within	one	of	several	slices	aliased	

together	cannot	be	determined	from	one	measurement.

1SPECS:	Separation	of	Parallel	Encoded	Complex‐valued	Slices
‐ Enables	higher	acceleration	factors	by	improving	the	aliasing	matrix	rank
‐ Minimal	induced	correlations

2,3Incorporation	of	phase	shifted	acquisitions	into	the	SPECS	model:
‐ Apply	various	phase	shifts	to	different	slices	aliased	together
‐ Multiple	ways	in	which	each	voxel	is	aliased
‐ Improves	power	of	detecting	activation	statistics
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Introduction

1Rowe	et	al.	2013	
2Rowe	et	al.	2014	(In	prep.)
3Setsompop	et	al.	MRM	2013



Assuming	a	homogeneous	field,	aliasing	in	a	voxel,	j,	is
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Single‐coil	aliasing

ajC  ( jR,1   jR,2  ... jR,A ) i( jI ,1   jI ,2  ... jI ,A) ( jR  i jI )

      ajR  ia jI

cov( j )  
2 I2

+ + + +=

Re
al

Im
ag

Aliased Slice	1 Slice	2 Slice	3 Slice	4 Noise

+i +i +i +i +i

E[ j ]  0

βjR,1ajR εjRβjR,2 βjR,3 βjR,4

βjI,1ajI εjIβjI,2 βjI,3 βjI,4



Assuming	a	homogeneous	field,	aliasing	in	a	voxel,	j,	is

In	real‐valued	matrix	form:
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Single‐coil	aliasing

 a

 2  1 2  2 A

2 A  1

2  1
Aliased	image Aliasing	matrix

True	un‐aliased	images

Measurement	error

I2  X A   

ajC  ( jR,1   jR,2  ... jR,A ) i( jI ,1   jI ,2  ... jI ,A) ( jR  i jI )

      ajR  ia jI



At	this	point,	our	initial	aliasing	model	is	of	the	form

The	goal	is	to	estimate	the	true	un‐aliased	voxel	values	
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Single‐coil	aliasing

a  I2  X A     X  

̂  ( X ' X )1 X 'a



At	this	point,	our	initial	aliasing	model	is	of	the	form

The	goal	is	to	estimate	the	true	un‐aliased	voxel	values	

When	aliasing	A slices,	the	matrix,	X,	has	2	equations	and	2A
unknowns.
- (X’X) is	not	square,	invertible	or	of	full	rank.

We	can	improve	the	rank	of	X by	adding	2(A‐1)	more	rows.
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Single‐coil	aliasing

a  I2  X A     X  

̂  ( X ' X )1 X 'a



If	 ,	where	 ,	we	can	add	A‐1	rows	to

XA to	make			 square,	invertible	and	full	in	rank	
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Artificial	aliasing

A  2 :   C  1 1  A  2 :   C  1 1 

Orthogonal	Coefficients Hadamard	Coefficients

X  I2  X A  X A  [1,1,1]
X A

C
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XA to	make			 square,	invertible	and	full	in	rank	
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Artificial	aliasing

A  2 :   C  1 1 

A  3:   C  1 0 1
1 2 1
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X A
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If	 ,	where	 ,	we	can	add	A‐1	rows	to

XA to	make			 square,	invertible	and	full	in	rank	
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Artificial	aliasing
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A  3:   C  1 0 1
1 2 1
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Adding	rows	to	X gives	us	additional	ways	in	which	the	true	
voxel	values	in					could	be	“aliased”.

If	we	acquire	calibration	data	for	each	slice,	we	can	use	C to	
artificially	alias	the	slices.
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Artificial	aliasing
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Acquire	a	time	series	of	m fully	sampled	complex‐valued	images	
for	each	slice:
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Single‐coil	calibration	data

Slice	1 Slice	2 Slice	3 Slice	4

M
ea
n

vC ,1  vR,1  ivR,1 vC ,2  vR,2  ivR,2 vC ,3  vR,3  ivR,3 vC ,4  vR,4  ivR,4

real											imag real											imag real											imag real											imag



Acquire	a	time	series	of	m fully	sampled	complex‐valued	images	
for	each	slice:

For	a	voxel	j in	the	mean	calibration	images,	we	can	construct	a	
mean	vector
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Single‐coil	calibration	data

Slice	1 Slice	2 Slice	3 Slice	4

M
ea
n

v jC  v jC ,1,  v jC ,2 ,  v jC ,3,  v jC ,4
 

T

vC ,1  vR,1  ivR,1 vC ,2  vR,2  ivR,2 vC ,3  vR,3  ivR,3 vC ,4  vR,4  ivR,4

real											imag real											imag real											imag real											imag

v jR,1 v jI ,1 v jR,2 v jI ,2 v jR,3 v jI ,3 v jR,4 v jI ,4



Incorporating	artificially	aliased	mean	calibration	voxel	values	
into	the	model:

The	invertible	aliasing	matrix	allows	us	to	estimate	the	un‐
aliased	voxel	values	through	a	simple	inverse:
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The	SPECS	Model
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To	avoid	inducing	correlations	into	the	un‐aliased	voxels	through	
the	SPECS	model,	a	bootstrapping	approach	can	be	used.

Consider	the	contrast	matrices	for	A=4:	
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SPECS	Bootstrap	approach

A  4 :   C 
3 1 1 3
1 1 1 1
1 3 3 1
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1 1 1 1
1 1 1 1
1 1 1 1

















Orthogonal	Coefficients

Hadamard	Coefficients

Assume	the	covariance	
of	each	calibration	
image	is	
cov(v j ,coil ) 

2
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SPECS	Bootstrap	approach
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SPECS	Bootstrap	approach
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Assume	the	covariance	
of	each	calibration	
image	is	

Averaging		M random	
calibration	images	with	
rows	of	the	matrix	C
will	have	a	covariance
cov(v j ,coil ) 

2

cov(v j ,coil ) 
2



With	the	mean	and	covariance	of	the	data	vector,	

the	mean	and	covariance	of	images	reconstructed	with	a	model	
that	employs	the	bootstrapping	approach	are

Since	the	aliasing	matrix,	X,	is	orthogonal,	the	theoretical	
correlation	structure	induced	in							by	SPECS	is	identity.
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SPECS	Bootstrap	Statistical	Analysis

  
E[̂ j ]  X 1E[aj ],

  cov(aj ) 
2I2 A

cov(̂ j ) 
2 X 1  I2 A X 1 T

̂ j

E[aj ] [ajR0 ,Cv jR0 ,a jI 0 ,Cv jI 0 ]
T ,



With	the	mean	and	covariance	of	the	data	vector,	

the	mean	and	covariance	of	images	reconstructed	with	a	model	
that	employs	the	bootstrapping	approach	are

Since	the	aliasing	matrix,	X,	is	orthogonal,	the	theoretical	
correlation	structure	induced	in							by	SPECS	is	identity.

Note:	If	there	is	a	BOLD	signal	increase	(activity)	in	one	of	the	
aliased	slices,	one	cannot	determine	the	origin	of	the	signal	
increase	(which	slice)	with	only	one	measurement.
Bruce	&	Rowe	‐ JSM	2014 21

SPECS	Bootstrap	Statistical	Analysis

  
E[̂ j ]  X 1E[aj ],

̂ j

E[aj ] [ajR0 ,Cv jR0 ,a jI 0 ,Cv jI 0 ]
T ,   cov(aj ) 

2I2 A

cov(̂ j ) 
2 X 1  I2 A X 1 T



For	a	“uniform”	acquisition	of	NS=4	slices,	we	can	consider	a	
vector	of	4	aliased	voxels	(positioned	FOV/4	apart)	at	once:

This	is	exactly	the	same	as	before,	only	we	are	now	looking	at	
more	than	one	voxel	at	a	time.
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Shifted	Acquisitions

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a1,1

a1,2

a1,3

a1,4

 a1  X A1 

[1 Eq with 4 unknowns]   [4 Eqs with 16 unknowns]  A=4

Aliased Slice 1 Slice 2 Slice 3 Slice 4

β1,1

β1,2

β1,3

β1,4

FOV
4

β2,1

β2,2

β2,3

β2,4

β3,1

β3,2

β3,3

β3,4

β4,1

β4,2

β4,3

β4,4

a1,1

a1,2

a1,3

a1,4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



If	we	shift	slices	j=1,	2,	…NS=4	in	PE	by:

Now	have	a	new	way	in	which	the	16	voxels	in	β can	be	aliased.
When	combined	with	the	uniform	aliasing	scheme	we	have:
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Shifted	Acquisitions

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a2,1

a2,2

a2,3

a2,4

 a2  X A2 

[1 Eq with 4 unknowns]   [8 Eqs with 16 unknowns]  A=2

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0  

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

( j 1) FOV
4

Aliased Slice 1 Slice 2 Slice 3 Slice 4

β1,1

β1,2

β1,3

β1,4

β2,4

β2,1

β2,2

β2,3

β3,3

β3,4

β3,1

β3,2

β4,2

β4,3

β4,4

β4,1

a2,1

a2,2

a2,3

a2,4

FOV
4
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Shifted	Acquisitions

[8 Eqs with 16 unknowns]  A=2

Consider	the	two	aliasing	patterns	at	once	in	a	single	system
Aliased Slice 1 Slice 2 Slice 3 Slice 4

β1,1

β1,2

β1,3

β1,4

β2,1

β2,2

β2,3

β2,4

β3,1

β3,2

β3,3

β3,4

β4,1

β4,2

β4,3

β4,4

a1,1

a1,2

a1,3

a1,4

β1,1

β1,2

β1,3

β1,4

β2,4

β2,1

β2,2

β2,3

β3,3

β3,4

β3,1

β3,2

β4,2

β4,3

β4,4

β4,1

a2,1

a2,2

a2,3

a2,4

FOV
4
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Shifted	Acquisitions

[8 Eqs with 16 unknowns]  A=2

Consider	the	two	aliasing	patterns	at	once	in	a	single	system

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a1,1

a1,2

a1,3

a1,4

 a1  X A1 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a2,1

a2,2

a2,3

a2,4

 a2  X A2 

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0  

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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Shifted	Acquisitions

[8 Eqs with 16 unknowns]  A=2

Consider	the	two	aliasing	patterns	at	once	in	a	single	system

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a1,1

a1,2

a1,3

a1,4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a 
X A1
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0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0  

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

a2,1

a2,2

a2,3

a2,4
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Shifted	Acquisitions

[8 Eqs with 16 unknowns]  A=2

Consider	the	two	aliasing	patterns	at	once	in	a	single	system

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a1,1

a1,2

a1,3

a1,4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a 
X A1

X A2














 

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0  

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

a2,1

a2,2

a2,3

a2,4

X1 X 2 X3 X 4

To	incorporate	the	phase	shifted	acquisitions	into	the	SPECS	model,	denote	the	
jth column	of	the	coefficient	matrix,	C,	by	Cj to	form	the	new	coefficient	matrix:

X1 C1 X 2 C2 X3 C3 X 4 C4C 
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Shifted	SPECS	Model

The	original	SPECS	model	is	thus	updated	in	three	ways:	

New	β vector	with	values	from
the	NS rows	(FOV/NS apart)	in	
the	NS slices

a
R

Cv
R

a
I

Cv
I





















     

X
A

C
0

0
X

A

C





















       noise

Artificially	shift	and	artificially	
alias	random	reference	images	in	
accordance	with	shifted	aliasing	
schemes.

2)	New	aliasing	matrix

2NS  2NS

2NS
2Nacq  2NS

2 Acceleration, A  NS
Nacq

1)

3)



Simulated	an	fMRI	study	in	NS=16	(96×96)	slices
‐ Max	magnitude/SNR	=	50
‐ Phase	varied	linearly	from

0	to	π over	slices.
‐ Added	N(0,1) noise
‐ BOLD	activity	simulated	in	

‐ Slices:	1,	5,	9	and	13
‐ 20	epoch	block	design
‐ 15	TRs	“on”,	15	TRs	“off”

‐ CNR	=	1
‐ 500	reference	images	for

each	slice	(non‐task)
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Simulation	– fMRI	Setup

Slice:	1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



Five	data	sets	simulated	with	Nacq acquisitions	and	acceleration	
factors,	A,	as	follows:

‐ A=16,	(Nacq=1)
‐ A=8,			(Nacq=2)
‐ A=4,	 (Nacq=4)
‐ A=2,			(Nacq=8)
‐ A=1,			(no	aliasing)

For	each	of	acq=1,	2,	…	Nacq
acquisitions,	shifts	were	
performed	on	slice	j=1,	2,…16	

by:
Bruce	&	Rowe	‐ JSM	2014 30

Simulation	‐ Aliasing

(acq 1)( j 1) FOV
16

Slice:	1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



Magnitude	and	phase	images	for	all	reconstructed	data	sets	are	
indistinguishable,	and	are	thus	presented	for	A=16	(Nacq=1).
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Simulation	‐ Results



After	separation,	activation	should	only	be	present	within	the	
ROIs,	otherwise	denote	false‐positives	from	residual	aliasing.
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fMRI	Results	(A=1,	Nacq=16)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

A=
1

A=
1

z=



After	separation,	activation	should	only	be	present	within	the	
ROIs,	otherwise	denote	false‐positives	from	residual	aliasing.
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fMRI	Results	(A=16,	Nacq=1)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

A=
1

A=
16

A=
1

A=
16

z=



After	separation,	activation	should	only	be	present	within	the	
ROIs,	otherwise	denote	false‐positives	from	residual	aliasing.
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fMRI	Results	(A=8,	Nacq=2)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

A=
1

A=
1

A=
8

z=

A=
8



After	separation,	activation	should	only	be	present	within	the	
ROIs,	otherwise	denote	false‐positives	from	residual	aliasing.
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fMRI	Results	(A=4,	Nacq=4)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

A=
1

A=
1

A=
4

z=

A=
4



After	separation,	activation	should	only	be	present	within	the	
ROIs,	otherwise	denote	false‐positives	from	residual	aliasing.
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fMRI	Results	(A=2,	Nacq=8)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

A=
1

A=
1

z=

A=
2

A=
2



SPECS	incorporates	coefficients	of	orthogonal	polynomials	and	
calibration	images	into	the	original	aliasing	model:
‐ Improves	the	rank	of	the	aliasing	matrix
‐ Induces	no	artificial	correlation	when	using	Hadamard	coefficients	
‐ Acceleration	factors	can	exceed	the	number	of	coils	(in	this	case	
one)

Incorporating	multiple	phase	shifted	acquisitions	into	SPECS:
‐ Provides	multiple	ways	in	which	each	voxel	can	be	aliased
‐ Increases	the	power	of	detecting	activation	statistics
‐ Enables	up	to	four‐fold	acceleration	of	fMRI	data	acquisition	with	
only	a	single	coil
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Summary



Bruce	&	Rowe	‐ JSM	2014 38

Thank	you

Special	thanks	to	collaborators	in	this	work:
• Dr.	Daniel	B.	Rowe,	Marquette	University,
• Dr.	Andrew	S.	Nencka,	MCW
• Dr.	James	S.	Hyde,	MCW
• Dr.	Andrez Jesmanowicz,	MCW


