Reconstructing an Increased Number of Simultaneously Excited fMRI Slices

Iain P. Bruce, Ph.D. ${ }^{1,2}$

Daniel B. Rowe, Ph.D. ${ }^{2}$

Duke University ${ }^{1}$
Brain Imaging and Analysis Center
8/5/2014

Marquette University ${ }^{2}$
Department of Mathematics, Statistics and Computer Science

Outline

- Introduction
- Single-coil Aliasing Model
- The SPECS Model
- Incorporating Phase Shifted Acquisitions into SPECS
- fMRI Simulation
- Summary

Introduction

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, A, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.

Introduction

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, A, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.
${ }^{1}$ SPECS: Separation of Parallel Encoded Complex-valued Slices
- Enables higher acceleration factors by improving the aliasing matrix rank
- Minimal induced correlations

Introduction

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, A, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.
${ }^{1}$ SPECS: Separation of Parallel Encoded Complex-valued Slices
- Enables higher acceleration factors by improving the aliasing matrix rank
- Minimal induced correlations
${ }^{2,3}$ Incorporation of phase shifted acquisitions into the SPECS model:
- Apply various phase shifts to different slices aliased together
- Multiple ways in which each voxel is aliased
- Improves power of detecting activation statistics
${ }^{2}$ Rowe et al. 2014 (In prep.)
${ }^{3}$ Setsompop et al. MRM 2013

Assuming a homogeneous field, aliasing in a voxel, j, is

$$
\begin{aligned}
a_{j C} & =\left(\beta_{j R, 1}+\beta_{j R, 2}+\ldots \beta_{j R, A}\right)+i\left(\beta_{j I, 1}+\beta_{j I, 2}+\ldots \beta_{j I, A}\right)+\left(\varepsilon_{j R}+i \varepsilon_{j I}\right) \\
& =a_{j R}+i a_{j I} \\
& E\left[\varepsilon_{j}\right]=0 \\
& \operatorname{cov}\left(\varepsilon_{j}\right)=\sigma^{2} I_{2}
\end{aligned}
$$

Single-coil aliasing

Assuming a homogeneous field, aliasing in a voxel, j, is

$$
a_{j C}=\left(\beta_{j R, 1}+\beta_{j R, 2}+\ldots \beta_{j R, A}\right)+i\left(\beta_{j l, 1}+\beta_{j l, 2}+\ldots \beta_{j l, A}\right)+\left(\varepsilon_{j R}+i \varepsilon_{j l}\right)
$$

$$
=a_{j R}+i a_{j I}
$$

In real-valued matrix form:

$$
\begin{gathered}
\binom{a_{j R}}{a_{j l}}=\left(\begin{array}{cccccc}
1 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right) \\
\begin{array}{c}
\text { Aliasing matrix } \\
2 \times 1
\end{array}
\end{gathered}
$$

$$
\left(\begin{array}{c}
\beta_{j,, 1} \\
\vdots \\
\beta_{j,, A} \\
\beta_{\mu, 1} \\
\vdots \\
\beta_{\mu, A} \\
2 A \times 1
\end{array}\right)
$$

$$
+\binom{\varepsilon_{j R}}{\varepsilon_{j l}}
$$

$$
2 \times 1
$$

Measurement error

True un-aliased images

$$
a=\left(I_{2} \otimes X_{A}\right)
$$

Single-coil aliasing

At this point, our initial aliasing model is of the form

$$
a=\left(I_{2} \otimes X_{A}\right) \beta+\varepsilon=X \beta+\varepsilon
$$

The goal is to estimate the true un-aliased voxel values

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} a
$$

At this point, our initial aliasing model is of the form

$$
a=\left(I_{2} \otimes X_{A}\right) \beta+\varepsilon=X \beta+\varepsilon
$$

The goal is to estimate the true un-aliased voxel values

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} a
$$

When aliasing A slices, the matrix, X, has 2 equations and $2 A$ unknowns.

- ($\left.X^{\prime} X\right)$ is not square, invertible or of full rank.

We can improve the rank of X by adding $2(A-1)$ more rows.

Artificial aliasing

If $X=\left(I_{2} \otimes X_{A}\right)$, where $X_{A}=[1,1, \stackrel{\rightharpoonup}{\sim}]$, we can add $A-1$ rows to X_{A} to make $\left[\begin{array}{c}X_{A} \\ C\end{array}\right]$ square, invertible and full in rank

Orthogonal Coefficients
$A=2: \quad C=\left[\begin{array}{ll}-1 & 1\end{array}\right]$

Hadamard Coefficients
$A=2: \quad C=\left[\begin{array}{ll}-1 & 1\end{array}\right]$

Artificial aliasing

If $X=\left(I_{2} \otimes X_{A}\right)$, where $X_{A}=[1,1, \stackrel{\rightharpoonup}{ }$, we can add $A-1$ rows to X_{A} to make $\left[\begin{array}{c}X_{A} \\ C\end{array}\right]$ square, invertible and full in rank

Orthogonal Coefficients
$A=2: \quad C=\left[\begin{array}{ll}-1 & 1\end{array}\right]$
$A=3: \quad C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -2 & 1\end{array}\right]$

Hadamard Coefficients
$A=2: \quad C=\left[\begin{array}{ll}-1 & 1\end{array}\right]$

Artificial aliasing

If $X=\left(I_{2} \otimes X_{A}\right)$, where $X_{A}=[1,1, \stackrel{\rightharpoonup}{\sim}]$, we can add $A-1$ rows to X_{A} to make $\left[\begin{array}{c}X_{A} \\ C\end{array}\right]$ square, invertible and full in rank
Orthogonal Coefficients
$A=2: \quad C=\left[\begin{array}{cc}-1 & 1\end{array}\right]$
$A=3: \quad C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -2 & 1\end{array}\right]$
$A=4: \quad C=\left[\begin{array}{cccc}-3 & -1 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ -1 & 3 & -3 & 1\end{array}\right] \quad A=4: \quad C=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$

Artificial aliasing

Adding rows to X gives us additional ways in which the true voxel values in β could be "aliased".

If we acquire calibration data for each slice, we can use C to artificially alias the slices.

Single-coil calibration data

Acquire a time series of m fully sampled complex-valued images for each slice:

$\bar{v}_{C, 2}=\bar{v}_{R, 2}+i \bar{v}_{R, 2}$

$\bar{v}_{C, 3}=\bar{v}_{R, 3}+i \bar{v}_{R, 3}$

$\bar{v}_{C, 4}=\bar{v}_{R, 4}+i \bar{v}_{R, 4}$

Single-coil calibration data

Acquire a time series of m fully sampled complex-valued images for each slice:

$\bar{v}_{C, 3}=\bar{v}_{R, 3}+i \bar{v}_{R, 3}$

$\bar{v}_{C, 4}=\bar{v}_{R, 4}+i \bar{v}_{R, 4}$

For a voxel j in the mean calibration images, we can construct a mean vector

$$
\bar{v}_{j C}=\left[\bar{v}_{j C, 1}, \bar{v}_{j C, 2}, \bar{v}_{j C, 3}, \bar{v}_{j C, 4}\right]^{T}
$$

The SPECS Model

Incorporating artificially aliased mean calibration voxel values into the model:

The invertible aliasing matrix allows us to estimate the unaliased voxel values through a simple inverse: $\hat{\beta}=X^{-1} y$

SPECS Bootstrap approach

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for $A=4$:
Orthogonal Coefficients

$$
A=4: \quad C=\left[\begin{array}{cccc}
-3 & -1 & 1 & 3 \\
1 & -1 & -1 & 1 \\
-1 & 3 & -3 & 1
\end{array}\right] \quad \begin{aligned}
& \text { Assume the covariance } \\
& \text { of each calibration } \\
& \text { image is } \\
& \operatorname{cov}\left(v_{j, c o i l}\right)=\sigma^{2}
\end{aligned}
$$

Hadamard Coefficients
$A=4: \quad C=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$

SPECS Bootstrap approach

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for $A=4$:

Orthogonal Coefficients

$$
A=4: \quad C=\left[\begin{array}{cccc}
-3 & -1 & 1 & 3 \\
1 & -1 & -1 & 1 \\
-1 & 3 & -3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{c}
20 \\
4 \\
20
\end{array}\right] \begin{aligned}
& \text { Assume the covariance } \\
& \text { of each calibration } \\
& \text { image is } \\
& \operatorname{cov}\left(v_{j, \text { coil }}\right)=\sigma^{2}
\end{aligned}
$$

Hadamard Coefficients
$A=4: C=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]$

SPECS Bootstrap approach

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for $A=4$:

Orthogonal Coefficients
$A=4: \quad C=\left[\begin{array}{cccc}-3 & -1 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ -1 & 3 & -3 & 1\end{array}\right] \rightarrow\left[\begin{array}{c}20 \\ 4 \\ 20\end{array}\right]$
Hadamard Coefficients
$A=4: \quad C=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]$

Assume the covariance of each calibration image is
$\operatorname{cov}\left(v_{j, c o i l}\right)=\sigma^{2}$
Averaging M random calibration images with rows of the matrix C will have a covariance

$$
\operatorname{cov}\left(\bar{v}_{j, \text { coil }}\right)=\sigma^{2}
$$

SPECS Bootstrap Statistical Analysis

With the mean and covariance of the data vector,

$$
E\left[a_{j}\right]=\left[a_{j R 0}, C \bar{v}_{j R 0}, a_{j l 0}, C \bar{v}_{j l 0}\right]^{T}, \quad \Sigma=\operatorname{cov}\left(a_{j}\right)=\sigma^{2} I_{2 A}
$$

the mean and covariance of images reconstructed with a model that employs the bootstrapping approach are

$$
E\left[\hat{\beta}_{j}\right]=X^{-1} E\left[a_{j}\right],
$$

$$
\operatorname{cov}\left(\hat{\beta}_{j}\right)=\sigma^{2}\left(X^{-1}\right) I_{2 A}\left(X^{-1}\right)^{T}
$$

Since the aliasing matrix, X, is orthogonal, the theoretical correlation structure induced in $\hat{\beta}_{j}$ by SPECS is identity.

SPECS Bootstrap Statistical Analysis

With the mean and covariance of the data vector,

$$
E\left[a_{j}\right]=\left[a_{j R 0}, C \bar{v}_{j R 0}, a_{j l 0}, C \bar{v}_{j l 0}\right]^{T}, \quad \Sigma=\operatorname{cov}\left(a_{j}\right)=\sigma^{2} I_{2 A}
$$

the mean and covariance of images reconstructed with a model that employs the bootstrapping approach are

$$
E\left[\hat{\beta}_{j}\right]=X^{-1} E\left[a_{j}\right], \quad \operatorname{cov}\left(\hat{\beta}_{j}\right)=\sigma^{2}\left(X^{-1}\right) I_{2 A}\left(X^{-1}\right)^{T}
$$

Since the aliasing matrix, X, is orthogonal, the theoretical correlation structure induced in $\hat{\beta}_{j}$ by SPECS is identity.

Note: If there is a BOLD signal increase (activity) in one of the aliased slices, one cannot determine the origin of the signal increase (which slice) with only one measurement.

Shifted Acquisitions

For a "uniform" acquisition of $N_{S}=4$ slices, we can consider a vector of 4 aliased voxels (positioned FOV/4 apart) at once:

This is exactly the same as before, only we are now looking at more than one voxel at a time.
[1 Eq with 4 unknowns] \rightarrow [4 Eqs with 16 unknowns] $\rightarrow A=4$

Shifted Acquisitions

If we shift slices $j=1,2, \ldots N_{S}=4$ in PE by: $(j-1) \frac{F O V}{4}$

Now have a new way in which the 16 voxels in β can be aliased. When combined with the uniform aliasing scheme we have:
[1 Eq with 4 unknowns] \rightarrow [8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted Acquisitions

Consider the two aliasing patterns at once in a single system

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted Acquisitions

Consider the two aliasing patterns at once in a single system

$\left[\begin{array}{l}a_{1,1} \\ a_{1,2} \\ a_{1,3} \\ a_{1,4}\end{array}\right]=a_{1}=X_{A 1} \beta=\left[\begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & & 1 & 0 & 0 \\ 0\end{array}\right]$
0 1
[8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted Acquisitions

Consider the two aliasing patterns at once in a single system

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted Acquisitions

Consider the two aliasing patterns at once in a single system

To incorporate the phase shifted acquisitions into the SPECS model, denote the $j^{t h}$ column of the coefficient matrix, C, by C_{j} to form the new coefficient matrix:

$$
C \rightarrow\left[\begin{array}{cccc}
X_{1} \otimes C_{1} & X_{2} \otimes C_{2} & X_{3} \otimes C_{3} & X_{4} \otimes C_{4}
\end{array}\right]
$$

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted SPECS Model

The original SPECS model is thus updated in three ways:

1) New β vector with values from the N_{S} rows (FOV/ N_{S} apart) in the N_{S} slices
2) New aliasing matrix

$$
\begin{aligned}
& \pm \\
& {\left[\begin{array}{c}
X_{A} \\
C
\end{array}\right] \rightarrow\left[\begin{array}{c}
X_{A 1} \\
\vdots \\
2 N_{S} \times 2 N_{S}
\end{array}\left[\begin{array}{c}
X_{A N_{a c q}} \\
\left(X_{1} \otimes C_{1}\right),\left(X_{2} \otimes C_{2}\right), \ldots,\left(X_{N_{S}} \otimes C_{N_{S}}\right)
\end{array}\right]\right.} \\
& \left(2 N_{S}^{2} N_{a c q} \times 2 N_{S}^{2}\right)
\end{aligned}
$$

Simulation - fMRI Setup

Simulated an fMRI study in $N_{S}=16(96 \times 96)$ slices

- Max magnitude/SNR = 50
- Phase varied linearly from 0 to π over slices.
- Added $N(0,1)$ noise
- BOLD activity simulated in
- Slices: 1, 5, 9 and 13
- 20 epoch block design
- 15 TRs "on", 15 TRs "off"
- CNR = 1
- 500 reference images for each slice (non-task)

(II) Simulation - Aliasing

Five data sets simulated with $N_{a c q}$ acquisitions and acceleration factors, A, as follows:

- $A=16,\left(N_{a c q}=1\right)$
- $A=8, \quad\left(N_{a c q}=2\right)$
- $A=4, \quad\left(N_{a c q}=4\right)$
- $A=2, \quad\left(N_{a c q}=8\right)$
- $A=1$, (no aliasing)

For each of $a c q=1,2, \ldots N_{a c q}$ acquisitions, shifts were performed on slice $j=1,2, \ldots 16$ by: $($ acq -1$)(j-1) F O V$

Simulation - Results

Magnitude and phase images for all reconstructed data sets are indistinguishable, and are thus presented for $A=16\left(N_{\text {acq }}=1\right)$.

fMRI Results $\left(A=1, N_{a c q}=16\right)$

After separation, activation should only be present within the ROIs, otherwise denote false-positives from residual aliasing.

$A=1$

\square

fMRI Results $\left(A=16, N_{a c q}=1\right)$

After separation, activation should only be present within the ROIs, otherwise denote false-positives from residual aliasing.

fMRI Results $\left(A=8, N_{a c q}=2\right)$

After separation, activation should only be present within the ROIs, otherwise denote false-positives from residual aliasing.

fMRI Results $\left(A=4, N_{a c q}=4\right)$

After separation, activation should only be present within the ROIs, otherwise denote false-positives from residual aliasing.

fMRI Results $\left(A=2, N_{a c q}=8\right)$

After separation, activation should only be present within the ROIs, otherwise denote false-positives from residual aliasing.

SPECS incorporates coefficients of orthogonal polynomials and calibration images into the original aliasing model:

- Improves the rank of the aliasing matrix
- Induces no artificial correlation when using Hadamard coefficients
- Acceleration factors can exceed the number of coils (in this case one)

Incorporating multiple phase shifted acquisitions into SPECS:

- Provides multiple ways in which each voxel can be aliased
- Increases the power of detecting activation statistics
- Enables up to four-fold acceleration of fMRI data acquisition with only a single coil

Thank you

Special thanks to collaborators in this work:

- Dr. Daniel B. Rowe, Marquette University,
- Dr. Andrew S. Nencka, MCW
- Dr. James S. Hyde, MCW
- Dr. Andrez Jesmanowicz, MCW

