Reconstructing an Increased Number of Simultaneously Excited fMRI Slices

Iain P. Bruce, Ph.D.^{1,2} Daniel B. Rowe, Ph.D.²

8/5/2014

Duke University¹ Brain Imaging and Analysis Center

Marquette University² Department of Mathematics, Statistics and Computer Science

- Introduction
- Single-coil Aliasing Model
- The SPECS Model
- Incorporating Phase Shifted Acquisitions into SPECS
- fMRI Simulation
- Summary

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, *A*, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, *A*, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.

¹SPECS: Separation of Parallel Encoded Complex-valued Slices

- Enables higher acceleration factors by improving the aliasing matrix rank
- Minimal induced correlations

¹Rowe et al. 2013

Most multi-band models for accelerating fMRI data acquisition are faced by two limiting factors:

- Acceleration factor, *A*, limited to no more than the number of coils.
- The origin of a BOLD signal increase within one of several slices aliased together cannot be determined from one measurement.

¹SPECS: Separation of Parallel Encoded Complex-valued Slices

- Enables higher acceleration factors by improving the aliasing matrix rank
- Minimal induced correlations

^{2,3}Incorporation of phase shifted acquisitions into the SPECS model:

- Apply various phase shifts to different slices aliased together
- Multiple ways in which each voxel is aliased
- Improves power of detecting activation statistics

¹Rowe et al. 2013
²Rowe et al. 2014 (In prep.)
³Setsompop et al. MRM 2013

Assuming a homogeneous field, aliasing in a voxel, *j*, is $a_{jC} = (\beta_{jR,1} + \beta_{jR,2} + ...\beta_{jR,A}) + i(\beta_{jI,1} + \beta_{jI,2} + ...\beta_{jI,A}) + (\varepsilon_{jR} + i\varepsilon_{jI})$ $= a_{jR} + ia_{jI}$ $E[\varepsilon_{j}] = 0$ $\operatorname{cov}(\varepsilon_{j}) = \sigma^{2}I_{2}$

Assuming a homogeneous field, aliasing in a voxel, *j*, is $a_{iC} = (\beta_{iR,1} + \beta_{iR,2} + \dots \beta_{iR,A}) + i(\beta_{iI,1} + \beta_{iI,2} + \dots \beta_{iI,A}) + (\varepsilon_{iR} + i\varepsilon_{iI})$ $=a_{iR}+ia_{iI}$ $oldsymbol{eta}_{_{jR,1}}$ In real-valued matrix form: $\begin{bmatrix} a_{jR} \\ a_{jI} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \beta_{jR,A} \\ \beta_{jI,1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{jR} \\ \varepsilon_{jR} \end{bmatrix}$ 2×1 $2 \times 2A$ 2×1 Measurement error Aliased image Aliasing matrix $oldsymbol{eta}_{_{jI,A}}$ $2 A \times 1$ True un-aliased images $\overline{I_{\gamma}} \otimes \overline{X}_{I}$ В \boldsymbol{a} E

At this point, our initial aliasing model is of the form $a = (I_2 \otimes X_A)\beta + \varepsilon = X\beta + \varepsilon$

The goal is to estimate the true un-aliased voxel values $\hat{\beta} = (X'X)^{-1}X'a$

At this point, our initial aliasing model is of the form $a = (I_2 \otimes X_A)\beta + \varepsilon = X\beta + \varepsilon$

The goal is to estimate the true un-aliased voxel values $\hat{\beta} = (X'X)^{-1}X'a$

When aliasing *A* slices, the matrix, *X*, has 2 equations and 2*A* unknowns.

- (*X'X*) is not square, invertible or of full rank.

We can improve the rank of X by adding 2(A-1) more rows.

Martificial aliasing

If $X = (I_2 \otimes X_A)$, where $X_A = [1, 1, -1]$, we can add A - 1 rows to X_A to make $\begin{bmatrix} X_A \\ C \end{bmatrix}$ square, invertible and full in rank

Orthogonal Coefficients

A = 2: $C = \begin{bmatrix} -1 & 1 \end{bmatrix}$

Hadamard Coefficients A=2: $C=\begin{bmatrix} -1 & 1 \end{bmatrix}$

Artificial aliasing

If $X = (I_2 \otimes X_A)$, where $X_A = [1, 1, -1]$, we can add A - 1 rows to X_A to make $\begin{bmatrix} X_A \\ C \end{bmatrix}$ square, invertible and full in rank

Orthogonal Coefficients A = 2: $C = \begin{bmatrix} -1 & 1 \end{bmatrix}$ $A = 3: C = \begin{vmatrix} -1 & 0 & 1 \\ 1 & -2 & 1 \end{vmatrix}$

Hadamard Coefficients A=2: $C=\begin{bmatrix} -1 & 1 \end{bmatrix}$

Artificial aliasing

If $X = (I_2 \otimes X_A)$, where $X_A = [1, 1, -1]$, we can add A - 1 rows to X_A to make $\begin{bmatrix} X_A \\ C \end{bmatrix}$ square, invertible and full in rank **Orthogonal Coefficients** Hadamard Coefficients A = 2: $C = \begin{bmatrix} -1 & 1 \end{bmatrix}$ A = 2: $C = \begin{bmatrix} -1 & 1 \end{bmatrix}$ $A = 3: C = \begin{vmatrix} -1 & 0 & 1 \\ 1 & -2 & 1 \end{vmatrix}$

Artificial aliasing

Adding rows to X gives us additional ways in which the true voxel values in β could be "aliased".

If we acquire calibration data for each slice, we can use *C* to artificially alias the slices.

Acquire a time series of *m* fully sampled complex-valued images for each slice:

Acquire a time series of *m* fully sampled complex-valued images for each slice:

For a voxel *j* in the mean calibration images, we can construct a mean vector $\overline{v}_{jC} = \left[\overline{v}_{jC,1}, \overline{v}_{jC,2}, \underline{\overline{v}}_{jC,3}, \overline{v}_{jC,4}\right]^{T}$

Incorporating artificially aliased mean calibration voxel values into the model:

The invertible aliasing matrix allows us to estimate the unaliased voxel values through a simple inverse: $\hat{\beta} = X^{-1}y$

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for *A*=4:

Orthogonal Coefficients

$$A = 4: C = \begin{bmatrix} -3 & -1 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

<u>Hadamard Coefficients</u>

Assume the covariance of each calibration image is $cov(v_{j,coil}) = \sigma^2$

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for *A*=4:

To avoid inducing correlations into the un-aliased voxels through the SPECS model, a bootstrapping approach can be used.

Consider the contrast matrices for *A*=4:

Assume the covariance of each calibration image is $cov(v_{j,coil}) = \sigma^2$

Averaging *M* random calibration images with rows of the matrix *C* will have a covariance $cov(\overline{v}_{j,coil}) = \sigma^2$

With the mean and covariance of the data vector,

$$E[a_{j}] = [a_{jR0}, C\overline{v}_{jR0}, a_{jI0}, C\overline{v}_{jI0}]^{T}, \quad \Sigma = \operatorname{cov}(a_{j}) = \sigma^{2} I_{2A}$$

the mean and covariance of images reconstructed with a model that employs the bootstrapping approach are

$$E[\hat{\beta}_{j}] = X^{-1}E[a_{j}], \qquad \operatorname{cov}(\hat{\beta}_{j}) = \sigma^{2} \left(X^{-1}\right) I_{2A} \left(X^{-1}\right)^{T}$$

Since the aliasing matrix, X, is orthogonal, the theoretical correlation structure induced in $\hat{\beta}_i$ by SPECS is identity.

With the mean and covariance of the data vector,

$$E[a_{j}] = [a_{jR0}, C\overline{v}_{jR0}, a_{jI0}, C\overline{v}_{jI0}]^{T}, \quad \Sigma = \operatorname{cov}(a_{j}) = \sigma^{2} I_{2A}$$

the mean and covariance of images reconstructed with a model that employs the bootstrapping approach are

$$E[\hat{\beta}_{j}] = X^{-1}E[a_{j}], \qquad \operatorname{cov}(\hat{\beta}_{j}) = \sigma^{2} \left(X^{-1}\right) I_{2A} \left(X^{-1}\right)^{T}$$

Since the aliasing matrix, X, is orthogonal, the theoretical correlation structure induced in $\hat{\beta}_i$ by SPECS is identity.

Note: If there is a BOLD signal increase (activity) in one of the aliased slices, one cannot determine the origin of the signal increase (which slice) with only one measurement.

For a "uniform" acquisition of N_S =4 slices, we can consider a vector of 4 aliased voxels (positioned FOV/4 apart) at once:

This is exactly the same as before, only we are now looking at more than one voxel at a time.

 $[1 \text{ Eq with 4 unknowns}] \rightarrow [4 \text{ Eqs with 16 unknowns}] \rightarrow A=4$

If we shift slices $j=1, 2, ...N_S=4$ in PE by: $(j-1)\frac{FOV}{4}$

Now have a new way in which the 16 voxels in β can be aliased. When combined with the uniform aliasing scheme we have: [1 Eq with 4 unknowns] \rightarrow [8 Eqs with 16 unknowns] $\rightarrow A=2$

Consider the two aliasing patterns at once in a single system

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Consider the two aliasing patterns at once in a single system

$\begin{bmatrix} a_{1,1} \\ a_{1,2} \\ a_{1,3} \\ a_{1,4} \end{bmatrix}$	$= a_1 = X_{A1}\beta =$	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	1 0 0 0)	0 1 0 0		0 0 0 1	1 0 0 0		0 1 0 0	0	0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	$ \begin{bmatrix} \boldsymbol{\beta}_{1,1} \\ \boldsymbol{\beta}_{1,2} \\ \vdots \\ \boldsymbol{\beta}_{2,1} \\ \vdots \\ \boldsymbol{\beta}_{4,4} \end{bmatrix} $
$\begin{bmatrix} a_{2,1} \\ a_{2,2} \\ a_{2,3} \\ a_{2,4} \end{bmatrix}$	$= a_2 = X_{A2}\beta =$	1 0 0	0 1 0 0	0 0 1 0	0 0 0 1	0 1 0 0)		0 0 0 1		0 0 1 0	(0 0 0 1	0 0	0 1 0 0	0 0 0 1	1 0 0	0 1 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_{1,1} \\ \boldsymbol{\beta}_{1,2} \\ \vdots \\ \boldsymbol{\beta}_{2,1} \\ \vdots \\ \boldsymbol{\beta}_{4,4} \end{bmatrix}$

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Consider the two aliasing patterns at once in a single system

$\begin{bmatrix} a_{1,1} \\ a_{1,2} \\ a_{1,3} \\ a_{1,4} \end{bmatrix}$	$\begin{bmatrix} X \\ \end{bmatrix}$	0	0 1 0 0	0 0 1 0	0 0 0 1	1 0 0 0	1 0	0 0 1 0	0	(0 1 0 0	0 1	0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	$\begin{bmatrix} \beta_{1,1} \\ \beta_{1,2} \\ \vdots \end{bmatrix}$
$ \begin{array}{c} a_{2,1} \\ a_{2,2} \\ a_{2,3} \\ a_{2,4} \end{array} $	$= a = \begin{bmatrix} X_{A2} \end{bmatrix}^{p} =$	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	0 1 0 0		0 0 0 1	0	(1	0 0 0 1	0 0	0 1 0 0	0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	$\begin{bmatrix} \cdot \\ \beta_{2,1} \\ \vdots \\ \beta_{4,4} \end{bmatrix}$

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Consider the two aliasing patterns at once in a single system

To incorporate the phase shifted acquisitions into the SPECS model, denote the j^{th} column of the coefficient matrix, C, by C_i to form the new coefficient matrix:

$$C \to \begin{bmatrix} X_1 \otimes C_1 & X_2 \otimes C_2 & X_3 \otimes C_3 & X_4 \otimes C_4 \end{bmatrix}$$

[8 Eqs with 16 unknowns] $\rightarrow A=2$

Shifted SPECS Model

The original SPECS model is thus updated in three ways:

Simulation – fMRI Setup

Simulated an fMRI study in N_S =16 (96 × 96) slices

- Max magnitude/SNR = 50
- Phase varied linearly from 0 to π over slices.
- Added N(0,1) noise
- BOLD activity simulated in
 - Slices: 1, 5, 9 and 13
 - 20 epoch block design
 - 15 TRs "on", 15 TRs "off"
- CNR = 1
- 500 reference images for each slice (non-task)

Simulation - Aliasing

Five data sets simulated with N_{acq} acquisitions and acceleration factors, *A*, as follows:

- *A*=16, (*N*_{acq}=1)
- *A*=8, (*N*_{acq}=2)
- *A*=4, (*N*_{acq}=4)
- *A*=2, (*N*_{acq}=8)
- *A*=1, (no aliasing)

For each of $acq=1, 2, ... N_{acq}$ acquisitions, shifts were performed on slice j=1, 2, ... 16by: $(acq-1)(j-1) \frac{FOV}{16}$

Simulation - Results

Magnitude and phase images for all reconstructed data sets are indistinguishable, and are thus presented for A=16 ($N_{aca}=1$).

fMRI Results (A=1, N_{acq}=16)

fMRI Results (A=16, N_{acq}=1)

3.5

Bruce & Rowe - JSM 2014

Z=

-3.5

3.5

3.5

2=

Z=

-3.5

3.5

SPECS incorporates coefficients of orthogonal polynomials and calibration images into the original aliasing model:

- Improves the rank of the aliasing matrix
- Induces no artificial correlation when using Hadamard coefficients
- Acceleration factors can exceed the number of coils (in this case one)

Incorporating multiple phase shifted acquisitions into SPECS:

- Provides multiple ways in which each voxel can be aliased
- Increases the power of detecting activation statistics
- Enables up to four-fold acceleration of fMRI data acquisition with only a single coil

Thank you

Special thanks to collaborators in this work:

- Dr. Daniel B. Rowe, Marquette University,
- Dr. Andrew S. Nencka, MCW
- Dr. James S. Hyde, MCW
- Dr. Andrez Jesmanowicz, MCW