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Abstract

In magnetic resonance imaging, the parallel acquisition of subsampled spatial frequencies from an array of multiple receiver coils has
become a common means of reducing data acquisition time. SENSitivity Encoding (SENSE) is a popular parallel image reconstruction model
that uses a complex-valued least squares estimation process to unfold aliased images. In this article, the linear mathematical framework
derived in Rowe et al. [J Neurosci Meth 159 (2007) 361–369] is built upon to perform image reconstruction with subsampled data acquired
from multiple receiver coils, where the SENSE model is represented as a real-valued isomorphism. A statistical analysis is performed of the
various image reconstruction operators utilized in the SENSE model, with an emphasis placed on the effects of each operator on voxel means,
variances and correlations. It is shown that, despite the attractiveness of models that unfold the aliased images from subsampled data, there is
an artificial correlation induced between reconstructed voxels from the different folds of aliased images. As such, the mathematical
framework outlined in this manuscript could be further developed to provide a means of accounting for this unavoidable correlation induced
by image reconstruction operators.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The discovery that the spatial information of an object can
be encoded in the resonance spectrum by a magnetic field
gradient [1,2] is the fundamental basis for image formation in
magnetic resonance imaging (MRI). Although several
mathematical basis sets (Fourier, Hadamard, Wavelet,
singular value decomposition) have been used to encode
the spatial information of an object, Fourier encoding is by
far the most prevalent. The complex-valued spatial frequen-
cies of a real-valued object, Fourier encoded by magnetic
field gradients, are not measured instantaneously and thus
need to be measured individually in a serial fashion. It can
take on the order of 1 to 2 s to measure the required spatial
frequencies to form a volume of images at resolutions as low
as 64×64 voxels with up to 10 slices. As such, significant
effort has been put forth on many fronts, including the
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measurement of spatial frequencies with multiple receiver
coils, in parallel, to decrease image acquisition time [3].

A variety of parallel acquisition methods, such as
SENSitivity Encoding (SENSE), use multiple receiver coils
to subsample spatial frequency points in parallel and later
combine the multiple coil images into a single image [4].
SENSE is a popular parallel image reconstruction technique
as it is very flexible in terms of the choice of coil layout, and
the reduction in scan time achieved by subsampling the data
relaxes the requirements placed on studies such as breath
holding in cardiac imaging [5]. Although subsampling data in
parallel can dramatically reduce the time involved in
acquiring data, it conversely results in an increase in image
reconstruction time and difficulty.

SENSE utilizes a linear regression method based on a
complex-valued regression coefficient estimation process with
transposes replaced by Hermitians to obtain complex-valued
images. An unavoidable consequence of the SENSE model
that, to the best of our knowledge, has not been discussed is
that the “unfolding” process involved in generating a full field-
of-view (FOV) image from subsampled data induces a
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correlation between the aliased voxels from each “fold.” This
correlation can in turn be amplified if preprocessing operators
such as image smoothing are utilized, resulting in regions of
voxels correlated with the corresponding regions from other
folds. The correlations induced in the real, imaginary, and
between real and imaginary components of the data cannot be
observed if the operation is carried out on a voxel-by-voxel
basis using complex-valued operators, making the use of a
real-valued isomorphism invaluable. As this correlation is set
in place before any analysis has been performed on the image
itself, it is obvious that any correlations deduced from the data
could be very misleading after image reconstruction. Attempts
to model the induced correlation after image reconstruction
(and magnitude-only image formation) would also be
extremely challenging.

In this article, we utilize the mathematical framework
derived in Ref. [6] to represent the operators involved in
image reconstruction in a linear matrix-multiplication
fashion. The AMMUST (A Mathematical Model for
Understanding the STatistical effects) framework for
analyzing reconstruction and preprocessing operators de-
scribed in Ref. [7] is expanded upon to allow for subsampled
data from multiple receiver coils to be used in the SENSE
reconstruction model. The operators involved in SENSE
image reconstruction are used to illustrate the correlation
induced between the aliased voxels of subsampled data, as
well as the amplification of said correlation when preproces-
sing operations such as image smoothing are applied. The
correlations induced by the SENSE operators are theoreti-
cally illustrated on 96×96 noiseless phantom data as well as
on experimental phantom and human subject functional MRI
(fMRI) data. A real-valued isomorphism representation of
the complex-valued coil covariance matrix is estimated from
an experimental time series of scans of a spherical phantom
and an experimental time series of nontask scans with a
human subject.
2. Theory

2.1. Image reconstruction operators

The AMMUST framework in Ref. [7] generalized the
mathematical formalism of image reconstruction in Ref. [6]
using a Cartesian linear image reconstruction. The current
work expands upon this Cartesian framework in a manner
that accounts for the acquisition of subsampled data from an
array of receiver coils. This allows for the examination of
statistical properties of parallel image reconstruction.

The ability to perform a complex-valued inverse Fourier
reconstruction by means of a real-valued isomorphism, a
real-valued process for performing a complex-valued
operation, as derived in Ref. [6], paves the way for a
statistical analysis of the operations commonly undertaken
by parallel data acquisition and reconstruction techniques
such as SENSE. The real-valued isomorphism allows a
reconstructed complex-valued image, in vector form, y, to be
represented as the product of an inverse Fourier reconstruc-
tion operator, Ω, with the observed complex-valued k-space
spatial frequencies in vector form, f, as:

y = Xf : ð1Þ

It can be shown that the above equation holds true for any
linear reconstruction operator, Ω; however, the inverse
Fourier transform is utilized throughout the remainder of
this study. If FC is a py×px matrix of two-dimensional
complex-valued spatial frequencies, composed of the sum of
a true noiseless complex-valued spatial frequency matrix
F0C and a matrix of complex-valued measurement error EC,

FC = F0C + EC; ð2Þ
then the vector of observed k-space spatial frequencies, f, in
Eq. (1) is formed by stacking the pxpy real spatial frequencies
on top of the pxpy imaginary spatial frequencies

f = vec Re FT
C

� �
; Im FT

C

� �� �
;

where vec(∙) is a vectorization operator that stacks the
columns of its matrix argument, Re denotes the real part and
Im denotes the imaginary part. This vectorization thus
concatenates the rows of the real and imaginary matrices into
separate vectors, which are in turn concatenated into a single
vector, f, that is of dimension 2pxpy×1. As with FC, f is the
sum of a vector of true noiseless (complex-valued) spatial
frequencies, f0, and a vector of (complex-valued) measure-
ment error, ɛ. Similarly to the observed k-space data, if the
complex-valued reconstructed image is of dimensions py×px,
then the reconstructed image vector will consist of pxpy real
reconstructed image values stacked above pxpy imaginary
reconstructed image values, resulting in a reconstructed
image vector y of dimensions 2pxpy×1.

Given that the complex-valued reconstructed magnetic
resonance image is an inverse Fourier transform (IFT) of the
measured complex-valued spatial frequencies,

Y qxDx; qyDy
� �
=
Xm−1

qy = −m

Xn−1
qx = −n

F pxDx; pyDy
� �

exp i2p
pxqx
2n

+
pyqy
2m

� �� �
consider the inverse Fourier transform matrices in the x and
y directions

XxC = XxR + iXxI; XyC = XyR + iXyI

where ΩxR and ΩxI denote the real and imaginary matrix
parts, respectively, in the x direction [6]. The jkth element of
ΩxC can be expressed as

XxCð Þjk = exp
i2p
px

+ j −
px
2

+ 1
� �� �

T k −
px
2

+ 1
� �� �� �

;

where j and k vary from 1 to px [7]. A similar inverse Fourier
matrix can be expressed for ΩyC that is of dimension py.



Fig. 1. Inverse Fourier transform of complex spatial frequencies. (A) Reconstructed image YC. (B) ΩyC inverse Fourier transform matrices. (C) Spatial
frequencies FC. (D) ΩxC inverse Fourier transform matrices.
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Both ΩxC and ΩyC can be adjusted to account for intra-
acquisition decay and magnetic field inhomogeneities
acquired in the k-space signal [7,8] if T2⁎ or ΔB maps can
be obtained. The complex-valued inverse Fourier transfor-
mation of FC can be written as

YC = XyCFCXxC: ð3Þ

The inverse Fourier transformation of spatial frequencies
used in Eq. (3) is illustrated in Fig. 1. Fig. 1A shows the
k-space spatial frequency matrix FC that is premultiplied
by the inverse Fourier transform matrix ΩyC in Fig. 1B and
postmultiplied by the inverse Fourier transform matrix ΩxC

in Fig. 1D, resulting in the complex-valued image space
image in Fig. 1A.

For simplicity in representation and examination of
reconstruction, it can be shown that the pre- and post-
multiplication of inverse Fourier matrices can be combined
into a single reconstruction matrix

X =
XR −XI

XI XR

� 	
that is, 2pxpy×2pxpy, where the real and imaginary compo-
nents are derived using the Kronecker product, ⊗, as

XR = XyR � XxR

� �
− XyI � XxI

� �
 �
;

XI = XyR � XxI

� �
+ XyI � XxR

� �
 �
:

The Kronecker product operator multiplies every
element of its first matrix argument by its entire second
matrix argument. Premultiplying the spatial frequency
vector, f, by the combined inverse Fourier transform
matrix, Ω, the reconstructed image in Eq. (1) can be
expressed as

yR
yI

� �
=

XR −XI

XI XR

� 	
f0R + eR
f0I + eI

� �
: ð4Þ

While the spatial frequency vector, f, may be composed of
real and imaginary values, the application of the Fourier
transform operator in Eq. (4) results in a covariance between
the real measurements, a covariance between the imaginary
measurements, and a covariance between the real and
imaginary (real/imaginary). Eq. (4) lays the groundwork for
the AMMUST framework in Ref. [7] that is necessary to
analyze the operations involved in image reconstruction for
fully sampled data from a single receiver coil. With mere
inverse Fourier image reconstruction, the covariance matrix
of the reconstructed image is modified by the reconstruction
operator Ω as

cov yð Þ = XCXT; ð5Þ
where Γ is the covariance matrix of the observed vector
of k-space data. It is important to note that, although Γ
might only have a real and imaginary covariance
structure, the resultant covariance in Eq. (5) will also
have a covariance between the real and imaginary as
well as a covariance between the imaginary and real
(imaginary/real). With additional operators to be de-
scribed later, such as permutations, image smoothing and
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the SENSE unfolding operator, the reconstruction in
Eq. (1) becomes

y = Of ; ð6Þ
where O signifies the series of linear operators expressed
as matrix multiplications applied throughout the image
reconstruction process. Just as in Eq. (5), the covariance matrix
induced through a series of operators, O, can be calculated by

R = cov yð Þ = OCOT: ð7Þ
Similar to the structure of the spatial frequencies in

Eq. (2), Γ is the covariance of the spatial frequencies, f,
which is composed of a mean signal vector, f0, and a noise
vector, ɛ. The covariance matrices Γ and Σ contain real-by-
real, imaginary-by-imaginary and real-by-imaginary covari-
ances. The vectors f0 and ɛ contain real and imaginary
spatial frequencies and noise elements. The derivation
outlined in the Appendices of Ref. [7] allows for the
covariance structure of the square of the magnitude-only data
(magnitude-squared data) to be derived from the covariance
matrix Σ in Eq. (7) assuming normality. Magnitude-squared
data are considered in the analysis of the covariance and
correlation induced by operators involved in image recon-
struction because an analytical solution exists for the linear
framework in this study, while magnitude-only data are not
considered as magnitude operations and are not linear in
nature. It can be shown that the correlation of magnitude-
squared data is asymptotically equivalent to the correlation
of magnitude-only data and thus will be used along with
complex-valued data to observe properties of real, imaginary
and real/imaginary correlation structures.

2.2. Parallel imaging of subsampled data

Although Eq. (4) is expressed for data from a single
receiver coil that acquires a full FOV, it can be generalized to
reconstruct subsampled data from an array of multiple
receiver coils. Traditionally, undersampling data occurs by
skipping lines of k-space in the phase encoding (PE)
direction, although the framework and principle can be
applied for any direction, with any scheme in which lines of
data are subsampled. In this Cartesian framework, the
subscript y denotes the PE direction (i.e., top–bottom), while
the subscript x denotes the frequency encode direction (i.e.,
left–right). For an acceleration factor (also commonly
known as a reduction factor), A, a receiver coil would only
acquire every Ath line of k-space in the PE direction. Thus, a
subsampled matrix of spatial frequencies FC would be of
dimension (py /A)×px. This subsampled data set is vectorized
in exactly the same fashion as the full data set in Eq. (2),
where the vector of observed subsampled k-space spatial
frequencies, f, in Eq. (1) is formed by stacking the px(py /A)
real spatial frequencies on top of the px(py /A) imaginary
spatial frequencies. In order to utilize the inverse Fourier
reconstruction operator, Ω, it is necessary for ΩyC to include
the correct dimension to transform the reduced FOV.
As will be illustrated, when implementing a SENSE image
reconstruction of subsampled data from multiple receiver
coils, it is necessary to select an acceleration factor that is less
than the total number of coils in the array; otherwise, it results
in a sensitivity matrix that is not sufficiently defined. As such,
in order to implement the process of subsampling data with an
acceleration factor greater than A=1, it is necessary to have
more than one receiver coil.

Consider an array of NC receiver coils, each of which
acquires a (py /A)×px subsampled spatial frequency matrix.
The vector of spatial frequencies, f, will be composed of NC

vectors of the vectorized real spatial frequencies from each
coil stacked above the imaginary component of spatial
frequencies from the corresponding coils. In this form, the
vectorized spatial frequencies from each coil can be inverse
Fourier transformed via the Ω operator, as in Eq. (4), by
carrying out the Kronecker product INC

⊗Ω.
In this Kronecker product, every element of INC

is
multiplied by the entire matrix Ω, generating a block
diagonal inverse Fourier reconstruction operator for a
reduced FOV image reconstruction of each coil image

ycoil = INC � Xð Þf ; ð8Þ
where

ycoil = vec Re yTcoil
� �

; Im yTcoil
� �� �

is a vector concatenating the subvectors coil=[1, 2,…, NC] of
the real reconstructed coil images stacked upon the
corresponding imaginary reconstructed coil images. The
consequence of skipping lines in k-space is an aliased image.
This effect is illustrated in Fig. 2 where a magnitude image of
a modified Shepp–Logan phantom (top left) represented by
its spatial frequencies (top right) is reduced by a factor of
A=3 (bottom right) in the PE direction (top–bottom) to
produce an aliased image (bottom left).

The aliased images from the NC receiver coils are
combined and unaliased, or “unfolded,” via the SENSE
unfolding matrix in conjunction with the coil covariance
matrix. The combination of these images first requires a
permutation that rearranges the vector ycoil, which was
ordered by coil image, to now being ordered by voxel. The
result of such a permutation is another vector containing the
same elements, but the elements are rearranged with the NC

real image values stacked upon NC imaginary image values
for each aliased voxel in the NC coil images. This reordering
operation can be undertaken by premultiplying the product
(INC

⊗Ω)f by a complex permutation matrix PC, resulting in a
vector of elements ordered by reduced FOV folded image
space voxel values

a = PC INC � Xð Þf : ð9Þ
A permutation matrix such as PC is a matrix of zeros and

ones that when premultiplying a vector, the resulting vector
contains the same elements but in a different order. In
addition to the complex permutation applied in Eq. (9), for



Fig. 2. Image aliasing resulting from subsampled k-space.
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even acceleration factors, it may be necessary to apply a
second permutation that performs a Fourier transform shift.
For an acceleration factor of A=2, the center line of k-space
will be in the center of the aliased image, and thus an
“unfolding” will lead to an image that does not fulfill the
Nyquist criteria. This ultimately results in the reconstructed
image in Fig. 3A that appears to be off center. However, if a
Fourier transform shift is applied to the aliased images after
Fourier reconstruction, then the center line of k-space will
align itself with the edge of a fold. Consequently, the folds
themselves will align their edges with the edge of the full
FOV, as illustrated in Fig. 3B. This is not, however, an issue
for odd acceleration factors, as illustrated in Fig. 3C for an
acceleration factor of A=3. This is because, although the
center line of k-space lies within the center of a fold, when
unfolding the aliased images, the edges of the folds are
aligned with the edge of the full FOV as well. As such,
a Fourier transform shift permutation, PS, premultiplies
Fig. 3. Fourier transform shift permutation required for even acceleration factors. (A
(C) A=3 IFT without shift.
the complex permutation in Eq. (9) whenever an even
acceleration factor, A, is selected

a = PSPC INC � Xð Þf : ð10Þ

2.3. SENSE

Within the SENSE model with NC receiver coils, voxel j
contains a complex-valued vector ajC=ajR+i ajI of NC voxel
measurements from the subsampled spatial frequencies,
which are derived by

ajC = SjCvjC + ejC: ð11Þ

In Eq. (11), SjC=SjR+iSjI is derived from the fully sampled
complex-valued coil image sensitivity matrix, vjC=vjR+ivjI is the
complex-valued true scalar voxel and ɛjC=ɛjR+iɛjI is the
complex-valued additivemeasurement noise. For the estimation
) A=2 inverse Fourier transform (IFT) without shift. (B) A=2 IFT with shift.

image of Fig. 2
image of Fig. 3


Fig. 4. Sensitivity maps and their corresponding aliased coil images for an array of NC=4 coils.
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of each of the aliased voxel values, the matrix SjC is of
dimension NC×A, ajC and ɛjC are of dimension NC×1, while vjC
is a vector of length A denoting values of each of the A aliased
voxel values. It is generally assumed that the complex-valued
measurement noise, ɛjC, is derived from the complex-valued
normal distribution [9] given by

f ejC
� �

= 2pð Þ−NC jWC j −1 =2exp −
1
2
eHjCW

−1
C ejC

� �
;

where ΨC=ΨR+iΨI is the complex-valued coil covariance
matrix and H denotes the Hermetian or conjugate
transpose. With this error structure, the complex-valued
vector of subsampled spatial frequencies, ajC, can be
shown with a change of variables to have a complex-
valued normal distribution

f ajC
� �

= 2pð Þ−NC jWC j −1=2

� exp −
1
2

ajC−SjCvjC
� �H

W−1
C ajC − SjCvjC
� �� 	

:

ð12Þ

The least squares estimate of the complex-valued true
scalar voxel values, as used for the SENSE estimate of the
unaliased single combined voxel values, is

vjC = SHjCW
−1
C SjC

� �−1
SHjCW

−1
C ajC: ð13Þ

Alternatively, Eq. (11) can be expressed as a real-
valued isomorphism

aj = Sjvj + ej; ð14Þ
where aj=(ajR

T, ajI
T)T is a vector of NC real measurements

stacked upon a vector of NC imaginary measurements and
ɛj=(ɛjR
T, ɛjI

T)T is a vector of the NC real parts of the complex-
valued additive noise stacked upon a vector of the NC

imaginary parts. The vector of the complex-valued scalar
voxel values vj=(vjR

T, vjI
T)T is also composed of the real part

stacked upon the imaginary part. The unfolded scalar voxel
values, v, are derived from an array of fully sampled spatial
frequencies from each coil

Sj =
SjR −SjI
SjI SjR

� 	
; ð15Þ

where SjR and SjI are the real and imaginary matrices of coil
image sensitivities for the voxel of interest j in the folded
image. The aliased surface coil images, from the reception
field sensitivities of the NC=4 receiver coils in Fig. 4A, are
illustrated in Fig. 4B.

With the use of the isomorphism in Eq. (14), the complex-
valued multivariate normal distribution can be expressed as
the 2NC×1 multivariate normal distribution of coil measure-
ments in Eq. (12) by

f aj
� �

= 2pð Þ−NC jW j −1=2

� exp −
1
2

aj−Sjvj
� �T

W−1 aj − Sjvj
� �� 	

:

As the additive measurement noise derived from the
complex-valued normal distribution

ejCeCN 0;WCð Þ
provides the correlation between the coils in the SENSE
model, when represented as a real-valued isomorphism,

ejeN 0;
WR −WI

WI WR

� 	� �
;

image of Fig. 4
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the real-valued isomorphism of the complex coil covariance
matrix, as used in the SENSE model, is expressed as

W =
WR −WI

WI WR

� 	
: ð16Þ

What Eq. (16) implies is that the real/imaginary
covariance between coils is the negative of the imagi-
nary/real, making the overall coil covariance structure
skew-symmetric. In many studies, ΨC (and hence Ψ) is
treated as a real-valued identity matrix; however, it will be
shown in the experimental illustration that this is far from
the correct structure when the coil covariance is estimated
from real data.

Provided with the real-valued isomorphism representa-
tion of the complex-valued coil sensitivities matrix in
Eq. (15) and the real-valued isomorphism representation of
the complex-valued coil covariance matrix as in Eq. (16), the
SENSE estimation of the unaliased single combined voxel
values in Eq. (13) can be equivalently expressed as a real-
valued isomorphism

vjR
vjI

� 	
=

SjR −SjI
SjI SjR

� 	T WR −WI

WI WR

� 	−1 SjR −SjI
SjI SjR

� 	 !− 1

� SjR −SjI
SjI SjR

� 	T WR −WI

WI WR

� 	−1 ajR
ajI

� 	
or

vj = STj W
−1Sj

� �−1
STj W

− 1aj ð17Þ

for each voxel j, where Sj is of dimension 2NC×2A, Ψ is of
dimension 2NC×2NC and the vector of voxel measurements
aj is of dimension 2NC×1. Thus, the isomorphism in
Eq. (17) yields an image space vector, vj, of dimension
2A×1 that is composed of the A real voxel values stacked
upon the A imaginary voxel values. These A values
correspond to the A folds that are formed via undersampling
the data in k-space by a factor of A. It can be shown that the
real and imaginary parts of the estimated complex-valued
unaliased single combined image voxel value in Eq. (13)
are mathematically equivalent to the estimated real and
imaginary isomorphism vector of unaliased single com-
bined image voxel value in Eq. (17).

In order to carry out the SENSE isomorphism using the
linear framework in Eqs. (8) to (10), Eq. (17) is rewritten as

v = Ua;

where the SENSE unfolding matrix U is block diagonal with
the jth block unfolding the aliased voxel j

Uj = STj W
−1Sj

� �−1
STj W

−1
and

a = PSPC INC � Xð Þf :

The SENSE estimation in Eq. (17) can be expressed as a
single operator to unfold all aliased voxels in the reduced
images at once. Provided with the fully sampled coil
sensitivities, Sj, a coil sensitivity matrix, S, can be constructed
by placing the 2NC×2A coil sensitivities corresponding to
each aliased voxel, j, where j varies from voxel 1 to voxel rp,
along the diagonal of a block diagonal matrix. With a
covariance between voxels of Υ, the covariance structure of
the k-space data, acquired from independent receiver coils,
with a coil covariance of Ψ is defined to be

C =
pxpy
A

W�Υð Þ; ð18Þ

where px(py /A) is a scalar multiple produced by the Fourier
transformation from image space to k-space. In order to
reconstruct all voxels at once with a voxel covariance Υ, the
SENSE unfolding operators are expressed as

U = ST Υ �Wð Þ−1S
� �

ST Υ �Wð Þ−1; ð19Þ

where the orders of Ψ and Υ in Eq. (18) are switched in the
Kronecker product in Eq. (19) because the data being
unfolded are ordered by voxel rather than by coil. As the
SENSE reconstruction is traditionally carried out on a voxel-
by-voxel basis, this necessarily implies that the general
practice is to use an identity covariance between voxels in the
SENSE model. Therefore, despite the fact that the coil
sensitivities may in fact have spatial variability, if Υ is
assumed to be an identity matrix with rp diagonal elements,
the SENSE unfolding operator is

U = ST Irp �W
� �−1

S
� �

ST Irp �W
� �−1

:

When U is applied as an operator, it will perform the real-
valued estimation in Eq. (17), “unfolding” the NC real and
NC imaginary voxel values in all rp aliased voxels from the
NC coils into A real and A imaginary voxel values for each of
the A folds

v = UPSPC INC � Xð Þf :

It is then necessary to apply a third permutation, PU, that
reorders the unaliased real and imaginary image values in v
from being ordered by voxel to being ordered by fold and
then from being ordered by fold to being ordered by row,
resulting in a vector of all real image values stacked upon all
imaginary image values

y = PUUPSPC INC � Xð Þf ð20Þ
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or

y = PUv:

Additional operators for preprocessing in k-space, OK,
and image space processing, OI, can be incorporated into
Eq. (20) as

y = OIPUUPSPC INC � XOKð Þf :

These operators are treated as identity in this study unless
specified otherwise. The operators used to reconstruct the
acquired k-space data in Eq. (20) can be combined into a
single operator as

O = OIPUUPSPC INC � XOKð Þ: ð21Þ

From this collection of operators, the modified covariance
by the reconstruction and preprocessing operators them-
selves can be evaluated as

RSE = cov yð Þ = OCOT;

where Γ is the covariance matrix of the acquired k-space
data. In the analysis of the statistical properties induced by
the reconstruction operators, Γ is assumed to be identity and
thus any Σ that is not proportional to an identity matrix is an
induced covariance between voxels. As such, the induced
covariance between voxels from the SENSE reconstruction
operators is

RSE = OOT

= OIPUUPSPC INC�XOKð Þ INC�XOKð ÞTPT
SP

T
SU

TPT
UO

T
I :

Thus, for any of the operators in Eq. (21), such as the
unfolding permutation PU, the covariance induced by that
operator of choice is evaluated as

RPU = PUOUO
T
UP

T
U

where OU=UPSPC(INC
⊗ ΩOK) denotes the collection of all

operators premultiplied by PU in Eq. (21). Therefore, if the
operators in OU are all orthogonal, Σ will be either an
identity matrix or a scaled identity matrix.

For an arbitrary operator (or collection of operators) O,
assuming spatial frequencies with an identity covariance
between voxels, the correlation induced between voxels is
derived by

corr Oð Þ = D−1 = 2
O OOTD−1 = 2

O ; ð22Þ

where DO=diag(Σ) is a diagonal matrix of the variances
from the diagonal of the covariance matrix Σ=OOT and the
−1/2 superscript denotes that the diagonal elements are
square rooted and inverted. The real-valued isomorphism
correlation matrix produced by Eq. (22) can be partitioned
into quadrants as

corr Rð Þ = RR RI
IR II

� 	
;

where any row, j, of each quadrant denotes the correlation
between voxel j and all other voxels in the reconstructed
image for the respective complex denomination. The
correlation about voxel j can be generated by partitioning
the jth row of each quadrant in corr(Σ) into px vectors of 1×py
(each of which denotes a column of the reconstructed image),
stacking the row vectors into a matrix and finally transposing.

2.3.1. Selection of the acceleration factor A
It is necessary for NC to be greater than the acceleration

factor A in order to perform the inversion in the complex-
valued weighted least squares estimation in the SENSE
model [10]. An increase in acceleration factor, A, is marked
by a decrease in the number of signal values received by each
coil by a factor of A. Transitioning from k-space to image
space via inverse Fourier transform, the image-space variance
is equivalent to the original k-space variance divided by the
k-space dimensions. Thus, a reduction in k-space dimensions,
by a factor of A, effectively scales the standard deviation in
image space by a factor of (A)1/2. Therefore, the ratio between
the signal-to-noise ratio (SNR) of a full FOV acquisition and
a reduced FOV in a voxel j is expressed as

SNRred
j =

SNRfull
j

gj
ffiffiffi
A

p ;

where

gj =
SNRfull

j

SNRred
j

ffiffiffi
A

p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHW−1S
� �−1h i

j;j
SHW−1S
� �
 �

j;j

r
is the geometry factor (g-factor) and the subscript j,j signifies
the diagonal elements of the two terms in the square root. The
diagonal elements of the two matrices in brackets above are
multiplied then added together. The g-factor is commonly
used as a means of assessing the geometry of the array of
receiver coils. The g-factor essentially determines the level of
noise amplification that results from the reconstruction
process and describes how well aliased voxels will be
unfolded given the choice of coil geometry. It depends
heavily on how different the NC coil sensitivities are in any
aliased voxel j, but is also influenced by the covariance
between receiver coils. Ideally, an array of independent
receiver coils with sensitivity profiles that do not overlap and
do not decrease in strength with distance from the coil (i.e.,
similar to that of a pie with slices of equal size and constant
throughout) would result in a g-factor of 1 in every voxel.
However, this coil arrangement is very difficult to achieve,
and thus the coil sensitivity profiles usually have considerable
overlap. The g-factor is improved by increasing the number
of receiver coils and maintaining an acceleration factor, A,
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that is somewhat less than NC [10]. Doing so results in an
overdetermined system of equations, improving the numer-
ical condition of the matrix inversion utilized in the SENSE
least squares estimation of voxel values in Eq. (17).
3. Theoretical illustration

Within this illustration, data are generated from a true
noiseless Shepp–Logan phantom with a theoretical coil
covariance consistent with that of real data between NC=4
receiver coils. Recall from Eq. (6) that a full FOV vectorized
image in image space with real image values stacked upon
imaginary image values, y, is reconstructed through a variety
of operators, O, that premultiply a vector, f, containing a
series of NC subsampled vectors of real k-space data stacked
upon corresponding vectors of imaginary k-space data.
Starting with a real-valued isomorphism representation of a
true noiseless real-valued Shepp–Logan phantom, y, the
vector of k-space data, f, can be derived from Eq. (6) with a
least squares estimation by

f = ðOTOÞ−1OT y:
Fig. 5. SENSE magnitude and phase images reconstructed from NC=4 coils, redu
smoothing. (A) Unsmoothed magnitude. (B) Unsmoothed phase. (C) Smoothed m
Under the assumption that there is an identity covariance
structure between voxels in Eq. (19), the result of this
procedure is a vector of subsampled k-space data from NC

receiver coils that exhibits an appropriate theoretical
covariance between each of the coils, consistent with that
of real data.

To illustrate the covariance and correlation induced by the
individual operators, operators will be generated to recon-
struct a 9×9 image with an acceleration factor of A=3, while
a 96×96 modified Shepp–Logan phantom image, scaled to
have a maximum value of 50, is used to illustrate the
correlation induced by operators on the individual voxels
themselves. As complex data are gathered in both real and
imaginary channels, an appropriate choice of coil covari-
ance, in terms of a real-valued isomorphism matrix, is

Wcoil =
WRR WRI

WT
RI WII

� 	
;

where ΨRR=ΨR is the real coil covariance, ΨII=ΨI is the
imaginary coil covariance and ΨRI=ΨIR

T is the covariance
between the real and imaginary channels. In this illustration,
ced in the PE direction for an acceleration factor of A=3 with and without
agnitude. (D) Smoothed phase.

image of Fig. 5
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ΨRI≠−ΨIR
T , making Ψcoil non–skew-symmetric. The real

and imaginary coil covariances were chosen to be circular
Markovian, resembling the covariance estimated from
experimental data as

WR = WI =

1 0:33 0:11 0:33
0:33 1 0:33 0:11
0:11 0:33 1 0:33
0:33 0:11 0:33 1

2664
3775:

A nonsymmetric covariance was chosen between the real
and imaginary channels to observe the effects of the skew-
Fig. 6. Operator plots used to reconstruct a 9×9 FOV from NC=4 coils and an accel
complex permutation; (D) inverse Fourier transform operator; (E) covariance induc
by the unfolding permutation, shift permutation, complex permutation and inverse F
the SENSE operator; (I) correlation induced by the SENSE operator.
symmetric coil covariance used in the SENSE model in
Eq. (16)

WRI =

0:000 −0:11 −0:07 −0:11
0:263 0:000 −0:11 −0:07
0:417 0:263 0:000 −0:11
0:263 0:417 0:263 0:000

2664
3775:

Reconstructed mean magnitude and phase images are
illustrated in Fig. 5. It can be seen in Fig. 5A and C that there
appears to be some aliasing in both the magnitude and phase
reconstructed images resulting from the skew-symmetric coil
eration factor of A=3. (A) Unfolding permutation; (B) shift permutation; (C)
ed by the inverse Fourier transform operator; (F) identity correlation induced
ourier transform operators; (G) SENSE operator; (H) covariance induced by

image of Fig. 6
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covariance structure assumed by the SENSE model in
Eq. (16) rather than by the Ψcoil used in generating the data.

As it is common practice to perform image smoothing
after reconstruction, a Gaussian kernel, OI=Sm, with a full
width at half maximum (FWHM) of three voxels was applied
in image space after reconstruction

y = SmPUUPSPC INC � XOKð Þf :

The SENSE operators for reconstructing k-space data
are thus

O = SmPUUPSPC INC � XOKð Þ;
where OK=I.

As outlined in Appendix A, in order for the variance of
the data to remain unchanged, the magnitude is scaled by the
inverse of the square root of the sum of squares of the
elements within the Gaussian kernel. For the chosen
Gaussian kernel in this illustration, with an FWHM of
three voxels, the ratio of the smoothed and unsmoothed
mean images is 4.516. One can see this increase in
magnitude when comparing the unsmoothed magnitude
image in Fig. 5A to those that are smoothed in Fig. 5B. The
ghosting in the SENSE magnitude and phase imaged in
Fig. 5B and D appears to remain unaffected when the data
are smoothed. However, note that the aliasing itself in the
SENSE magnitude in Fig. 5A is smoothed and thus becomes
spread out to neighboring voxels in Fig. 5B.
Fig. 7. Induced real, imaginary, real/imaginary and magnitude-squared voxel corr
0.15. Smoothing was applied with a Gaussian kernel with an FWHM of three voxe
A=3. Correlations from operators with and without smoothing are presented wit
imaginary, (D) magnitude-squared, (E) smoothed real, (F) smoothed imaginary, (G
Each of the operators in the SENSE model along with
the covariance and correlation induced by each operator is
presented in Fig. 6 for a 9×9 reconstruction with an
acceleration factor of A=3 and NC=4 receiver coils. The
unfolding permutation, shift permutation, complex permu-
tation and inverse Fourier transform operators are illustrat-
ed in Fig. 6A, B, C and D, respectively. As all three
permutations simply rearrange the order of the data that
they premultiply, they do not individually induce any
covariance, i.e., PUPU

T=PSPS
T=PCPC

T=I, and in turn induce
an identity correlation between voxels. As the inverse
Fourier transform reconstruction operator, Ω, is orthogonal,
ΩΩT=1/(pxpy/A)I, there is no correlation induced by image
reconstruction, as illustrated in Fig. 6F, but the variances
are reduced by a factor of 1/(pxpy/A)I, as shown in Fig. 6E.
The SENSE unfolding operator, U, resembles the block
diagonal matrix, as illustrated in Fig. 6G, where each block
unfolds the NC real and NC imaginary image values from
the NC coils into A real and A imaginary image values
corresponding to the A folds. The voxel measurements
from each of the NC coils are covariant by the choice of the
coil covariance matrix, Ψ. Therefore, as each block along
the diagonal of U represents a 2NC to 2A mapping of image
values, there is a resulting block diagonal covariance
between the corresponding voxels from each of the A folds
in Fig. 6H. Consequently, the correlation induced by U in
Fig. 6I is also of a similar block diagonal form. This
correlation is purely a byproduct of the operator U itself
elations about the center voxel by the SENSE operators with a threshold o
ls to noiseless data, reduced in the PE direction for an acceleration factor o
h their respective magnitude underlay. (A) Real, (B) imaginary, (C) real
) smoothed real/imaginary, (H) smoothed magnitude-squared.
f
f
/

image of Fig. 7
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and is therefore in place before any potentially correlated
(or uncorrelated) data are introduced.

Upon closer inspection of the correlation from U, the real,
imaginary and real/imaginary correlations between the
center voxel and all other voxels in the reconstructed images
are illustrated in Fig. 7A, B and C, respectively, with a
threshold of 0.15, where the correlated voxels between folds
are shown on the reconstructed magnitude image. Given that
magnitude-only data have become the gold standard in
image analysis, the magnitude-squared correlation about the
center voxel is illustrated in Fig. 7D. Magnitude-squared
data have been chosen because they are linear in nature and
are asymptotically equivalent to magnitude-only data, which
are not, and thus fit into the mathematical framework
described throughout this manuscript. A mathematical
derivation of the magnitude-squared covariance and corre-
lation will not be presented in this manuscript, but can be
found in Appendix B of Ref. [7]. While the correlations
illustrated in Fig. 7 can be applied to any voxel in the
reconstructed image, the center voxel is used throughout this
manuscript for convenience.

It is evident in the real, imaginary and magnitude-squared
correlation images in Fig. 7A, B and D that there is a positive
correlation induced by the SENSE reconstruction operations
between the center voxel and the corresponding center voxels
of the upper and lower folds. It is important to note in Fig. 7C
that, while there may be no real/imaginary correlation in the
center voxel itself, the SENSE unfolding operation induces a
real/imaginary correlation that is positive between the center
voxel and the corresponding center voxels from the upper
fold, and negative between the center voxel and the center
voxel of the lower folds. The correlation induced between
folds from the SENSE image reconstruction operators is
further amplified if image smoothing is applied to the
reconstructed images [7]. Illustrated in Fig. 7E–H, one can
see that the correlated voxels from each fold maintain the
same sign, but are now correlated clusters of voxels instead.

As these voxels are correlated purely by the image
reconstruction operators,Σ=OOT, with no contribution from
the theoretical phantom data themselves, one would easily
and mistakenly conclude that there is a correlation between
voxels within the center, the anterior and the posterior
regions of the brain in the center of each fold. This
correlation could have serious implications in functional
connectivity MRI studies. These correlations exemplify the
importance of considering the effects of all operators utilized
in image reconstruction, particularly when those operators
involve image smoothing or image combining mappings
such as SENSE.
4. Experimental application and analysis

To observe the statistical implications of the SENSE
model on experimental data, two sets of data were acquired
from an array of eight receiver coils in a 3.0-T General
Electric Signa LX magnetic resonance imager. The first set
of data was of a spherical agar phantom, while the second
set was a series of nontask images of a human subject.
Both data sets were composed of nine 2.5-mm-thick
axial slices that are 96×96 in dimension for a 24-cm
FOV, with the PE direction oriented as anterior to
posterior (top–bottom in images). Acquired for a series
of 510 TRs, the data sets had a repetition time (TR) of
1 s, an effective echo time of 42.8 ms, an effective echo
spacing of 768 ms, a flip angle of 45° and an
acquisition bandwidth of 125 kHz. The first 20 TRs
were discarded to account for T1 effects and because the echo
time had been varied (in the human data), resulting in 490
TRs that were all acquired under the same conditions. All of
the remaining 490 images from coils 1, 3, 5 and 7 were used
in estimating both the sensitivity maps and the coil
covariances, from NC=4 equally spaced coils, to be used in
image reconstruction. Subsampling was simulated for an
acceleration factor of A=3 by deleting lines of k-space in
each of the acquired coil images in the PE direction.

Both the spherical phantom data and the human subject
data were acquired with a custom echo planar imaging (EPI)
pulse sequence and reconstructed using locally developed
image reconstruction software. The center line of k-space for
each receiver coil was acquired with three navigator echoes
in order to estimate the error in the center frequency and
group delay offsets between the odd and even k-space lines
[7]. As EPI techniques are susceptible to dynamic fluctua-
tions in the homogeneities of the main magnetic field, the
global, temporal phase structure was corrected in both data
sets after unfolding to account for field shifts associated with
gradient heating and radiofrequency phase variation [8].

Traditionally, the raw coil sensitivity maps would be
derived by normalizing the surface coil sensitivities in each
voxel by the corresponding body coil sensitivities [10]. As a
body coil was not available from either of the scans, the raw
coil sensitivity maps were thus normalized by dividing the
surface coil sensitivities by an average of the coil sensitivities
in each voxel. Alternatively, a square root of the sumof squares
of the coil sensitivities in each voxel could be used [10,11].
However, little difference was observed between the root sum
of squares sensitivity map and the simple average. As such, the
simple average sensitivitymapswere used in this study, as they
provide both magnitude and phase images when the root sum
of squares sensitivities do not have a phase. It is important to be
able to reconstruct magnitude and phase images, as they allow
the use of all of the data in determination of voxel activation
from complex-valued time series [12,13].

4.1. Phantom data

To bridge the gap between the theoretical illustration in
Section 3 and the application to the human subject data to
follow, a spherical agar phantom was scanned. Unlike a
human subject, the phantom is not prone to respiratory
movement or physiological effects and thus provides a good



Table 1
Coil covariances estimated from real data assuming an identity voxel covariance

0.0863 0.0083 0.0112 0.0439 0.0013 0.0188 −0.0282 0.0149
0.0083 0.0149 0.0059 0.0184 −0.0153 0.0002 −0.0149 0.0046
0.0112 0.0059 0.0779 −0.0383 0.0186 0.0094 −0.0003 0.0403
0.0439 0.0184 −0.0383 0.1342 −0.0083 0.001 −0.0619 0.0135
0.0013 −0.0153 0.0186 −0.0083 0.0774 0.0075 0.0164 0.0296
0.0188 0.0002 0.0094 0.001 0.0075 0.0151 0.0051 0.0148

−0.0282 −0.0149 −0.0003 −0.0619 0.0164 0.0051 0.0928 −0.0379
0.0149 0.0046 0.0403 0.0135 0.0296 0.0148 −0.0379 0.1037
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baseline for experimental observations. Coil sensitivity maps
were estimated from the experimental time series of phantom
images by dividing the surface coil sensitivities in each voxel
within each coil by an average of the coil sensitivities in each
voxel and then averaging over the time series. An analysis
was performed on the statistical properties of reconstructed
images by observing both the estimated correlation between
voxels over the course of the time series after image
reconstruction as well as the correlations induced by the
reconstruction operators alone.

4.1.1. Estimated coil covariance
In order to perform the SENSE image reconstruction

process on the experimental data set, the 2NC×2NC real-
valued isomorphism representation of the complex coil-
covariance matrix was evaluated from the observed aliased
voxel values. Provided with a time series of NTR complex-
valued, aliased, k-space arrays of dimension px×py /A, let V
denote a pxpy /A×2NC×NTR real-valued array composed of
the NC real and NC imaginary vectorized components of the
image-space images from the NC coils in each TR. From the
three-dimensional array V, the mean can be taken in the third
dimension to estimate the mean image P

V . Thus, the coil
covariance can be estimated as

Ŵcoil =
1

NTRTrp

XNTR

t =1

ðVt−P
V Þ

TI−1rp ðVt − P
V Þ: ð23Þ

The estimated real-valued isomorphism representation of
the 2NC×2NC complex coil covariance matrix, Ŵcoil, in
Eq. (23), from the time series of 490 TRs from NC=4 receiver
coils, is listed in Table 1. Upon observation, if the estimated
Table 2
Averaged coil correlation estimated from data assuming an identity voxel covarian

1 0.0632 0.189 0.0632
0.0632 1 0.0632 0.189
0.189 0.0632 1 0.0632
0.0632 0.189 0.0632 1
0.0487 −0.0285 −0.013 −0.0285

−0.0285 0.0487 −0.0285 −0.013
−0.013 −0.0285 0.0487 −0.0285
−0.0285 −0.013 −0.0285 0.0487
coil covariance, Ŵcoil, in Table 1 is partitioned into NC×NC

real-valued quadrants as

Ŵcoil =
W1 W2

W3 W4

� 	
;

it can be seen that Ψ3=Ψ2
T and Ψ1≈Ψ4. The fact that Ψ1≈Ψ4

reinforces the assumption made in generating the data in the
theoretical illustration where ΨR=ΨI, based on the use of the
complex-valued normal distribution of the Fourier coeffi-
cients. To accommodate the skew-symmetric coil covariance
structure assumed by the SENSE model in Eq. (16), the
estimated coil covariance is reordered into

ŴSE =
W1 −W4

W4 W1

� 	
;

replacing Ψ2 and Ψ3 with −Ψ4 and Ψ4, respectively. This
substitution is necessary because Ŵcoil is not skew-
symmetric, and the skew-symmetric coil covariance as-
sumed by the SENSE model in Eq. (16) does not have an
explicitly defined real/imaginary covariance, but rather
substitutes the imaginary covariance into the off-diagonal
quadrants. The only way in which the skew-symmetric coil
covariance in Eq. (16) could be equivalent to Ŵcoil would be
if Ŵcoil=0, which is not the case and would result in an
unfolding operator filled with zeros.

To gain a better understanding of the covariance structure
between coils, an average covariance was formed. This was
done by taking the mean of the diagonals of each quadrant of
ŴSE. In an array of four coils, the main diagonal corresponds
to the coil of interest, the second and fourth supra- and
subdiagonals correspond to the neighboring coils, and the
ce

0.0487 −0.0285 −0.013 −0.0285
−0.0285 0.0487 −0.0285 −0.013
−0.013 −0.0285 0.0487 −0.0285
−0.0285 −0.013 −0.0285 0.0487
1 0.0145 0.2155 0.0145
0.0145 1 0.0145 0.2155
0.2155 0.0145 1 0.0145
0.0145 0.2155 0.0145 1
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third supra- and subdiagonals correspond to the opposing
coil. This averaged covariance structure was then trans-
formed into the correlation matrix in Table 2 by

corr ŴSE

� �
= D−1 = 2

W ŴSED
−1 = 2
W ;

where DΨ is a diagonal matrix of the variances from the
diagonal of ŴSE and the superscript −1/2 denotes the
Fig. 8. SENSE mean magnitude, mean phase and standard deviation images from p
of three voxels. (A) Unsmoothed magnitude, (B) smoothed magnitude, (C) unsmo
smoothed standard deviation.
reciprocal of the square root of DΨ. Upon closer
inspection of the real component of coil correlation in
Table 2, one can see that the correlation between the
coils along the diagonal and their neighbors loosely
follows a circular Markovian structure (as used in the
theoretical illustration).

The 490 images of the spherical phantom data set were
reconstructed using the SENSE reconstruction operators
hantom data. Smoothing was applied with a Gaussian kernel with an FWHM
othed phase, (D) smoothed phase, (E) unsmoothed standard deviation, (F)

image of Fig. 8
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assuming an identity voxel covariance structure in Eq. (19).
Mean magnitude and phase images were constructed with an
acceleration factor of A=3, as illustrated in Fig. 8A and C.
Fig. 9. Estimated correlations about the center voxel throughout the time series o
operators and correlations induced by the SENSE image reconstruction operators. C
are presented with a magnitude underlay, while operator-induced correlations are pr
imaginary estimated correlation, (C) real/imaginary estimated correlation, (D) magn
imaginary operator-induced correlation, (G) real/imaginary operator-induced correl
correlation with smoothing, (J) imaginary estimated correlation with smoothing,
squared estimated correlation with smoothing, (M) real operator-induced corre
smoothing, (O) real/imaginary operator-induced correlation with smoothing, (P) m
While it is not immediately evident in the mean magnitude
and phase images, the standard deviation in Fig. 8E shows
signs of aliasing within the phantom. In both the phase and
f 490 phantom images reconstructed via the SENSE image reconstruction
orrelations presented with a threshold of 0.15, where estimated correlations
esented on a theoretical circular phantom. (A) Real estimated correlation, (B)
itude-squared estimated correlation, (E) real operator-induced correlation, (F
ation, (H) magnitude-squared operator-induced correlation, (I) real estimated
(K) real/imaginary estimated correlation with smoothing, (L) magnitude
lation with smoothing, (N) imaginary operator-induced correlation with
agnitude-squared operator-induced correlation with smoothing.
)

-

image of Fig. 9


1282 I.P. Bruce et al. / Magnetic Resonance Imaging 29 (2011) 1267–1287
standard deviation images in Fig. 8C and E, there appears to
be some level of aliasing above and below the phantom. This
aliasing outside of the phantom is a result of both Nyquist
ghosting that has not been completely removed as well as the
correlation induced between aliased voxels in the SENSE
image reconstruction process.

To illustrate the effects of image smoothing, each
reconstructed image in the time series of phantom data was
smoothed using a Gaussian kernel with an FWHM of three
voxels. As is expected with the implementation of a
Gaussian-smoothing kernel, scaled to achieve a constant
variance as outlined in Appendix A, the magnitude in
Fig. 8B has been scaled up by a factor of 4.5, correspondent
with the selection of the FWHM, as illustrated in Fig. 8B. It
is of note in the smoothed standard deviation in Fig. 8F that
while the variance within each voxel is unchanged by the
implementation of the smoothing kernel, the covariance
between voxels is increased. Upon observation of the
unsmoothed and smoothed standard deviation images in
Fig. 8E and F, respectively, the standard deviation within
the phantom is considerably lower than that outside, with the
exception of the regions in which the aliasing occurs in
the center.

A two-part analysis was performed on the correlations
between voxels after the time series was reconstructed
using the SENSE model. First, images of the correlation
over the time series were constructed between the center
voxel and all other voxels in the image by reshaping the row
of the overall correlation matrix corresponding to the center
voxel. Second, correlation images were produced to
illustrate the correlation induced by the image reconstruc-
tion operators alone. Presented in Fig. 9A–D, with a
magnitude underlay, are the real, imaginary, real/imaginary
and magnitude-squared correlations between the center
voxel and all other voxels in the image over the course of
the time series. By comparing Fig. 9A–D with the real,
imaginary, real/imaginary and magnitude-squared opera-
tor-induced correlations in Fig. 9E–H, one can see that
there is a negative real, a negative imaginary, a positive and
negative real/imaginary, and a positive magnitude-squared
correlation between the center voxel and the respective
center voxel from the top and bottom folds. Fig. 9I–L
illustrates the correlation estimated between the center
voxel and all other voxels over the course of the time series
with image smoothing, and Fig. 9M–P illustrates the
correlations induced purely by the image reconstruction
operators with image smoothing applied in image space. By
comparing the real, imaginary, real/imaginary and magni-
tude-squared correlations estimated over the time series in
Fig. 9I–L to the operator correlations in Fig. 9M–P, it is
evident that there are clusters of voxels in the center of the
center, upper and lower folds that are correlated to the
center voxel. As the assumption was made that there was an
identity covariance structure between voxels before image
reconstruction, these correlations are therefore a byproduct
of the SENSE unfolding process and would be misinter-
preted if no steps were taken to account for operator-
induced correlations.

4.2. Human subject data

Unlike a static spherical phantom, data acquired for a
human subject are prone to respiratory movement and
physiological effects. Coil sensitivity maps and coil co-
variances were estimated from the time series of human
subject images. An analysis was performed on the statistical
properties of reconstructed images by observing both the
estimated correlation between voxels over the course of
the time series after image reconstruction as well as the
correlations induced by the reconstruction operators alone.

4.2.1. Estimated coil covariance
Following the same procedure used with the phantom

data set, the 2NC×2NC real-valued isomorphism representa-
tion of the complex coil-covariance matrix was evaluated
from the observed aliased voxel values using Eq. (23).
This 2NC×2NC covariance was again partitioned into
quadrants such that it could be reorganized to accommodate
the skew-symmetric coil covariance assumed by the SENSE
model. The 490 images in the time series were then
individually reconstructed using the SENSE image recon-
struction operators, with an acceleration factor of A=3, in
conjunction with the estimated coil sensitivity profiles and
the estimated coil covariance structure, both with and
without image smoothing.

The mean magnitude and phase images, without and with
smoothing, are illustrated in Fig. 10A–D. As expected, the
effect of applying a Gaussian-smoothing kernel is an
increase in the mean magnitude in each voxel. A Gaussian
kernel with an FWHM of three voxels should result in an
increase in the voxel mean by a factor of 4.5, which is not the
case for the human subject data set. This is in part a result of
the temporal off-resonance alignment of single-echo time-
series correction scheme utilized to account for temporal
variations in the magnetic field within the brain over the
course of the time series [8]. While aliasing was evident in
the phantom standard deviation images in Fig. 8E and F, it is
not as apparent in the standard deviation images for the
human subject data in Fig. 10E and F. In both the phase and
standard deviation images, however, there still appears to be
some level of aliasing above and below the brain because of
both Nyquist ghosting that has not been completely removed
and the correlation induced between aliased voxels via the
SENSE image reconstruction process. As image smoothing
induces a correlation between voxels and their neighbors, it
is to be expected that the standard deviation within a voxel
will remain unchanged if the smoothing kernel is scaled to
maintain a constant variance in each voxel, while the
covariance between voxels will be increased, as illustrated
when comparing the standard deviation images without
image smoothing in Fig. 10E to those with smoothing in
Fig. 10F. As was noted in the phantom data set, both the
unsmoothed and smoothed standard deviations, in Fig. 10E



Fig. 10. SENSE mean magnitude, mean phase and standard deviation images from human subject data. Smoothing was applied with a Gaussian kernel with an
FWHM of three voxels. (A) Unsmoothed magnitude, (B) smoothed magnitude, (C) unsmoothed phase, (D) smoothed phase, (E) unsmoothed standard deviation
(F) smoothed standard deviation.
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and F, respectively, are lower within the subject to that
outside the subject.

A similar two-part analysis was performed on the
correlations in the human subject data set to those in the
phantom data set, where the correlations estimated through-
out the time series of human subject data between the center
voxel and all other voxels in the full FOV reconstructed
images are compared to the correlations induced by the
SENSE image reconstruction operators alone. Illustrated in
,

Fig. 11A–D, with a magnitude underlay, are the real,
imaginary, real/imaginary and magnitude-squared correla-
tions between the center voxel and all other voxels in the
image over the course of the time series. In the real,
imaginary and real/imaginary correlation images, there
appears to be a ripple effect within the brain, which may
be due to the relative quadrant in which the phase of the
center voxel and other voxels reside. This ripple effect is a
result of phase correlations resulting from physiological

image of Fig. 10


Fig. 11. Estimated correlations about the center voxel throughout the time series of 490 human subject images reconstructed via the SENSE image reconstruction
operators and correlations induced by the SENSE image reconstruction operators. Correlations presented with a threshold of 0.15, where estimated correlations
are presented with a magnitude underlay, while operator-induced correlations are presented on a theoretical circular phantom. (A) Real estimated correlation, (B)
imaginary estimated correlation, (C) real/imaginary estimated correlation, (D) magnitude-squared estimated correlation, (E) real operator-induced correlation, (F)
imaginary operator-induced correlation, (G) real/imaginary operator-induced correlation, (H) magnitude-squared operator-induced correlation, (I) real estimated
correlation with smoothing, (J) imaginary estimated correlation with smoothing, (K) real/imaginary estimated correlation with smoothing, (L) magnitude-
squared estimated correlation with smoothing, (M) real operator-induced correlation with smoothing, (N) imaginary operator-induced correlation with
smoothing, (O) real/imaginary operator-induced correlation with smoothing, (P) magnitude-squared operator-induced correlation with smoothing.
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effects within the human subject over the course of the time
series. This explanation is supported by a lack of a similar
effect in the magnitude-squared correlation.
The comparison between the correlations in Fig. 11A–D
to those in Fig. 11E–H is more difficult to make than in the
case of the phantom data set, as there appear to be many

image of Fig. 11
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voxels correlated with the center voxel in the human subject
data set. In the event of image smoothing, in Fig. 11I–P, one
can see that there is a positively correlated cluster of voxels
about the center voxel in the real, imaginary and magnitude-
squared correlation images. While there is no such correlated
cluster of voxels in the center of the real/imaginary operator
correlation in Fig. 11O, there appears to be a negative real/
imaginary correlation in the center of the correlation
estimated over the time series in Fig. 11K. It is again
important to note that the SENSE model assumes an identity
covariance structure between voxels before image recon-
struction, and therefore any correlation estimated after the
fact is a byproduct of the SENSE image reconstruction
process and preprocessing operations.
5. Discussion

This work extends the mathematical framework outlined
in Refs. [6,7] that allows image reconstruction operators to
be expressed as matrices and thus used to determine the
statistical effects that each operator induces on the mean,
covariance and correlation of the data to be reconstructed. In
this article, the mathematical framework of Ref. [7] has been
adapted to incorporate data that have been subsampled and
acquired from an array of multiple receiver coils. We have
provided a framework for analyzing the SENSE model as an
isomorphism, allowing an analysis to be performed on the
unfolding operator that is applied to the acquired data. In
representing the SENSE model in terms of a real-valued
isomorphism, one can see that the model assumes a skew-
symmetric covariance structure between coils as a result of
the conjugate transpose utilized in the complex-valued
weighted least squares estimation process. As this covariance
is unlike that of real data, it was shown in the theoretical
illustration of a 96×96 modified Shepp–Logan phantom
that aliasing becomes apparent in both magnitude and
phase images.

An investigation into the SENSE image reconstruction
model for a 9×9 image showed that the three permutation
matrices and inverse Fourier transform matrix are all
orthogonal, producing either an identity matrix or a scaled
identity matrix when multiplied by their respective trans-
poses. As such, there is no correlation induced by the
permutations or inverse Fourier transformation. The SENSE
unfolding operation, however, is a block diagonal matrix that
performs a mapping from the NC real and NC imaginary
aliased voxel values from the NC coils into A real and A
imaginary unaliased voxel values corresponding to the A
folds and is therefore not orthogonal. It was shown in the
reconstruction of a 96×96 modified Shepp–Logan phantom
that the SENSE model induces a correlation between each of
the previously aliased voxels in each fold. This correlation
between the A unaliased voxels becomes more severe when
image smoothing is applied, resulting in correlated clusters
of voxels instead.
As the SENSE model assumes an identity covariance
structure between voxels before image reconstruction, any
correlation observed between the previously aliased voxels is
therefore altered by the unfolding process defined by the
model. This was shown for both a spherical phantom and a
human subject, acquired from a 3.0-T Signa LX magnetic
resonance imager. The correlation estimated about the center
voxel over the course of a time series of 490 acquisitions
after image reconstruction using the SENSE model showed
that there was a correlation between the center voxel and the
corresponding center voxel from the upper and lower folds,
similar to the correlations induced by the image reconstruc-
tion operators alone. These three regions correlated to the
center voxel correspond to the three previously aliased
voxels unaliased by the SENSE unfolding operation with an
acceleration factor of A=3. Should the acceleration factor be
increased, there would be an increase in the number of
correlated regions that correspond to the number of
previously aliased voxels defined by the acceleration factor
A. An increase in the acceleration factor is only possible
with an increase in the number of coils, such that the
inversion in the least squares estimation in the SENSE model
is possible. However, an increase in the number of coils
similarly has an increase in the correlation between coils. As
such, increasing the number of coils as well as the
acceleration factor may provide an attractive decrease in
the data acquisition time, but conversely results in an
increase in correlation between both voxels and coils. As a
means of accounting for this correlation, one could subtract
the inherent local spatial correlation in each voxel as
described in Ref. [14]; however, this may not be the
most optimal method. The induced temporal correlation
should be utilized in computing each voxel's level of
activation. The induced spatial correlation should be utilized
in a larger spatiotemporal model or perhaps in the proper
threshold determination.

The isomorphism outlined in this article, however, is
very computationally intensive. In order to reconstruct a
96×96 image, with real and imaginary data, from an array
of NC=4 receiver coils that gather subsampled data with
an acceleration factor of A=3, the operator matrix O
would be 24,576×73,728. For subsampled data from an
array of NC=8 receiver coils, gathering subsampled data
with an acceleration factor of A=3, the operator matrix O
would be 49,152×147,456. Thus, the number of elements
within the operators scales with NC

2. This framework can
also be extended to reconstruct images in a time series
with time series processing operators. However, if all
spatial and temporal operators were combined into a single
operator, the number of elements would scale by the
square of the number of images in the time series.
Therefore, the use of sparse matrices and parallel matrix
multiplication techniques, such as the parallel universal
matrix multiplication algorithm [15] and the scalable
parallel universal matrix multiplication algorithm [16],
would be encouraged.
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Despite the high dependence on computational resources,
the framework outlined in this article provides an invaluable
tool for analyzing the exact correlation induced by operators
used in parallel image reconstruction models such as
SENSE. The results indicate that operators that perform a
mapping of data from multiple receiver coils to multiple
folds when unaliasing an aliased image induce a correlation
between aliased voxels. Representing the image reconstruc-
tion operators as a real-valued isomorphism allows one to
observe the correlation induced by all operators in each voxel
of the reconstructed image. As this induced correlation is
purely a result of the operators involved in reconstruction
and not of any biological origin, this framework can have
strong implications in functional connectivity studies.
Therefore, the framework outlined in this article could
allow one to account for the effects each reconstruction
operator has on the data in subsequent analysis.
Appendix A. Statistical effects of smoothing

As is common practice in fMRI, a Gaussian-smoothing
kernel can be used to smooth the reconstructed images. It is
important, however, to understand the effects such an
operation has on the statistical properties of the data.
Consider a Gaussian kernel in the center of a 2n×2m FOV
with a mean of zero and a variance of σ2

G px; py
� �

=
1

2pr2
e−

p2x + p2yð Þ
2r2 : ðA1Þ

It can be shown that the relationship between the FWHM,
F, and variance of a Gaussian distribution is

F2 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln 2ð Þr2;

p
and thus the Gaussian kernel in Eq. (A1) can be represented
in terms of the FWHM as

G px; py
� �

=
4ln 2ð Þ
pF2

e−
4ln 2ð Þ p2x + p2yð Þ

pF2 : ðA2Þ

If one were to apply the kernel in Eq. (A2) to each voxel
j=(px,py) in a Cartesian grid where px=[−m:m] and py=[−n:
n], with an expected value of vj and a variance of α2, within
the reconstructed image, it would result in no change in the
voxel mean,

E
X

gj × vj
� �

=
X

gj × vj = vj;

and a change in the voxel variance as

var
X

gj × vj
� �

=
X

g2j × var vj
� �

=
X

g2j a
2:

In order to prevent a change in variance, it is necessary to
divide all elements of the Gaussian kernel in Eq. (A2) by the
square root of the sum of the squares of all elements within
the kernel. This results in a scaled mean

E
X gjffiffiffiffiffiffiffiffiffiffiffiP

g2j
q × vj

0B@
1CA =

X gjffiffiffiffiffiffiffiffiffiffiffiP
g2j

q × vj =
1ffiffiffiffiffiffiffiffiffiffiffiP
g2j

q vj

and the original variance

var
X gjffiffiffiffiffiffiffiffiffiffiffiP

g2j
q

0B@
1CA

2

× vj

0B@
1CA =

X g2jP
g2j

× var vj
� �

= a2:

Therefore, the application of a Gaussian-smoothing kernel
designed to leave the voxel variance unchanged has the effect
of scaling the mean value within a voxel by a factor of

R =
1ffiffiffiffiffiffiffiffiffiffiffiP
g2j

q :

This scaling factor R is directly related to the square of the
FWHM, F, as

R =
1ffiffiffiffiffiffiffiffiffiffiffiP
g2j

q
=

Xm
px = −m

Xn
py = −n

4ln 2ð Þ
pF2

e−
4ln 2ð Þ p2x + p2yð Þ

pF2

 !2
24 35−1=2

=
pF2

4ln 2ð Þ
Xm

px = −m

Xn
py = −n

e−
8ln 2ð Þ p2x + p2yð Þ

pF2

" #−1=2

;

and through the linear relationship between the FWHM and
the kernel variance, R can be shown to be linearly related to
the standard deviation of the kernel, σ.
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