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Ricean over Gaussian modelling in magnitude
fMRI analysis—added complexity with negligible
practical benefits
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It is well known that Gaussian modelling of functional magnetic resonance imaging (fMRI) magnitude time-course
data, which are truly Rice distributed, constitutes an approximation, especially at low signal-to-noise ratios (SNRs).
Based on this fact, previous work has argued that Rice-based activation tests show superior performance over their
Gaussian-based counterparts at low SNRs and should be preferred in spite of the attendant additional computational
and estimation burden. Here, we revisit these past studies and, after identifying and removing their underlying
limiting assumptions and approximations, provide a more comprehensive comparison. Our experimental evaluations
using Receiver Operating Characteristic (ROC) curve methodology show that tests derived using Ricean modelling
are substantially superior over the Gaussian-based activation tests only for SNRs below 0.6, that is, SNR values far
lower than those encountered in fMRI as currently practiced. Copyright © 2013 John Wiley & Sons Ltd.
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Introduction

Over the past two decades, functional magnetic resonance imaging (fMRI) has developed into a popular method for
noninvasively studying the spatial characteristics and extent of human brain function. The imaging modality depends
on the fact that when neurons fire in response to a stimulus or task, the blood oxygen levels in neighbouring vessels
change, affecting the magnetic resonance (MR) signal on the order of 2-3% (Lazar, 2008) because of the differing
magnetic susceptibilities of oxygenated and deoxygenated haemoglobin. This difference causes the so-called blood
oxygen level-dependent (BOLD) contrast (Ogawa et al., 1990; Belliveau et al., 1991; Kwong et al., 1992), which is
used as a surrogate for neural activity. Datasets collected in an fMRI study are temporal sequences of three-dimensional
images where the time course is in accordance with the presentation of a stimulus. Such images are composed of
MR measurements at each voxel—or volume element—and have the same distributional and noise properties as any
signal acquired using MR imaging.

A general approach for detecting regions of neural activation is to fit, at each voxel, a model—commonly a general

linear model (Friston et al., 1995)—to the time-course observation sequence against the expected BOLD response.
This provides the setting for the application of techniques such as statistical parametric mapping (Friston et al., 1990),
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where the time series at each voxel is reduced to a test statistic that summarizes the association between each voxel
time course and the expected BOLD response (Bandettini et al., 1993). The resulting map is then thresholded to
identify voxels that are significantly activated (Worsley et al., 1996; Genovese et al., 2002; Logan & Rowe, 2004).

Most statistical analyses focus on magnitude data computed from the complex-valued measurements resulting from
Fourier reconstruction (Kumar et al., 1975; Jezzard & Clare, 2001). These raw real and imaginary measurements
are well-modelled as two independent normal random variables with the same variance (Wang & Lei, 1994) so the
magnitude measurements follow the Rice distribution (Rice, 1944; Gudbjartsson & Patz, 1995). In recent years,
there has been considerable effort in the MR community to use the Rice distribution to better understand the noise
characteristics of the MR signal (Sijbers et al., 2007; Aja-Fernandez et al., 2009; Maitra & Faden, 2009; Rajan et
al., 2010; Maitra, 2013) and to use it to improve image restoration and reconstruction (e.g. synthetic MRI; (Maitra
& Riddles, 2010)). In the context of fMRI, most standard analyses have assumed that magnitude data are Gaussian
-distributed, an assumption that is only valid at high signal-to-noise ratio (SNR). This fact is increasingly important
because the SNR is proportional to voxel volume (Lazar, 2008); thus, an increase in the fMRI spatial resolution will
correspond to a lowering of the SNR, making the Gaussian distributional approximation for the magnitude data less
tenable.

Following this justification, previous work has demonstrated disadvantages of Gaussian-based modelling for simulated
low-SNR, Rice-distributed time-course sequences. For instance, Solo & Noh (2007) reported that Gaussian-model-
based maximum likelihood estimates (MLEs) of Ricean parameters are increasingly biased as the SNR decreases.
Further, den Dekker & Sijbers (2005) presented a Ricean-based likelihood ratio test (LRT) for activation with higher
detection rate than a Gaussian-based LRT at low SNRs, and the difference in detection rates increases with decreasing
SNR. Further, the paper argues that the Gaussian-based LRT “should never be used” for fMRI time series with SNRs
below 10 because its false detection rate is non-constant as a function of SNR. In a similar vein, Rowe (2005) derived
a Ricean-approximated-based LRT statistic that has higher mean values than its Gaussian counterpart. More recently,
Noh & Solo (2011) have shown that while the asymptotic power function of the Gaussian-based LRT depends on
activation-to-noise ratio but not SNR, the corresponding Ricean power function appropriately depends on both.

In this paper, we argue however that the studies reported by both den Dekker & Sijbers (2005) and Rowe (2005),
which provide influential evidence in favour of Ricean modelling of fMRI data, make assumptions and approximations
that put their results into question. For one, den Dekker & Sijbers (2005) assumed that the noise variance is known and
constant across all voxels when, typically, it is estimated separately for each voxel time series (Friston et al., 1995).
Additionally, Rowe (2005) relied on a Taylor-series-based approximation of the Rice distribution, which we argue does
not use the exact Rice distribution and does not yield optimal tests. We note that the assumptions of den Dekker
& Sijbers (2005) or of Rowe (2005) are not needed when the expectation—-maximization (EM) algorithm (Dempster
et al., 1977) is applied to the ML estimation of Ricean parameters (Solo & Noh, 2007; Zhu et al., 2009), which we
make practical through the incorporation of Newton—Raphson (NR) steps into the EM calculations. However, a study
comparing Ricean-based LRTs computed by this EM scheme to Gaussian-based LRTs is missing from the literature.

In this paper, we develop and report results on an updated and thorough simulation study comparing Ricean-model-
based and Gaussian-model-based LRTs for activation in low-SNR magnitude fMRI data, using testing schemes that
rely on the assumptions (den Dekker & Sijbers, 2005; Rowe, 2005) discussed earlier as well as those that do not
make these assumptions. Competing LRTs in these two sets of scenarios are described in Section 2, where we also
discuss methods that can more effectively evaluate their performance. We analyse a real fMRI dataset in Section 3 to
provide motivation and context behind our investigations. Section 4 presents the simulation study and evaluates and
discusses the results. We conclude in Section 5 with some concluding remarks on the implications of the findings in
this paper on current fMRI practice.
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Methodological development

We focus on an individual (voxel-wise) time-course sequence of magnitude measurements at a voxel, which we
denote by r = (ry,r2,...,rn), with n being the number of scans. (In this paper, we denote scalar quantities using
regular mathematical fonts; vectors and matrices are boldfaced.) As discussed in Section 1, each measurement is
computed as the magnitude r; = ,/yﬁw +y§yt, t =1,2,...,n, of the real and imaginary measurements yy : and
Yx.t, respectively. Upon extending findings in Wang & Lei (1994) and Sijbers (1998), it is easy to see that these
complex-valued measurements are well modelled as yy ¢ = x;8C0s 0 + nx ¢ and ys: = x;B sin 6 + nx¢, where x; is
the tth row, t = 1,2,...,n, of an n x g design matrix X, 6; is the phase imperfection, and ng ¢, ns¢ ~ iid N (0,02)
random variables. The Ricean probability density function (PDF) of r; results from transforming the PDF of (ys ¢, ¥x.t)

to the magnitude-phase variables (r:, ¢:), where ¢; = arctan (ys.:/ys,t), and “integrating out” ¢, which takes
the form
2 _ It 4+ &g\ [* 1 rt(x;8)
f(f[|ﬂ,0' ) = a—zexp {—T . gexp 02 COS(¢t—9t) d¢t, (1)

for rr = 0, x;8 > 0, and 0% > 0. The integral expression in (1) is equivalent to Io(rtxgﬂ/oz), with lo(-) being
the modified Bessel function of the first kind and the zeroth order (Abramowitz & Stegun, 1965). Thus, following
common notation for (1), we have that r; ~ Rice (x;ﬂ, 0), where the first parameter defines the deterministic signal
level and the second defines the noise level; the definition of the SNR is accordingly x;8/0. We note that the two
parameters x;8 and o are not the mean and the variance of the Rice distribution whose first two moments are
E(r;x,8,02) = V702 2Ly (—(X,B)%/202) and E (r%;x,B8, 02) = (x;8)° +202 (Zhu et al., 2009), where the Laguerre
polynomial Ly, (X) = exp(—x/2) [(1 —x)lo(—x/2) —xl;1(—=x/2)] and |, (:) is the modified Bessel function of the first kind
and the first order (Abramowitz & Stegun, 1965).

2.1. Models for magnitude fMRI time series

In this section, we present the models and associated LRTs for activation that we will compare in our investigations.
Our treatment here assumes temporal independence of the magnitude time series, for example, after prewhitening.
To differentiate the signal and noise parameters, B and o2, respectively, and the LRT statistics A for the different
models, we attach identifying subscripts—note, of course, that the design matrix X is the same for each model. The
activation test posits Ho : CB = 0 (not activated) against H, : C8 # 0 (activated). We next illustrate the calculation of
the restricted and unrestricted MLEs to correspond to the maximization of the likelihood function under the null and
the alternative: note that in all cases, the LRT statistics follow asymptotic X,zn null distributions under all models, with
m = rank(C).

2.1.1. LRTs under Gaussian modelling We begin with the Gaussian model, widely used in fMRI (as elsewhere)
because of its ease of application and the added fact that Ricean-distributed magnitudes are approximately Gaussian
distributed at high SNRs. In this setting, r = XBg + €, where the error term € ~ N(0,02/,) with I, denoting

the identity matrix of order n. Unrestricted MLEs for the parameters B, and o2 are B; = (X’X)_IX’r and 67 =

A / A ~ A — p—
(r—XﬂG) (r —XﬂG) /n, while the restricted MLEs are B; = W B, where ¥ = I, — (X'X) ' [CX'X)~'C'] ', and
&2 = (r—XBg) (r—XBg) /n. As usual, the LRT statistic is given by Ag = nlog (52/62).
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2.1.2. LRTs under the Rice model The Rice model is given by r; ~ indep Rice (x;8z,03),t = 1,2,...,n, and following
(1) has log-likelihood function (Rowe, 2005)

n 2 / 2 /
logL (B, 07Ir) = Z |:Iog(rt/o§) — rt—'_z(#zﬂ’?) + logly (M)] . (2)
t=1 Or Or

Using the Gaussian-model estimates as starting values, we propose calculating MLEs with a hybrid scheme that

utilizes both EM and NR iterations (MclLachlan & Krishnan, 2008), thus capitalizing on the stability of the former
algorithm and the superior speed of convergence of the latter. Under unrestricted maximization, EM iterates update the

A A — A ~ A~ 4 — A
kth step estimates B5” and 62® to o " = (XX)"' Xa% and 526D = [r’r— (X’u(k)) Xx)~" (X/u(k))] /(2n),
respectively, where a% is a vector of length n with tth entry ﬁfk) = rA (x;ﬁ,(?k)rt/c?;(k)), t=1,2,...,nand A(-) =

I1(-)/1o(-) (Solo & Noh, 2007). Under restricted maximization, EM updates are provided by B,(?Hl) =V (X’X)_IX’&(")

/
and 52D = |:r’r— (X’[l(k)) w(x'x)"! (X’&(k))} /(2n), where W is as defined before in Section 2.1.1. and &

has tth entry Ot(k) = rA (xgﬁ,(?k)rt/&g(k)), t=1,2,...,n. The NR iterations are derived from (2) using the derivative
forms 15(-) = 11(-) and A’(x) = 1 — A(X)/x — A%(x), for x # 0, A’(0) = 0.5 (Schou, 1978). In our implementation,
we used a hybrid scheme with up to 1000 EM iterations, which brought about convergence—as measured by the
change in (2)—in most cases. In case our algorithm had not converged by then, as was the case (only) for very
low-SNR data (i.e. data with SNR < 1.5), we followed these EM iterations with a combination of NR and EM
iterations to speed up convergence. An additional difficulty in the low-SNR case is that the constraints x;8; > 0,
t = 1,2,...,n are harder to enforce and require quadratic programming methods. In all cases, the LRT statistic
is given by Agp = 2 [ER (ﬁR,c},%> — LR (BR,(%,%)], where {g(-,) is shorthand for (2). We conclude discussion in this
section by noting, as in (Solo & Noh, 2007), that the Gaussian and Ricean estimates for g differ only by the “weight”
function A(-). Also, as A(z) 1 1 as z 1 oo and the argument increases with SNR, Solo & Noh (2007) recommended
using A(,atrt/&z) as an indicator of whether measurements represent low or high SNR and whether the normal
approximation is appropriate.

2.1.3. Alternate approximate LRT derivations As mentioned in Section 1, den Dekker & Sijbers (2005) derived
Gaussian-model-based and Ricean-model-based LRT statistics under the assumption of known noise parameters.
Notationally, we add asterisks to the parameters and LRT statistics under this assumption to distinguish them from
their counterparts under estimated noise. For the Gaussian model, ﬁ; = [BG and ﬁz = ﬁG, and the LRT statistic is
given by

AL = [(r_xﬁg) (r—xﬁg) — (r—x[sG) (r—XﬁG)} Ja2*, 3)
where ag* is the assumed variance. For the Ricean model, we calculate MLEs via an EM-NR hybrid scheme similar to
the estimated variance case, except that a,%*, the assumed (known) value of the Ricean noise parameter, is substituted
for all iterates by 2% and 52®. The LRT statistic is given by A% =2 [ZR (/},’;,ag*) —{g (B; o,%*)].

The alternative “Taylor model” approach of Rowe (2005) approximates the Rice distribution by replacing the cosine
term in (1) by the first two terms of its Taylor-series expansion. The paper illustrates an iterative approach for max-
imizing the resulting loglikelihood, but in our investigations, we find that it does not produce exact MLEs. So we

utilize NR iterations instead. In addition, we find that the Taylor-model “PDF"” does not integrate to one for low-SNR
parameter values as shown in Figure 1. Although this is cause for concern, for comparability with other published
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Figure 1. Integrals of Taylor, Gaussian, Ricean and truncated-Gaussian PDFs over positive support for different signal
parameters p and noise parameter 02 = 1.0.

Table I. Summary of the models and LRT statistics presented
in Section 2.1.

LRT statistic Model description

Ag Gaussian model with estimated variance

Ar Ricean model with estimated noise parameter
AZ Gaussian model with assumed known variance
Af Ricean model with assumed known variance
At Taylor model

A1g Truncated-Gaussian model

studies in the literature, we do not correct for this shortcoming in calculating the LRT statistic A7. Further, because
the Gaussian distribution also does not integrate to one over positive support, with the discrepancy especially acute
at low SNRs, we also consider a Gaussian model truncated at zero and normalized to integrate to one, with PDF
f (1 Bro, %) = @)~ 207g exp |~ (re = xiBrs)” /(20%) | [1 = ® (—xXiBra/076) | ", for re = 0, where () is the stan-
dard normal cumulative distribution function. The LRT statistic under this model, A7g, can be computed using NR
iterations. Table | provides a ready summary and reference of the different models and LRT statistics presented in this
paper. We now discuss methods of evaluating these statistics.

2.2. Methods for evaluating activation statistics

We utilize three criteria in evaluating the LRTs. The first two are the rates of true and false (activation) detection—the
rates of rejecting the null Hy when it is in fact false and true, respectively. We compute the true and false detection rates
from time series simulated under H, and H,, respectively; in both cases, for a significance level «, the detection rate is
the proportion of LRT statistics greater than the (1 — @)th x2 quantile. The third criterion, the area under the receiver
operating characteristic curve, or AUC, considers both null and alternative statistics at all significance levels. Denoting

isti _ " k)" i
the kth-model test statistics, k = 1,2,...,m, computed under Hy and H, as {TO, } and {Taj } X respectively,
/=

=1
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Bamber (1975) computed the AUC as % = L350 32 (rg? < T;f’), where the indicator function /(B) is 1
if B is true and O otherwise. A test with higher AUC has greater ability to discriminate statistics computed under Hq
and H,, as the AUC above can be thought of as the proportion of null-alternative statistic pairs in which the rule
/(T(()f) < TES]’O) discriminates the null and alternative statistics correctly. DelLong et al. (1988) developed significance

tests for comparing AUCs based on the fact that the sample-based AUCs 7 = (+(V, 2@ ... (™) are asymptotically
normal, unbiased for the population AUCs = and have covariance matrix S. As a result, the test Hy : ® = @
versus H, : T® # t( has the common z-score test statistic z*) = ® — )/ /e/ Sey, which asymptotically, under
the null, has a standard normal distribution, with ey as a vector of length m with zeroes at all the coordinates but
for the kth and /th positions, which are 1 and —1, respectively. To evaluate the six LRTs in our simulation study,
we first disqualify any with false detection rates that deviate significantly from the nominal significance level. Then
for each two-way comparison of the remaining tests, we compute nj, replicates of the z-statistic (z(k’)) based on

(k/)}”b

ny batches of ng + n, simulated time series. The proportion of significant z-statistics {zb at the o, level is

P = (1/np) ZZ‘;II<|ZE)”)| > Zl—a1/2): where z, is the yth quantile of the standard normal distribution. Under

Ho : t1® = 7D nyp®) follows a Binomial(ny, a1) distribution. Thus, we conclude that tests k and / are significantly
different at the o, level if p*) > Ui-a,, the apth upper quantile of the Binomial(ny, «;) distribution divided by np.

A motivating example: detecting activation in a finger-tapping
experiment

We motivate our simulation study by analysing a commonly performed bilateral sequential finger-tapping experiment.
The data are from Rowe & Logan (2004) and have been preprocessed as detailed in that paper.

In this case, the MR images were acquired while the (normal healthy male) volunteer subject was instructed to either
lie at rest or rapidly tap fingers of both hands at the same time. The fingers were tapped sequentially in the order of
index, middle, ring and little finger. The experiment consisted of a block design with 16 seconds of rest followed by
eight “epochs” of 16 seconds tapping alternating with 16 seconds of rest. MR scans were acquired once every second,
resulting in 272 images. For simplicity, we restrict attention to a single axial slice through the motor cortex consisting
of 128 x 128 voxels. In our study, steady-state magnetization was not achieved until at least the fourth time point: to
guard against lingering effects, we delete the first 16 images and analyse the dataset based on a time-course sequence
of the remaining 256 images. Magnitude time-course sequences at each voxel were fit using the Gaussian and Ricean
models with estimated noise parameters presented in Section 2.1. The design matrix X contained three columns:
an intercept representing the baseline MR signal level, a +1 square wave (lagged five points from the stimulus time
course) representing the BOLD contrast and an arithmetic sequence from —1 to 1 representing linear drift in the MR sig-
nal. Correspondingly, B = (Bo, B1, B2) represents the size of the baseline, activation and drift effects, respectively. As
only B, is activation-related, the activation test is Hy : f1 = 0 versus H, : 81 # 0, and the LRT statistics have X% null
distributions. Figure 2 displays images—aligned with anatomical contour plots—of the Ricean model estimates of the
noise parameter o, its standard error and the ratios (8o, 81, B2) /0, i. e. the SNR, contrast-to-noise (CNR) and drift-to-
noise (DNR) ratios, respectively. (We consider such ratios instead of g itself because fMRI data is unitless.) First, we
note that the varying estimates of o shown in Figure 2(b), whose variation cannot alone be explained through the stan-
dard errors in Figure 2(c), are at odds with the assumption of a known (and thus constant) noise parameter as made in
den Dekker & Sijbers (2005). We use the estimated SNRs, CNRs and DNRs in developing representative fMRI simu-
lations in Section 4. We note that the SNRs for the finger-tapping dataset are above 10, a region for which den Dekker
& Sijbers (2005) claimed that Gaussian and Ricean activation tests should not have significantly different results. Our
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Figure 2. Images concerning the finger-tapping experiment presented in Section 3. (a) Anatomical image, which is shown
as a contour plot in (b)-(f). (b), (c) Images of the estimated noise parameter 6 and its standard error. (d)—(f) Images of the
signal-to-noise, contrast-to-noise and drift-to-noise ratios, respectively.
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0.00

(a) Gaussian model (b) Ricean model

Figure 3. Activation maps of g-values under (a) Gaussian and (b) Ricean LRTs.
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results support this claim. In fact, the largest absolute difference between the voxel-wise Gaussian-model-based and
Ricean-model-based LRT statistics is less than 0.002. As a result, the Gaussian-based and Ricean-based
activation maps shown in Figure 3—which consist of g-values, the analogue of p-values in false discovery rate
thresholding (Benjamini & Hochberg, 1995; Storey, 2002)—are essentially identical. The largest absolute difference
between the voxel-wise Gaussian-based and Ricean-based g-values is 1.1 x 107,

Experimental evaluations

We assume that the simulated fMRI magnitude time series are generated from a block-design experiment such as that
analysed in Section 3. The time series follow r; ~ indep Rice (xl(ﬂ, 02), t=1,...,256, where the design matrix X has

S

SNR SNR SNR

(a) Bias(Bo) (b) Bias(B1) (c) Bias(6?)

Bias

00 02 04 06 08 10
. .
Bias

-0.15 -0.10 -0.05 0.00
Bias
-0.5 -0.3 -0.1 0.0

Standard Error
0.10 0.20
Standard Error
0.05 0.10 0.15
Standard Error

005  0.10 0.15

0.00
0.00
|
0.00

SNR SNR SNR

(d) SE(Go) (e) SE(B1) (f) SE(6%)
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| |

RMSE
00 02 04 06 08 1.0
RMSE
0.05 0.10 0.15
RMSE
02 03 04 05

0.00
L

o

1 2 3 4 5 1 2 3 4 5 1 2 3 4
SNR SNR SNR
(9) RMSE(Bo) (h) RMSE(B1) (i) RMSE(6?)

Figure 4. (a)—(c) Biases, (d)—(f) standard errors (SE) and (g)—(i) root mean squared errors (RMSE) of the unrestricted MLEs

under each model plotted against SNR. The models are labelled in (a) as in Table I. Note that estimates for the Gaussian
model with assumed variance (G*) are not shown because they coincide with other models: that is, ,32 = BG and of =op.
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the same columns as before. We fixed the noise parameter 62 = 1.0 across all simulations for easy interpretation of
the SNR, CNR and DNR. As in den Dekker & Sijbers (2005), we assume that 0* = 03* = o> = 1.0. After applying
each of the six models discussed in Section 2, we examine the parameter estimates in Section 4.1. and evaluate the
activation statistics in Section 4.2.

4.1. Properties of parameter estimates

Figure 4 shows plots of bias, standard error and root mean squared error (RMSE) against SNR for the MLEs of 8y,
B1 and o2 (B, is generally not of interest, and consequently not estimated, in typical fMRI experiments) under each
model, which are based on 100,000 simulated time series at each of gy = 0.2,0.4,...,5.0, with §; = 0.2 and
B> = 0.0. Overall, we note that the MLEs under each model differ most at low SNRs; however, as the SNR increases,
their properties become more similar. Denoting the parameter vector by @, we note that the Ricean-model MLEs 0r
and 9; show the least amount of bias; the Gaussian-model MLEs 9(;, éz and 9TG show the most; and the biases

©
S S
o) 237
T s °
X o | o
5° 54
B gs]
2 <
a° a
"
3« 88 — Ac Ac
S £ Ar Ar
— AR" — Arc
o | 8 4
S T T T T T S T T T T T
1 3 5 1 3 5
SNR SNR
(a) True detection rate (b) False detection rate

Figure 5. (a) True and (b) false detection rates of the different LRT statistics, according to an « = 0.05 significance level,
plotted against SNR. The legend in (b) follows Table I. In (a), the lines for Ag and A are not visible because they coincide
with the line for Ar;.

Variance of Rice(u, 1)

Figure 6. The variance of the Rice(u, 1.0) distribution plotted against u (or alternatively, SNR), with estimates of the middle
95% of the distributions of 65 (obtained from simulation) at © = 0.0,0.5,...,5.0. A horizontal line at aGZ* = o,% =1.0is
given for comparison.
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of Taylor-model MLEs are in between. This result should not be surprising because the Ricean model parameters
correspond exactly to those of the generated data, while those in the Taylor and Gaussian models correspond only
approximately. However, there seems to be a trade-off between the bias and variance of the estimates, as the Ricean-
model MLEs (which are numerically calculated) show larger standard errors than the Gaussian-model MLEs (which
are analytically obtained in closed form). The results for the RMSE, which encompasses both bias and variance, are
mixed: for instance, the MLEs ﬁOR and 6,% have the lowest RMSEs of all models, but ﬁlR has the highest RMSE.

4.2. Evaluation of activation tests

Figure 5 shows plots against the SNR of the true and false detection rates of the LRT statistics for each model for a
significance level of @ = 0.05, which are based on 100,000 simulated time series at each of 8o = 0.2,0.4,...,5.0,
with 81 = 0.2 and 0.0 (for true and false detection, respectively) and 8, = 0.0. As seen in den Dekker & Sijbers
(2005), the true detection rates of A are greater than A with a difference that increases with decreasing SNR; also,
as noted in the paper, the false detection rates of A7 fail to adhere to the significance level and are not constant with
SNR. However, results differ for their counterparts with estimated variance parameters: the true detection rates of Az
and Ag are more comparable, and the false detection rate of Ag is closer than A to @ = 0.05. We attribute the
aforementioned differences to the assumption 05* = a,%. When the Gaussian model is applied to the simulated Rice-
distributed data, og represents the variance of the Rice-distributed data, which, as discussed in Section 2, differs from
the Ricean parameter og. To illustrate, we plot the variance of the Rice(u, 1) distribution and the middle 95% of the
estimates 67 for simulated Rice(y, 1) data for different u in Figure 6. At low SNRs, the estimates 67 are smaller than
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Figure 7. Plots of p%Ae), k = Ag, A%, Arg, for an oy = 0.05 significance level, against SNR for the various activation (1)
and drift (82) levels; for comparison, we display Ug.99, the upper 99% quantile of p*46) under AUC equality.
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the assumed value og* = a,%. Because og* is over-specified at low SNRs, by the form of (3), A; takes lower values
than Ag, which results in the former’s lower true and false detection rates. Further, as suggested by Rowe (2005), the
true detection rates of At are greater than Ag. However, this may be explained by the former’s higher false detection
rate, perhaps because of the improper Taylor-model PDF, which prevents A7 from being a usable test.

The true and false detection rates of Ag and Ayg are similar at low SNRs so that it appears that the impropriety of
the Gaussian-model PDF may not be an issue then. We see no similar problems with the Gaussian-model PDF at low
SNR, which also has a higher false detection rate than Ag, perhaps because the Taylor-model PDF does not integrate
to one. As a result, Ay, like Ag, is not a usable test. Because the false detection rates of A7 and A7 fail to adhere to
significance level, we remove these tests from further discussion.

We evaluate the remaining LRTs using the AUC-based analysis described in Section 2.2. Because the Gaussian model
is most commonly used in practice, we use it as a baseline, computing z*4¢) for k = Ag, Az, Arg. We compute
ny = 160 batches of z-statistics, each based on ng = n; = 1000 null and alternative LRT statistics, at SNR levels Sy
from 0.2 to 5.0, activation levels 8; = 0.1, 0.2 and 0.3, and drift levels 8, = 0.0 and 0.2.

Figure 7 plots p*2¢), k = Ag, A%, Arg, for ¢y = 0.05 against SNR for the various activation and drift levels and
displays Ug oo for comparison. At all activation/drift levels and SNR < 0.6, p®A¢) < U4, indicating that the
AUCs of the Rician-model-based and truncated-Gaussian-model-based LRTs are not significantly different from the
Gaussian LRT.

Conclusion

In this paper, we have studied the effects of Gaussian and Ricean modelling of low-SNR fMRI magnitude time
series. Noting that previous studies showing improved performance of Ricean-based activation tests were based on
assumptions and approximations, our simulation study included both these previous tests and tests that we developed
further and removed the assumptions. It became apparent that some of the previous comparisons of Ricean-based
and Gaussian-based tests were flawed. Specifically, we argue that the Gaussian-based test in den Dekker & Sijbers
(2005) is based on an incorrect assumption and that the Ricean-approximated test in Rowe (2005) is not usable
because its false detection rate is incompatible with its desired significance level. After addressing these issues, we
found that the performances of Ricean-model and Gaussian-model activation tests, as measured by the AUC, are
significantly different at SNRs much lower than earlier results indicated (SNR < 0.6 versus 10.0), perhaps too low a
range for Ricean-based activation tests to be practically beneficial. Therefore, based on the Gaussian model’s simple
implementation and low computational expense, we recommend it over the Ricean model at all SNR for activation
tests based on fMRI magnitude time series.

A few comments are in order. We note that our simulation experiments have used prewhitened time series and
then proceeded with the testing under assumptions of independence. This is not just a matter of simplicity but also
because parameter estimation of the time series under the Ricean model remains intractable. It would be of interest
to see if suitable estimates of Ricean time series can be developed. However, there is some reason to doubt that our
recommendation will be overturned, given our findings on how much lower SNRs have to be than seen in fMRI, as
currently practiced, for Ricean-based tests to have a clear preference over the Gaussian-based ones. A second, but
important, issue involves the (sometimes ad hoc) preprocessing that is often performed in real-world fMRI experiments
(such as in Section 3) to account for distortions owing to bias fields, imaging modality used, scanner drift, subject
motion, physiological factors and so on (Buxton, 2002; Lazar, 2008). There are thus several steps, such as slice timing
correction and image registration, that are performed on the acquired (raw) Rice-distributed magnitude data. While
these preprocessing steps are difficult to capture in a simulation setting, we note that many of the common corrections
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(e.g. registration) are essentially linear so that the resulting data are really linear combinations of Rice-distributed
data. However, given that our idealized simulation scenario does not recommend Ricean modelling over Gaussian
modelling, it is unlikely that our findings will be overturned in a situation where the (preprocessed) data are (mostly
linear) transformations of the raw acquired magnitude measurements. (This is because, as commonly known, linear
transformations respect the Gaussian distribution: for other transformations, this relationship is asymptotic—upon
appealing to the Delta method.) Finally, we note that our tests have been framed in the context of fMRI as currently
practiced. We have not discussed the recommendations of Nan & Nowak (1999) or Rowe & Logan (2004) who have
argued for fMRI analysis using both the magnitude and phase information in the original acquired data. It would be
interesting to include an analysis using these models. Thus, we see that while we have a clear recommendation in
favor of the Gaussian model for fMRI as currently practiced, a few issues meriting further attention remain.
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