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Functional magnetic resonance imaging (fMRI) data generally consist of
time series image volumes of the magnitude of complex-valued observations
at each voxel. However, incorporating dependence and the Rice distribution –
a more accurate model for the data – in the time series have been separated by
a distributional “mismatch” because fMRI time series are currently modeled
by Gaussian-distribution-based extensions to the general linear model, which
precludes its use under Ricean modeling. We bridge this gap by applying
pth-order autoregressive (AR) errors to the latent, Gaussian-distributed real
and imaginary components from which the Ricean-distributed magnitudes
are computed by augmenting the observed magnitude data with the missing
phase data in an Expectation-Maximization (EM) algorithm framework. Af-
ter parameter estimation via the EM algorithm, we compute AR order and test
statistics for activation detection. Using simulated and experimental low-SNR
fMRI data, we compare the performance of this Ricean time series model
with those under the Gaussian AR(p) model, and also models on the entire
complex-valued data. Our results show improved parameter estimation and
activation detection, under the Ricean AR(p) model than its Gaussian coun-
terpart. Further, models analyzing the complex-valued data detect activation
better than magnitude-only models but only because they have more data and
allow for incorporating nonspherical covariance structure. Thus, while our
results here provide for the improved analysis of archived magnitude-only
fMRI data, they also argue strongly against the currently routine practice of
discarding the phase of the complex-valued fMRI time series, advocating in-
stead for their inclusion in the analysis.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a promi-
nent non-invasive modality for studying human brain function. It is built upon
the principle of the Blood Oxygen Level Dependent (BOLD) contrast (Bandettini
et al., 1993; Belliveau et al., 1991; Kwong et al., 1992; Ogawa et al., 1990), where
firing neurons lead to changes in the blood oxygen levels of neighboring vessels,
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and the magnetic resonance (MR) signal fluctuates due to the differing magnetic
susceptibilities of oxygenated and deoxygenated hemoglobin (Lazar, 2008). Sci-
entists can gain insight on the functional structures of the brain by analyzing time
courses of MR signals acquired while a subject performs a designed series of tasks.

The voxel-wise MR signal at each time point is originally complex-valued, con-
taining real and imaginary (or equivalently, magnitude and phase) components.
This complex-valued attribute is a consequence of how the data are acquired: the
originally measured, complex-valued k-space data (Brown, Kincaid and Ugurbil,
1982; Ljunggren, 1983; Tweig, 1983) consist of the different frequency contribu-
tions to the signal from each voxel resulting from magnetic field gradients (Jez-
zard and Clare, 2001). Then, the application of the inverse Fourier transform (Jain,
1989), a complex-valued operation on the k-space data, separates these frequen-
cies and localizes each voxel’s measurements. However, despite the fact that the
original signal is complex-valued, statistical analysis of fMRI data is almost al-
ways only on the magnitude data, with the acquired concomitant phase discarded.
We refer to such analyses as “magnitude-only” (MO) statistical analyses, and note
that this approach likely arises as a consequence of the default output of MR scan-
ners that does not routinely include phase images, even though they can easily be
collected by simply changing a preset variable in an input file (Yu et al., 2018).
Consequently, most fMRI data and analyses are MO, and, at least figuratively, do
not use half of the originally available data.

One of the most common forms of MO analysis fits, at each voxel, a general lin-
ear model (Friston et al., 1995) for the (preprocessed) time series observations in
terms of a waveform representing the expected BOLD contrast. This waveform is
the convolution of the stimulus time course with the hemodynamic response func-
tion (HRF), which gives the BOLD response to an instantaneous neuronal activa-
tion (Friston, Jezzard and Turner, 1994; Glover, 1999). These general linear mod-
els for magnitude fMRI time series also incorporate autoregressive (AR) (Bullmore
et al., 1996; den Dekker et al., 2009; Marchini and Ripley, 2000) or autoregressive
moving average (ARMA) (Locascio et al., 1997) errors, due to several reasons.
For one, the hemodynamic response to a single neural activation takes between 15
and 20 seconds (Lazar, 2008), which is much longer than the sampling intervals of
many fMRI techniques — for instance, of between 100 milliseconds and five sec-
onds for echo-planar imaging (EPI) techniques (Friston, Jezzard and Turner, 1994).
Additional sources of autocorrelation are also provided by the subject’s cardiac
and respiratory cycles (Friston et al., 2000), and by the common pre-processing
step of temporal smoothing. From these model fits, the time series at each voxel is
aggregated to a test statistic that measures the degree of activation, in the Statisti-
cal Parametric Mapping (SPM) framework of Friston et al. (1990). Thresholding
methods are then applied to the SPM to identify activated voxels (Genovese, Lazar
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and Nichols, 2002; Logan and Rowe, 2004; Worsley et al., 1996).
The above MO approaches assume that the magnitude measurements follow a

Gaussian distribution. However, it is well-known (Wang and Lei, 1994) that the
complex k-space data are Gaussian distributed, and this distributional assumption
is also preserved, by linearity, upon applying an inverse Fourier transform. Specif-
ically, it is commonly assumed (Wang and Lei, 1994) that the real and imaginary
measurements are independent normal random variables with the same variance
and phase-coupled means, it follows that their magnitudes have a Rice distribu-
tion (Gudbjartsson and Patz, 1995; Rice, 1944). In general, MR images simulta-
neously acquired from multiple independent coils (Tristán-Vega, Aja-Fernández
and Westin, 2012) can be shown to follow the non-central χ-distribution, with
degrees of freedom equal to twice the number of coils (Wegmann, Eklund and
Villani, 2017). The Rice distribution is the special case of a single coil and two
degrees of freedom. The Gaussian MO model may be justified by the fact that the
Rice distribution approaches the Gaussian distribution for large signal-to-noise ra-
tios (SNRs). For magnitude fMRI time series, the SNR represents the ratio of the
mean, that is, the non-activation-related, baseline signal to the standard deviation
(SD) of the noise time series. There is also the contrast-to-noise ratio, or CNR,
that is the ratio of the amplitude of the BOLD contrast to the noise SD. However,
low-SNR fMRI data may occur in studies having small voxel sizes or voxels with
a large degree of signal drop-out, such as those located near air/tissue boundaries.
Out of this concern that the Gaussian assumption may not be adequate for such
low-SNR data, Zhu et al. (2009) developed Rice-distributed models that ignored
temporal dependence in the voxel-wise time series. Also, Solo and Noh (2007)
demonstrated that Gaussian-model-based maximum likelihood (ML) estimates of
parameters for simulated Ricean data are biased for SNRs under 5, with the bias in-
creasing as the SNR decreases. However, Adrian, Maitra and Rowe (2013) showed
that Rice- and Gaussian-model-based likelihood ratio tests for activation reported
similar performance for SNRs as low as 0.6 in the absence of correlation in the
time series.

A different approach utilizing the complex-valued (CV) data (that is, using both
magnitude and phase data) has shown to have several advantages. Rowe and Logan
(2004) introduced a general model for CV fMRI time series and showed through
simulation that MO data-based activation tests have a substantial drop of power at
SNRs below 3 while corresponding CV data-based tests have constant (and higher)
power over all SNRs. Adrian, Maitra and Rowe (2018) demonstrated how to fit an
extension of the Rowe and Logan (2004) model incorporating AR(p) time depen-
dence and a general covariance structure for the real and imaginary errors. For
experimental data, this CV model showed greater activation power than a corre-
sponding Gaussian AR(p) MO model after spatial smoothing, but similar power
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when the data were not smoothed. This differential behavior was attributed to the
covariance structure of the two kinds of errors: while the unsmoothed data exhib-
ited a spherical covariance structure under the twin assumptions of independence
of real and imaginary errors and equal variances, the application of spatial smooth-
ing induced a non-spherical covariance structure. The MO model does not use the
necessary data to estimate the real/imaginary covariance structure; we will see in
fact that it assumes sphericity. Because sphericity was an adequate assumption for
the unsmoothed data, the MO and CV models performed similarly. However, the
MO model was a poor fit for the nonspherical smoothed data and had worse perfor-
mance than the CV model. Extensive simulations supported the better performance
of CV model-based activation detection for nonspherical data. Beyond this empir-
ical finding, the phase time series can be useful in the so-called “brain or vein”
problem, that is, in determining whether a voxel showing a task-related magnitude
change represents (desired) grey matter or (an undesired) draining vein (Hoogen-
rad et al., 1998; Menon, 2002; Rowe, 2005a). It has been shown that task-related
phase changes generally occur in the latter but not in the former.

In this paper, we explore some of the “missing ground” in these previous com-
parisons of fMRI time series models. Because the temporal correlation of fMRI
time series has been well-established, we use AR errors of general order p, in con-
trast to previous comparisons between CV, MO Gaussian, and MO Ricean mod-
els that assume temporal independence (Adrian, Maitra and Rowe, 2013; Rowe,
2005a; Rowe and Logan, 2004; Solo and Noh, 2007). Also, the comparison in
Adrian, Maitra and Rowe (2018) between the CV model with general (nonspheri-
cal) real/imaginary covariance and the MO Gaussian models, though both models
are based on AR(p) errors, is missing two “intermediate models” that would help
make it clear exactly which feature(s) of the CV model have the most impact. Be-
cause the model features of nonsphericity of the real/imaginary covariance, having
twice the quantities in CV versus in MO data, and not utilizing the Gaussian dis-
tributional approximation of the (truly Rice-distributed) magnitudes are all present
in the CV model but not the MO model in Adrian, Maitra and Rowe (2018), we
were unable in that paper to separate which of these three features contribute to the
CV model’s improved performance. By adding two intermediate models in this pa-
per, we are able to isolate each feature’s contribution in a more scientific approach.
One of these intermediate models models is a CV model that assumes a spheri-
cal real/imaginary covariance matrix (i.e., independence and homogeneity of the
real and imaginary errors at the same time-point). Comparing the nonspherical and
spherical CV models isolates the nonsphericity model feature. The other interme-
diate model is a MO model with a Ricean distribution, but one that also models
AR(p) temporal dependence in the errors. To our knowledge, this AR(p) Ricean
model represents a novel methodological development, as all previously developed
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Ricean models have assumed independent (or pre-whitened) time series. Compar-
ing the CV spherical model to this MO Ricean model isolates the feature that CV
data-based models have twice the quantities of MO models. Additionally, compar-
ing the MO Ricean and Gaussian models isolates the influence of Gaussian approx-
imation of the Rice-distributed magnitudes, and provides a fuller understanding of
the strengths and shortcomings of the MO analyses relative to the CV analyses.

The remainder of the paper is structured as follows. Section 2 introduces a series
of low-SNR images acquired from a finger-tapping experiment that is our motivat-
ing application. These images have a lower SNR than typical fMRI data due to
their being acquired with the body coil instead of the head coil, and their analysis
here is motivated by previous results that have indicated that CV model-based ac-
tivation tests perform better than their MO model-based counterparts at low SNRs.
Section 3 elaborates on the methodology behind the four models introduced above
and features the novel development of the MO AR(p) Ricean model. Section 4
performs simulation experiments to study the validity of the methodological re-
sults and compares the results using different models, under a known ground truth.
Section 5 presents the statistical analysis of the low-SNR dataset and its implica-
tions. We conclude with a discussion of the results and the paper. Our paper also
has a supplement containing additional details regarding methodology, the simula-
tion experiments, and the dataset analysis. Sections, figures, and equations in the
supplement are referenced here with the prefix “S-”.

2. A low-SNR fMRI finger-tapping experiment dataset.

1

2

3

4

Anat.

FIG 1. Anatomical image of the second
slice identifying the left central sulcus.

2.1. Data acquisition. We develop our
methods in the backdrop of a common sequen-
tial finger-tapping experiment. In our applica-
tion, MR images were acquired with TR = 1s
during a block design experiment with an ini-
tial 16s of rest followed by 19 epochs of 16s of
right-hand finger tapping alternating with 16s of
rest. Such finger-tapping experiments have ap-
plication in noninvasive neurosurgical prepara-
tion (Lee et al., 1999). Experiments that use fin-
ger tapping, sponge squeezing, or brushing of
the palms as stimuli in block design are used to
identify the location of hand function in candidate patients for resective surgical
treatment for tumors and epilepsy (Lee, Jack and Riederer, 1998). While it is well-
known that the central sulcus in the sensorimotor cortex is the location of hand
function for normal healthy adults (Rumeau et al., 1994), fMRI allows the “topo-
graphic relationship between a proposed surgical target and the location of specific
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functional areas” to be verified noninvasively (Lee et al., 1999). For our dataset,
due to the decussation of nerve fibers in the upper slices of the brain (Carpenter,
1991), it is expected that the right-hand finger tapping activates the left central
sulcus of the brain, which is identified on the second slice1 in Figure 1.

The data were acquired with the body coil. In general, the body coil has a large
measurement field, and thus has lower SNR than specialized coils such as the head
coil usually used in fMRI studies.2 This sort of acquisition provides us with a low-
SNR dataset of a well-studied experiment to serve as a marker for performance in
low-SNR settings, which is where CV, MO Ricean and MO Gaussian models have
been shown to diverge previously. Following standard practice, the first three im-
ages are excluded from our analysis due to machine “warmup” effects, leaving us
with a temporal sequence of n = 621 images. Each volume image was composed
of seven 2.5 mm thick 128× 128 axial slices with a 24.0 cm FOV.

2.2. Data processing pipeline. For this dataset, the phase components of the
time series images were not discarded but stored along with the magnitude images
used in traditional fMRI analysis. The data processing flow included Nyquist ghost
removal and correction for global zero-order off-resonance using three navigator
echos (Jesmanowicz, Wong and Hyde, 1993; Nencka, Hahn and Rowe, 2008), im-
age reconstruction from k-space by inverse Fourier transform (Kumar, Welti and
Ernst, 1975; Rowe, 2016), and estimation and correction of the dynamic field us-
ing temporal off-resonance alignment of single-echo timeseries (TOAST) (Hahn,
Nencka and Rowe, 2009, 2012). A binary mask of voxels above 12% of the max-
imum voxel signal magnitude was generated from the first magnitude image of
the dataset (before discarding the first three images) to represent voxels within the
brain. We also use the first magnitude image for the anatomical images on which
we overlay our activation maps. Figure 2 shows images of the real, imaginary,

−1.0
−0.5
0.0
0.5
1.0

Real

0.4

0.8

1.2

Mag.

−1.0
−0.5
0.0
0.5
1.0

Imag.

−3
−2
−1
0
1
2
3

Phase

FIG 2. Images (from top-left) of the real, imaginary, magnitude, and phase components of images in
the second slice at the 14th, 22nd, 30th, and 38th time-points (from left-to-right, within each image
data type).

1We focus on the second slice because we will see later that it shows the strongest activation.
2When specialized receive-only coils are used, the body coil serves as the transmit coil. More

recently, body coils have been used to acquire a separate reference image to obtain sensitivity maps.
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magnitude, and phase components of the second slice at the t = 14, 22, 30, 38
time-points, representing the first cycle of tapping and rest periods. These images
do not appear to change much in time because of the small amplitude of the BOLD
response relative to the level of the baseline signal. Figure ?? shows plots of the
real, imaginary, magnitude, and phase time series for one of the most strongly ac-
tivated voxels.

Two further “preprocessing” steps included detrending to correct for scanner
drift and spatial smoothing to increase the data’s SNR and CNR. Two sources of
drift are noise from the MR scanner and aliasing of cardiorespiratory cycles (Tan-
abe et al., 2002), and the magnitude of these changes “often far exceeds” both the
white noise and the amplitude of the task-related single change (Genovese, 2000).
Our study of the dataset’s time series suggests diverse, nonlinear shapes of drift
profiles, not only for magnitude time series such as those reported in Genovese
(2000), but for the real, imaginary, and phase time series as well. Figure ?? shows
the plot of such a time series and compares four methods for fitting the trend: the
CV running line (Adrian, Maitra and Rowe, 2018), a polynomial fit, a natural cubic
spline, and a smoothing spline. (See Section ?? for more detail.) We determined
that the smoothing spline was the preferred choice, but to study the robustness of
our choice, we used both the CV running line and smoothing splines in practice.3

An important last component of detrending CV time series is counter-rotating by
the mean phase, producing a mean phase of zero for all voxel time series; this cor-
rected for the global spatial differences seen in the real and imaginary components
of Figure 2 and produced a more cohesive dataset for spatial smoothing.

After detrending, the resulting real, imaginary, and magnitude images at each
time-point were spatially smoothed with 3-dimensional anisotropic Gaussian fil-
ters. Essentially, each measurement was recalculated as a weighted average of itself
and neighboring measurements, with the weights determined by a 3-dimensional
Gaussian distribution. We chose the filter to be anisotropic (i.e., direction-dependent)
because the intra-slice dimensions of the voxels is less than the interslice dimen-
sion; the standard deviation of the filter in each direction was chosen to be inversely
proportional to these dimensions. To study the robustness of the analysis to differ-
ent amounts of spatial smoothing, we used intraslice FWHMs of 1.5, 2, 3, and 4
voxels4, while noting that such values are typically between 3 and 10 mm FWHM
(Lazar, 2008). Thus, including the spatially unsmoothed datasets, we obtained a
total of five CV and MO datasets. Figure ?? shows images of the SNRs and CNRs
for the second slice using the different smoothing levels. We see that both the SNRs

3Indeed, the results were very similar for both detrending approaches, so we only present those
based on smoothing splines.

4FWHM is the full width at half maximum, the width of the smoothing filter at half of its maxi-
mum density.
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and CNRs increase with the amount of spatial smoothing, at the expense of spatial
resolution and specificity.

After all the preprocessing, the CV and MO models were applied to each voxel
time series. For each model, the design matrix X had n = 621 rows and q = 2
columns: one column was an intercept modeling the baseline MR signal and the
other was a zero-centered waveform modeling the expected BOLD repsonse given
by a convolution of the stimulus time course with the Glover (1999) hemodynamic
response function. The bottom panel of Figure ?? shows a superposition of the
block design stimulus time course with this expected BOLD response waveform.
The next section presents these CV and MO time series models in detail.

3. Methodological development. As discussed in Section 1, we compare four
models for fMRI time series in this paper with the goal of isolating the influence of
three model features on activation detection performance. However, one of these
models – the Rice-distributed autoregressive time series model – and its estimation,
needs development, and we use this section to also do so.

3.1. Statistical models for CV and MO time series. We first introduce nota-
tion, focusing on a single voxel (and suppressing voxel-related subscripts). The
CV measurement at time t can be denoted in real/imaginary form by yRt + iyIt
or in magnitude/phase form by rt exp (iϕt) = rt(cosϕt + i sinϕt). Trigonomet-
ric identities in the complex plane hold that yRt = rt cosϕt, yIt = rt sinϕt,
rt = (y2Rt + y2It)

− 1
2 , and ϕt = arctan4(yIt, yRt), the 4-quadrant arctangent (see

Glisson, 2011, Page 348) corresponding to arctan(yIt/yRt). We denote the real,
imaginary, magnitude, and phase time series vectors by yR = (yR1, . . . , yRn)

′,
yI = (yI1, . . . , yIn)

′, r = (r1, . . . , rn)
′, and ϕ = (ϕ1, . . . , ϕn)

′, with n denoting
the number of MR scans. The Rowe and Logan (2004) model states that

(1)
(

yR

yI

)
=

(
X 0
0 X

)(
β cos θ
β sin θ

)
+

(
ηR

ηI

)
,

where the expected magnitude response Xβ is coupled with the constant phase lo-
cation parameter θ. The columns of X represent various components of the mag-
nitude signal including the baseline level and the expected BOLD contrast. The
errors η = (η′

R,η
′
I)

′ ∼ N (0,Σ ⊗ Φ), where Σ and Φ are matrices of order
2 and n, specifying the real/imaginary and temporal covariances (the latter with
an AR(p) structure), and the direct (Kronecker) product ⊗ implies separability of
these covariances. An equivalent representation of (1) is by the magnitude and
phase activation model (Rowe and Logan, 2004),

(2)
(

yR

yI

)
=

(
CX 0
0 SX

)(
β
β

)
+

(
ηR

ηI

)
,
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where C and S are diagonal matrices of order n, having tth entries cos θt and
sin θt, t = 1, 2, . . . , n, where θt = δ0 + g(z′

tδ), with g(x) = 2 arctan(x). So β
models the magnitude-related activation and δ models the phase-related activation.
Based on this framework, we present four models:

1. Complex-valued AR(p) nonspherical (CVNS) model: Introduced in Adrian,
Maitra and Rowe (2018), this model takes the form of (1) with an AR(p)
structure for Φ and a general (nonspherical) Σ, allowing separate variances
for the real and imaginary errors — denoted by σ2

R and σ2
I , respectively —

and correlation ρ between the real and imaginary errors. We denote the AR
coefficients by α = (α1, . . . , αp)

′.
2. Complex-valued AR(p) spherical (CVS) model: This is a special case of

the CVNS model, with the restriction that Σ is spherical — that is, ρ = 0
and σ2

R = σ2
I ≡ σ2 (or Σ = σ2I2, where I2 is the identity matrix of order

2). Under this model, the lag-j autocovariances γj = Cov(ηRt, ηR,t−j) =
Cov(ηIt, ηI,t−j), j = 0, 1, . . . , p, are a useful reparameterization of α and
σ2, with the Yule-Walker equations (Shumway and Stoffer, 2006) serving as
an intermediary.

3. Magnitude-only AR(p) Ricean (MOR) model: This model is the MO (marginal)
counterpart of the CVS model; that is, under the MO Ricean AR(p) model,
the latent real and imaginary time series follow the CVS model. Under the
MOR model, the probability density function (PDF) of magnitude measure-
ments rt is

(3) f(rt;µt, γ0) =
rt
γ0

exp

[
−(r2t + µ2

t )

2γ0

]
I0
(
µtrt
γ0

)
,

where µt = x′
tβ, x′

t is the tth row of X , and I0(·) is the modified Bessel
function of the first kind and the zeroth order.

4. Magnitude-only AR(p) Gaussian (MOG) model: This model assumes r =
Xβ + ϵ, where ϵ follows an AR(p) structure.5

These four models are summarized in Table 1, which along with the three “model
features” lists the key ways that differentiate them. These features are as follows:

1. Nonsphericity: The CVNS model has the ability to model nonsphericity
in the covariance of the real and imaginary measurements, while the CVS
model assumes sphericity, that is, Σ = σ2I2. Because the MO models only
use the magnitudes, an aggregation of the real and imaginary measurements,
they do not currently have the ability to model nonsphericity.

5For brevity, the distinction between the notations of corresponding parameters in different mod-
els is dropped.
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Model features
Model Twice the Ricean

Model Abbrev. Nonsphericity Quantities magnitudes
CV Nonspherical CVNS ✓ ✓ ✓

CV Spherical CVS ✓ ✓

MO Ricean MOR ✓

MO Gaussian MOG
TABLE 1

Summary of the four models compared in this paper for complex-valued (CV) and magnitude-only
(MO) fMRI data and the features present in each model.

2. Twice the quantities: The CV data-based models use the real and imaginary
measurements at each voxel and time-point, while the MO data-based mod-
els use only the magnitudes, so the former models use twice the quantities of
the latter. (However, we note that this does not necessarily mean that twice
the amount of useful information is present in the CV over the MO data,
especially for our models of magnitude-related activation.6)

3. Ricean magnitudes: The MOR model assumes the magnitude measurements
are Ricean distributed, while the MOG model uses the Gaussian approxi-
mation. As previously discussed, the CVS model has marginally distributed
Ricean magnitudes. The magnitude distribution in the CVNS model (Aalo,
Efthymoglou and Chayawan, 2007) is more specialized, but because the
CVNS model does not assume Gaussian-distributed magnitudes, we will
consider this feature to be present.

Table 1 illustrates the sequential and hierarchical pattern of the three features present
across the four models. For instance, the CVNS and CVS models both contain the
twice the quantities and the Ricean magnitudes features, but differ in that the CVNS
model features nonsphericity while the CVS model does not. Thus, we can isolate
the influence of modeling nonsphericity (i.e., on parameter estimates, activation
detection, and so on) by comparing these two models. Similarly, comparing the
(CVS, MOR) and (MOR, MOG) model pairs separately allows us to isolate the
influence of the twice the quantities and Ricean magnitudes features.

3.2. Parameter Estimation. Of the four models introduced in Section 3.1, we
spend the most time on the methodology of the MO Ricean AR(p) (or MOR) model
due to its novelty; to our knowledge, this is the first development of a Ricean fMRI
time series model allowing for dependence between successive errors. The other
three models have seen more developed and so we refer our readers elsewhere for
further explanation. The CV AR(p) nonspherical (or CVNS) model was illustrated

6Rowe (2005a) introduces fMRI models that allow for activation in both the magnitude and phase
data.
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in Adrian, Maitra and Rowe (2018), and we relegate discussions of the CV AR(p)
spherical (CVS) and the MO Gaussian (MOG) models to Section ??, as both are
simplified cases of the CVNS model. In illustrating the methodology associated
with each model, we first assume a known AR order p; because this order is not a
priori known, we discuss methodology for order detection in Section 3.4.2. Also,
due to our overriding interest in comparing these models, we derive relationships
between the probability density functions (PDFs) of the CVS, MOR, and MOG
models in Section ??.

The methodology for the Ricean AR(p) model fits nicely into the framework of
the EM algorithm (Dempster, Laird and Rubin, 1977; McLachlan and Krishnan,
2008) with r, ϕ, and (r,ϕ) playing the roles of the observed, missing, and com-
plete data, respectively. And because the EM algorithm and its extensions serve as
our “workhorse” methodology for the Ricean AR(p) model, we review it briefly
here. An iteration of the EM algorithm consists of the Expectation (E-) and Max-
imization (M-) steps. At the (k + 1)th iteration, the E-step calculates the objec-
tive function Q(τ ; τ (k)) = Eϕ|r,τ (k) [log f(r,ϕ; τ )], the expectation of the com-
plete data log-likelihood with respect to the conditional distribution ϕ|r at the cur-
rent parameter estimates τ (k). The M-step calculates the updated parameter values
τ (k+1) = argmaxτ Q(τ ; τ (k)) by maximizing the objective function. We denote
the vector of parameters by τ = (α′,β′, σ2)′. The EM algorithm has well-known
favorable properties such as monotone increase of the likelihood for each itera-
tion and reliable global convergence (McLachlan and Krishnan, 2008). We next
illustrate the specifics of the EM algorithm that we use for ML estimation.

3.2.1. EM algorithm for ML estimation under the MO AR(p) Ricean model. To
compute starting values τ (0), we use the Gaussian AR(p) model as demonstrated
in Section ??. With the algorithm initialized, the E- and M-steps are as follow.

E-step. Borrowing from the representations of the AR(p) likelihood (Miller, 1995;
Pourahmadi, 2001), the complete data log-likelihood can be shown to be

(4) log f(r,ϕ; τ ) = −n log σ2 − log |Rn| − h/2σ2,

where h = α̃′Dα̃, with α̃ as the (p + 1)-vector (1,−α1, . . . ,−αp), and D the
(p+ 1)× (p+ 1) symmetric matrix with (i, j)th element

(5) dij =

n−i−j∑
t=1

[
rt+irt+j cos(ϕt+i − ϕt+j)− µt+irt+j cos(ϕt+j − θ)
−µt+jrt+i cos(ϕt+i − θ) + µt+iµt+j

]
,

where µt = x′
tβ, x′

t is the tth row of X . In view of (4) and (5), the E-step involves
two kinds of expectations: the univariate expectations E[cos(ϕt − θ)|rt; τ (k)], t =
1, . . . , n, and the bivariate expectations E[cos(ϕt−ϕt+j)|rt, rt+j ; τ

(k)], j = 1, . . . , p,
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t = 1, . . . , n−j. The univariate expectations are with respect to the von-Mises dis-
tribution (Mardia and Jupp, 2000) and can be shown (Section ??) to be

Eϕt|rt;τ (k) [cos(ϕt − θ)] = A(µ(k)
t rt/γ

(k)
0 ), t = 1, . . . , n,

where A(ξ) = I1(ξ)/I0(ξ), with Im(ξ) being the mth order modified Bessel func-
tion of the first kind (Abramowitz and Stegun, 1965) evaluated at ξ.

The bivariate expectations are more cumbersome to obtain. First, we reduce
Eϕt,ϕt+j |rt,rt+j ;τ (k) [cos(ϕt − ϕt+j)] to the univariate expectation

(6) Eϕt|rt,τ (k)

{
A(K(ϕt))

K(ϕt)
[κ cos(ϕt − θ) + δ]

}
,

where K(ϕt) = [κ2+δ2+2κδ cos(ϕt−θ)]1/2, κ = rt+j(γ
(k)
0 µ

(k)
t+j−γ

(k)
j µ

(k)
t )/b(k),

and δ = γ
(k)
j rtrt+j/b

(k), with b(k) = γ
2(k)
0 − γ

2(k)
j . (See Section ?? for more

details.) Because (6) cannot be evaluated analytically, we approximate it via the
Delta Method (Casella and Berger, 2002): E[f(X)] ≈ f [E(X)]. When applied to
(6), the Delta Method substitutes A(rtµ

(k)
t /γ

(k)
0 ) for each instance of cos(ϕt − θ),

including those in the K(ϕt) terms.

M-step. The global maxima of the objective function is not of closed form, so
we obtain τ (k+1) through three conditional maximization steps as in the ECM
algorithm of Meng and Rubin (1993). We modify the equations of Miller (1995)
and Pourahmadi (2001) to

(7)
p∑

j=1

(
d
(k)
ij + 2jγ

(k)
|j−i|

)
αj = d

(k)
i0 , i = 1, . . . , p,

where d
(k)
ij is the E-step expectation of dij with µt evaluated at µ(k)

t and γ
(k)
j =

d
(k)
0j /(2n). We first calculate α(k+1) from (7). Next, we calculate

(8) β(k+1) = (X ′R−1
n X)−1X ′R−1

n u(k),

where R−1
n is obtained from α(k+1) (as in Pourahmadi, 2001) and u(k) is a vec-

tor of n variables with tth element u(k)t = rtA(rtµ
(k)
t /γ

(k)
0 ). Note that it may be

necessary to enforce the boundary conditions Xβ(k+1) ≥ 0, in which case (8)
needs to be modified as discussed in Section ??. Finally, we calculate σ2(k+1) =
h(k+1)/(2n), where h(k+1) = α̃′(k+1)D(k+1)α̃(k+1) and D(k+1) is a matrix as
before with terms d(k+1)

ij evaluated using µ
(k+1)
t = x′

tβ
(k+1).
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3.2.2. Hybrid algorithm for ML estimation. As the EM algorithm progresses
through iterations, we monitor convergence using the maximum change in the pa-
rameter values across successive iterations. However, as is commonly known (McLach-
lan and Krishnan, 2008) the convergence of the EM algorithm is slow at low SNRs,
especially when β0/σ < 2). In order to speed up convergence, we employ the hy-
brid algorithm of Aitkin and Aitkin (1996) which alternates the EM iterations with
those from a modified Newton-Raphson (NR) method where the Fisher informa-
tion matrix is replaced by the empirical information matrix (Meilijson, 1989). The
hybrid algorithm starts with five EM iterations before switching to the modified
NR method until convergence of the parameters. In the latter case, we halve the
NR step size up to five times.

Parameter updates from the modified Newton-Raphson method are given by

(9) τ (k+1) = I −1
e (τ (k); r)S(r; τ (k)),

where I e(τ ; r) is the empirical information matrix and S(r; τ ) is the score statis-
tic. Both are constructed from the contributions to the score statistic at t=p+1, p+2,
. . . , n, denoted by s(rt; τ ) = ∂

∂τ log f(rt|rt−1, . . . , rt−p; τ ), which can be cal-
culated from the complete data loglikelihood using the identity (adapted from
McLachlan and Krishnan, 2008)

(10) s(rt; τ ) = Eϕ|r;τ

[
∂

∂τ
log f((rt, ϕt)|(rt−1, ϕt−1), . . . , (rt−p, ϕt−p); τ )

]
.

These calculations, detailed in Section ??, use quantities from the E-step. The em-
pirical information matrix is calculated as

(11) I e(τ ; r) =
n∑

t=p+1

s(rt; τ )s
′(rt; τ )−

1

n− p
S(r; τ )S′(r; τ ),

where S(r; τ ) =
∑n

t=p+1 s(rt; τ ).

3.3. Calculation of test statistics under the MO AR(p) Ricean model. We il-
lustrate the calculations of Wald and likelihood ratio test statistics for a general test
for activation, which posits H0 : Cβ = 0 against Ha : Cβ ̸= 0. Each test statistic
is based on the MLEs τ̂ calculated by the above EM/NR hybrid algorithm.

3.3.1. Wald test. The Wald test statistic is given by

(12) W = (Cβ̂)′
[
CI −1

e (τ̂ ; r)C ′]−1
(Cβ̂),

and asymptotically follows a null χ2
m-distribution, where m is the rank of C. It uti-

lizes the empirical information matrix I e of (11). However, our simulation studies
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reported in Section ?? indicate that the Wald test statistic does not follow this null
distribution for low-SNR time series, that is, when β0/σ < 2. This shortcoming
of the Wald test motivates the derivation of the likelihood ratio test (LRT) statistic
described below.

3.3.2. Likelihood ratio test for Ricean AR(1) model. We derive an LRT for
the Ricean AR(1) model, whose false positive rate better conforms with the sig-
nificance level than the Wald test for low-SNR time series, as shown in Figure
??. This LRT statistic is only for the Ricean AR(1) model, as the observed data
loglikelihood is quite intractible for higher AR orders.7 From standard results, the
LRT statistic Λ = 2[ℓ(τ̂ )− ℓ(τ̃ )], where ℓ(·) is the loglikelihood function logL(·)
and τ̂ and τ̃ represent the MLEs of τ under Ha and H0, respectively. Like the
Wald statistic, the LRT statistic asymptotically follows a null χ2

m-distribution. To
derive the likelihood function L(τ ) = f(r; τ ) for the Ricean AR(1) model, we
note that f(r; τ ) can be factored as f(r1; τ )

∏n
t=2 f(rt|rt−1; τ ), where f(r1; τ ) is

the Ricean PDF of (3). It can be shown (see Section ??) that the conditional PDF
f(rt|rt−1; τ ) is equal to

(13)
rt
σ2

eC0

[
I0
(
rt−1µt−1

γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r2t +µ2
t +α2(r2t−1+µ2

t−1)−2αµt−1µt]/(2σ
2), C1 = rt−1(µt−1−

αµt)/σ
2, C2 = rt(µt − αµt−1)/σ

2, and C12 = αrt−1rt/σ
2. Also, in (13), ωm =

1 for m = 0 and ωm = 2 for m ≥ 1. We caution that the number of terms
needed for convergence of the sum in (13) increases with SNR, so calculation of
this Ricean AR(1) loglikelihood becomes computationally prohibitive for high-
SNR voxel time series. (See Section ?? for details.) In this case, we recommend
use of the Wald statistic.

3.4. Additional Methodological Issues.

3.4.1. Discussion of MO Ricean AR(p) model methodology. The main purpose
of developing the MOR model in this paper is to gain insight on the importance
on the three model features vis-a-vis the comparison framework in Table 1. The
methodology for the MOR model is less than straightforward due to the novel
inclusion of AR(p) dependence to the Ricean model. For parameter estimation,
the EM algorithm uses a Delta Method approximation in the E-step and a hybrid
EM/NR algorithm at low SNRs. For testing, both a Wald and an LR test statistic
were derived. Though the Wald test statistic may be derived for any AR order p, its

7Recall that the Wald test statistic can derived for any AR order.



RICE-DISTRIBUTED TIME SERIES MODELING IN FMRI 15

false positive rate did not adhere to the significance level at low SNRs, which led
to deriving the LR test for AR(1) time series.8 We acknowledge that the strength
of this methodology is not its simplicity nor its computation time. The latter is
discussed in Section ??, which shows that MOR model-based parameter estimation
takes between 100 and 1000 times more computation time per voxel time series
than the other models and is especially slow at low SNRs. It clearly is desirable
to use the CVNS model; however, archival datasets are MO, and therefore our
objective is to evaluate the more computationally expensive MOR model as an
alternative to the currently used (simpler but inaccurate) MOG model.

3.4.2. Choosing the order of the AR model. We suggest a sequential testing
approach for determining the AR order p. Starting with k = 1, and for increas-
ing k, we posit H0 : p = k − 1 vs. Ha : p ≥ k (or, in terms of the AR coeffi-
cients, H0 : ∀j ≥ k, αj = 0 vs. Ha : ∃j ≥ k : αj ̸= 0). The estimated AR order
is then p̂ = k′ − 1, where k′ is the first k in the sequence of tests for which H0

is not rejected. An LRT statistic given by 2(ℓk − ℓk−1), where ℓk is the opti-
mized loglikelihood function for the AR(k) model, may be employed under the
CVNS, CVS, and MOG models. For the MOR model, we use the Wald test statis-
tic α̂2

k/I
−1
e (τ̂ , r)αkαk

, where the denominator is the diagonal entry of the in-
verse empirical information matrix corresponding to αk. From standard results,
each test statistic (whether LRT or Wald) is asymptotically χ2

1-distributed under
H0 : p = k − 1.

It can be shown that the significance level δ applied to each test controls “over-
detecting” the order (i.e., p̂ > p) in the sense that δ = P(p̂ > p|p̂ ≥ p). See Adrian,
Maitra and Rowe (2018, Section S-2.4) for a justification. Section ?? uses simula-
tion to demonstrate that the sequential testing approach to detecting p gives similar
results to approaches based on the AIC and BIC (Akaike, 1973; Schwarz, 1978).
Note that we cannot use the latter approaches under the MOR model because the
loglikelihood is not tractable for general p.

3.4.3. Clarification of SNR and CNR. Discussions of Ricean and complex-
valued fMRI models often point to their advantages at low signal-to-noise ratios
(SNRs). Thus, we seek to be clear about our definition of SNR and the definition
of contrast-to-noise ratio (CNR) as well. While such definitions can be trivial in
Gaussian-distributed magnitude-only models, they are less so for Ricean magni-
tude models or complex-valued models. Please see Section ?? for a discussion.

8It could be argued that the methodology was “overengineered” in that it was tested to work for
any SNR down to zero, much lower than fMRI datasets in practice. As an example, even the “low-
SNR” dataset introduced in Section 2 did not have low enough SNRs to require the hybrid algorithm
or the LR test statistic.
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3.4.4. Phase-only activation. Another benefit of utilizing the complex-valued
data is that there exists activation information, also in the phase data. For instance,
Rowe, Meller and Hoffman (2007) describe a phase-only data-based regression
model for activation detection using the methods of Fisher and Lee (1992). We
adapt this model to the context of this paper in Section ??.

Our development in this section has laid the groundwork for our investigation of
fMRI analyses using the four models. We now proceed with our evaluations.

4. Simulation experiments. As mentioned in Section 3.1, our purpose in com-
paring the four models is to evaluate the influence of three model features on model
performance measures related to parameter estimation and activation detection.
Specifically, the structure of Table 1 tells us that comparing the (1) (CVNS, CVS),
(2) (CVS, MOR), and (3) (MOR, MOG) model pairs will provide isolated infor-
mation about the impact of (1) nonsphericity, (2) using twice the quantities, and (3)
the Ricean magnitudes features, respectively. We designed two sets of simulation
experiments to make these comparisons in a setting of known truth. In the first set,
we generated time series under the CVS model (therefore, also marginally under
the MOR model), allowing us to make comparisons (2) and (3). The second set
generated time series under the CVNS model and focused on comparison (1). In
both cases, we used the X matrix of Section 2 so that our settings matched that of
the finger-tapping experiment.

4.1. Ricean modeling improves parameter estimates, activation detection. We
simulated low-SNR complex-valued time series under the CVS model — and
therefore also magnitude time series under the MOR model — with white noise
variance σ2 = 1, AR(1) temporal dependence with AR parameters α = 0.2, 0.4, 0.6,
and 0.8, baseline signal levels β0 from 0.5 to 5.0, and activation levels β1 =
0.1, 0.2, and 0.3. For each combination of parameter values, we generated 10,000
voxel time series and fit each of the four models9 under an assumed AR order
of 1. Our model comparison analysis has two main components: properties of the
parameter estimates and activation detection performance.

Figure 3 summarizes the properties of the parameter estimates, displaying the
biases, standard errors (SEs), and Root Mean Squared Errors (RMSEs) of β̂0, β̂1,
σ̂2, and α̂. Focusing first on the biases, it is immediately evident that the MOG
model produces the most biased parameter estimates due to its Gaussian approxi-
mation of the truly Ricean magnitudes. Specifically, the biases of β̂0 and σ̂2 result
from the mean and SD of the Rice distribution (which are the quantities that the

9The inclusion of the CVNS model only serves to assure that the “overfitting” involved in esti-
mating ρ, σ2

R, and σ2
I relative to the CVS model assumption that Σ = σ2I2 does not negatively

affect model performance. (There seems to be very little, if any, effect, as the CVNS- and CVS-
model-based results essentially coincide in all the figures presented here.)
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FIG 3. Biases, SEs (SE), and RMSEs (RMSE) of (a) β̂0, (b) β̂1, (c) σ̂2, and (d) α̂ under the four
models for the simulated time series under β1 = 0.2 and different values of β0 and α.

MOG model estimates) being above and below the Ricean location and scale pa-
rameters, as shown in Figure ??. (Bias of β̂1 is also suggested by Figure ?? in
the difference between the CNR and β1 = 0.2 for α = 0 .) The MOG model bi-
ases decrease with increasing β0 because the Gaussian approximation to the Rice
distribution improves with SNR. These results match those already observed for
the temporally independent case (Adrian, Maitra and Rowe, 2013; Solo and Noh,
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2007), and, additionally, we see here that the MOG model-based estimate of the
AR coefficient α is the most biased as well. We note that the MOR model-based
parameter estimates are also biased for some cases where β0 ≤ 2, but much less
so than their MOG model-based counterparts. The complex-valued model-based
estimates, however, are unbiased in all cases. Switching our focus to the SEs, we
note that the CV model-based SEs of σ̂2 and α̂ are lower than those for the MO
models. In fact, the CV model-based SEs at β0 = 5 are approximately a factor of√
2 less than the MO SEs; this corresponds to a similar result observed in Rowe

(2005b) about the sampling variances of σ̂2 for the temporally independent case,
suggesting that the twice the quantities feature is driving this difference. Overall,
the RMSEs, which account for both bias and SE as RMSE2(·) = Bias2(·)+SE2(·),
are lowest for the complex-valued models (with the exception of β̂1 at α = 0.8)
and are unrelated with β0, suggesting that the CV models produce the most reliable
parameter estimates (arguing against the current practice of discarding the phase
data). However, given that archival datasets (of which there are massively many)
do not have phase data stored, our results here also suggest the parameter estima-
tion benefits of using the AR MOR model in place of the currently-used AR MOG
model.

We focus next on comparing the activation detection performance of the models,
calculating LRT statistics for the activation test of H0 : β1 = 0 vs. Ha : β1 ̸= 0
for each simulated time series. To summarize the power of each LRT statistic,
we calculated the partial area under the receiver operating characteristic curve or
the pAUC (McClish, 1989; Zhou, Obuchowski and McClish, 2011). The pAUC
is the area under the ROC curve — where the ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR) — over a limited range of FPR
values.10 The rationale for using the pAUC rather than the (full) AUC, the area
under the ROC curve for all FPR values from 0 to 1, is to exclude contributions
to the curves from FPR values that are never used in practice, and to highlight
differences between the methods in the part of the ROC that are most likely to
be used in practice. For instance, using FPR values greater than 0.1 would allow
for far too many false positives than practically ever used; indeed, our significance
level threshold used on the real data in Section 5 is 0.001. Therefore, we calculated
the pAUCs over a FPR range of 0 to 0.05. We calculated the pAUCs (separately
for each combination of parameters β0, β1, and α) as the average of the TPRs for
the significance levels δ = 0.0001, 0.0002, 0.0003, . . . , 0.0500; each TPR is the
proportion of the 10,000 simulated test statistics greater than the χ2

1−δ,1 quantile.
As shown in Figure 4, the pAUCs of simulated LRT statistics are consistently

in the order (highest to lowest) of CVNS/CVS (which coincide), MOR, and MOG
10There are also pAUC versions that limit the TPR range (or both the FPR and TPR ranges), but

we use a FPR-limited pAUC here.



RICE-DISTRIBUTED TIME SERIES MODELING IN FMRI 19

α = 0.2 α = 0.4 α = 0.6 α = 0.8

β
1  = 0.1

β
1  = 0.2

β
1  = 0.3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.05

0.10

0.15

0.20

0.2

0.4

0.6

0.00

0.25

0.50

0.75

β0

pA
U

C
Model CVNS CVS MOR MOG

FIG 4. The partial AUCs of the magnitude-only (MO) data-based LRT statistics decrease at low SNRs
relative to their complex-valued (CV) data-based counterparts. Also, the Ricean (MOR) model-based
pAUCs show improvements over those from the Gaussian (MOG) model.

models. While the figure shows between-panel differences in the pAUCs due to the
relationships between the CNR and the values of β1 and α (positive and negative
relationships, respectively), the within-panel patterns are quite similar. While the
CV model-based pAUCs are constant as a function of β0 (after accounting for
simulation variability), the pAUCs of the MO model-based LRTSs decrease with
β0.

We attribute these differences to the model features in Table 1 as before. The
twice the quantities feature of CV vis-a-vis MO seems to be driving the difference
in detection performance: again, the MO data are missing the phases. The infor-
mation in the phase data appears to be more valuable to the activation detection
as β0 (the SNR) decreases, as shown by the increasing discrepancy in CV/MO
pAUCs. In fact, we may view this in terms of the “missing information principle”
(Orchard and Woodbury, 1972). Section ?? describes how the missing information
matrix comes from applying the EM algorithm framework of observed, missing,
and complete data to the Fisher information matrix and may be computed under
the CVS model. Interestingly, the curves of the “observed information” (in the MO
data) and the “complete information” (in the CV data) in Figure ?? look similar
to the pAUC curves in Figure 4. Both figures suggest that the phase data contain
useful information about the activation, even though the activation itself occurs in
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FIG 5. Relative improvement in MOG model-based pAUCs by MOR model.

the magnitude signal Xβ.
In addition, the Ricean magnitudes lead to the increased MOR model-based

pAUCs relative to the MOG model; after all, the MOR model uses the Rice dis-
tribution while the MOG model merely approximates it. Figure 5 focuses on the
sizes of these improvements, displaying the per cent pAUC increases of the MOR
model-based LRTSs relative to the MOG model, that is, (MOR - MOG) / MOG ×
100%. We note that the sizes of MOR model improvements in pAUC increase as β0
and β1 decrease and α increases, which correspond to decreases in SNR and CNR.
While it is not surprising that a lower SNR (with worse Gaussian approximation of
the Ricean magnitudes) is associated with a larger MOR model improvement, it is
worth noting that improvement is larger for lower activation levels (CNRs) as well.

To summarize, the results of our experiments suggest that modeling the Ricean
magnitudes produces less-biased parameter estimates and better activation detec-
tion performance than the Gaussian approximation. Also, using twice the quanti-
ties in CV rather than MO data-based models leads to parameter estimates with
less variation and additionally improved activation detection. Although using the
CV data produces the best estimation and activation detection, utilizing the Ricean
model when only magnitude (archival) data is available produces sizeable gains
over the Gaussian approximation.

4.2. Modeling real/imaginary covariance enhances activation detection. Our
other simulation experiment studied the influence of modeling the nonsphericity of
Σ, the covariance matrix of (yRt, yIt)

′. We generated time series from the CVNS
model with various values of the real/imaginary correlation ρ and the real and
imaginary variances σ2

R and σ2
I , respectively; we set ρ = 0,±0.4, and ±0.8, and

set the ratio σR/σI = {1.25j : j ∈ {−4,−3, . . . , 4}}, subject to the restriction
that the average of the variances (σ2

R + σ2
I )/2 was fixed at one. We also varied

the central phase θ, with values 0 and π/4. The remaining parameters were held
constant, with β = (5, 0.2)′ and used a first-order AR process with coefficient α =
0.4. As before, we generated 10,000 time series at each combination of parameter
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values, calculated LRT statistics for activation, and calculated pAUCs to compare
the activation detection performance of the four models.

Figure 6 shows these pAUCs: note that we exclude the CVS model here because
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FIG 6. The CVNS model-based pAUCs are higher than magnitude data-based pAUCs except when
(1) θ = 0 and ρ = 0 and (2) θ = π/4 and σR/σI = 1.

of its unreliable FPR (see Figure ??). Thus, in CV data-based analyses, model-
ing the nonpshericity of Σ is essential for valid activation detection when Σ dif-
fers from σ2I2; MO data-based analyses do not face this issue (again see Figure
??). However, the pAUCs (essentially, power) of the MO data-based analyses are
substantially lower than their CVNS counterparts, as shown in Figure 6. In other
words, the effect of modeling nonsphericity is improved activation detection. The
size of improvement is related to the specification of θ and Σ. When θ = 0, there
are large CVNS/MO differences when |ρ| = 0.8 but small differences when ρ = 0.
When θ = π/4, these differences increase as σR/σI gets farther from 1.11

We interpret these results by comparing θ, the direction of activation in the com-
plex plane, to the constant density elliptical contours of the bivariate Gaussian
distribution of (yRt, yIt)

′ provided by Σ. The (θ,Σ) cases producing small dif-
ferences are those where θ is “aligned” with the ellipses of Σ; in other words, the
ellipses are symmetric around θ. (A more precise interpretation of this “alignment”
is that (cos θ, sin θ)′ is one of the eigenvectors of Σ.) For θ = 0, this occurs when
ρ = 0 and the ellipses are aligned with the real and imaginary axes; for θ = π/4,
this is when σR = σI and the ellipses are symmetric to the “45 degree” line.

To augment this geometric interpretation, a simulation study in Section ?? sug-
gests that the superior CVNS-model-based pAUCs may be linked to correlations

11The pAUC values across different panels are influenced by varying CNRs. For instance, for
θ = π/4, the pAUCs are higher for negative ρs than for positive ρs due to the dependence of CNR
on ρ displayed in Figure ??.
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between the magnitude and phase time series. That is, the cases where the CVNS
and MO model-based pAUCs are the closest, that is, θ = 0 with ρ = 0 and θ = π/4
with σR = σI , are also those with zero correlation between rt and ϕt (compare
Figures 6 and ??). Furthermore, the size of the CVNS model-based pAUC im-
provement seems to be connected to the size of the magnitude/phase correlation.
Thus, we can postulate that when this correlation exists, the phase data provides
important additional information about the magnitude-related activation.

In cases where the CV data are not available, such as, for archival data, using
the MOR model instead of the MOG model on the MO data also produces higher
pAUCs. Figure 7 shows these per cent pAUC gains. We note that the larger im-
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FIG 7. Relative improvement in pAUCs upon using a MOR model instead of a MOG model.

provements in pAUC are for Σ values which produce lower-SNR time series –
such as larger values of σR/σI when θ = 0, for which the Gaussian approximation
of the Ricean magnitudes is worse.

5. Results on low-signal fMRI dataset. In this section, we identify activation
in the low-SNR fMRI dataset introduced in Section 2. Recall that there are five sep-
arate datasets to consider due to the different levels of spatial smoothing applied
following the removal of the magnitude and phase temporal trends: the spatially un-
smoothed dataset and datasets smoothed with FWHMs of 1.5, 2, 4, and 6 voxels.
For each of these datasets, we compare the performance of the four models iden-
tified in Table 1. Working with each voxel time series of each dataset separately,
we first detected the AR orders (see Figure ??) and then tested for activation using
H0 : β1 = 0 vs. Ha : β1 ̸= 0. We used LRT statistics for the CVNS, CVS, MOG,
and AR(0) (independence in time series) MOR models and Wald test statistic for
the AR(p) MOR model for p ≥ 1, obtaining p-values from these test statistics under
the null χ2

1-distribution. (Note that the SNRs in the dataset were above the range
of concern for the MOR model-based Wald test statistic that was discussed in Sec-
tion 3.3.) To determine activation, we used a significance level threshold of 0.001
(Woo, Krishnan and Wager, 2014). For the four smoothed datasets, we also utilized



RICE-DISTRIBUTED TIME SERIES MODELING IN FMRI 23

cluster thresholding with a third-order neighborhood structure and a size threshold
of 11 voxels (Forman et al., 1995). However, because cluster thresholding removed
all activation for the unsmoothed dataset, we did not use it for determining activa-
tion (only for the unsmoothed dataset case). Thus, we present the results for the
unsmoothed dataset and the smoothed datasets separately in what follows.

5.1. Activation detection in unsmoothed data. We display activation maps of
the second slice12 according to each of the four models in Figure 8(a). Each map
shows a grayscale anatomical image (the magnitude image at the first time point)
with the voxels having test statistics with p-values less than 0.001 colored accord-
ing to the legend. The activation is rather sparse except for a region containing the
left central sulcus (Figure 1), so we focus on this region of interest (ROI) in the
inset maps. Recall that the central sulcus is the site guiding hand function for nor-
mal healthy adults. Specifically, we focus on the ten voxels with test statistics that
provide the lowest minimum p-value over the four models, which are identified by
numerals (from 1 = lowest to 10 = highest p-value) in the inset maps of Figure 8(a).
This numbering carries over to Figure 8(b) where the size of the p-values can be
compared more clearly across models. It is interesting to note that the CV mod-
els provide lower p-values than the MO models for three of the four voxels with
the lowest p-valued test statistics (numbered 2, 3, and 4), though this phenomenon
does not hold for all ten voxels. Because the SNRs are lowest for the unsmoothed
data, we may attribute these lower CV model-based p-values to the low SNR and
the simulation-based results seen in Figure 4.

To further investigate the effect that low SNR has on activation detection, we
added more noise to the acquired CV data. So, for the ten voxels identified in Figure
8(a) with acquired CV time series (yRt, yIt), t = 1, . . . , 621, we obtained new
synthetic data y∗Rt = yRt+wRt and y∗It = yIt+wIt, with wRt, wIt ∼ iid N(0, σ2

a).
Because a representative, data-based estimate of the noise SD is 0.15, we generated
data using σa = 0.15, 0.20, 0.25, and 0.30. Adding noise to the original data in this
manner reduces the SNR and CNR (see Figure ??) as would occur with increasing
spatial resolution of the MR scan. Figure 9 shows the proportions of the 10,000
generated datasets in which each of the ten voxels was detected under each model
at the 0.001 significance level. Overall, the average detection rates (shown in the
rightmost column) for the CV models are higher than the MO models across all the
different added noise SDs. In addition, the MOR model shows greater detection
rates than the MOG model.

5.2. Activation detection in smoothed data. Figure 10 has the activation maps
of the second slice for the datasets that were spatially smoothed with FWHMs of

12We focus on the second slice because it shows the strongest activation. See Figure ?? for acti-
vation maps of the other slices.
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FIG 8. (a) Activation maps (slice 2) and (b) p-values from applying the four models to the ten voxels
of the unsmoothed dataset.
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FIG 9. Proportion of replications the 10 voxels identified in Figure 8(a) (columns) detected as acti-
vated when noise with SD σa (rows) was added to the raw data. (The rightmost column shows the
average proportions over the 10 voxels.)

1.5, 2, 4, and 6 voxels. Even though these smoothed data maps employ the addi-
tional cluster thresholding criteria not used on the unsmoothed data, it is immedi-
ately evident that these maps show much more activation. Moreover, the number
of activated voxels increases as the amount of smoothing increases; this speaks to
the increase in CNR with smoothing, as shown in Figure ??. However, this greater
CNR comes at the expense of spatial specificity. The left central sulcus (refer to
Figure 1) is best identified by the data smoothed with FWHM = 1.5 or 2 voxels.
Meanwhile, it could be argued that the activation regions in the maps based on
FWHM = 4 and 6 voxels are too diffuse to be useful in practice.

The model-wise differences between the activation maps at each FWHM are
much less pronounced. In fact, all four model-based maps are virtually indistin-
guishable at FWHMs of 1.5 and 2 voxels. For the maps based on smoothing at
FWHMs of 4 and 6 voxels, the MO data-based maps show more activation than
the CV data-based maps.13 At first glance, these model comparisons may seem
puzzling, given that the simulation experiments of Section 4 showed improved ac-
tivation detection for the CV data-based methods over their MO data-based coun-
terparts and better MOR model-based detection relative to the MOG model. In the
following, we present several factors that we believe led to these results.

Perhaps most importantly, the SNR ranges of the smoothed datasets were higher
13These activation patterns by smoothing level and model are similar to those seen in the maps

for other slices of the dataset, as shown in Figure ??.
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FIG 10. Activation maps of the second slice calculated under the different models (columns) and
smoothing levels (rows).

than the SNRs showing the largest differences in the simulation experiments. Fig-
ure ?? shows that the SNRs are mostly above 8 for the data smoothed at FWHM
= 1.5 voxels and the SNRs increase with wider smoothing kernels. In contrast,
the CV vs. MO and MOR vs. MOG model-based pAUC gains decrease rapidly
as β0/σ values14 increase in the region with β0/σ < 3 (see Figures 4 and 5); for
β0/σ ≥ 3, the pAUC gains are more modest, perhaps not large enough to make
a visual difference on activation maps. This suggests that CV and MOR modeling
will make more difference on images that are not spatially smoothed.

Additionally, we argue that the difference in the CV/MO maps for smoothing
with FWHM = 4 and 6 voxels is related to differences in detected AR orders un-
der the CV and MO data-based models. The detected orders, as shown in Figure
??, strongly depended upon whether they were based on the CV or the MO data,
with CV data-based models tending to find larger orders. A simulation study in

14And β/σ < SNR in the presence of AR dependence.
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Adrian, Maitra and Rowe (2018, Section 5.3) supports these results by demonstrat-
ing greater CV data-based order detection power and attributes it to using twice the
quantities of MO data. This study also demonstrates that underdetecting the AR
order (i.e., finding p̂ < p) can lead to more false positives in activation detection.
To examine whether this phenomenon was behind the increased activation for the
MO data-based maps relative to the CV maps, we set p̂ = 1 for all voxels, level-
ing the order detection “playing field”. The resulting maps shown in Figure ?? are
notably more similar.

After accounting for the effect of order detection, we further interpret the acti-
vation maps – i.e., now focusing on the AR(1) maps in Figure ?? – in terms of the
CVNS model parameter MLEs (see Section ??). For images smoothed at FWHMs
of 1.5 and 2 voxels, the distributions of ρ̂ and σ̂R/σ̂I are close to 0 and 1, respec-
tively, suggesting that the CVS and MOR models adequately fit the data; this sup-
ports the model-wise similarities of these maps. However, greater levels of smooth-
ing induce real/imaginary correlation and clustering of voxels where σ̂R ̸= σ̂I .
With spherical covariance becoming a less tenable model assumption, the unreli-
able CVS model false positive rate may account for the differences between the
CVS model and the other three maps. Last, despite this nonsphericity, the CVNS
model-based map does not clearly show greater activation than its MO counterparts
(though it could be argued that some regions show higher CVNS p-values); with
the distribution of σ̂R/σ̂I centered around 1, the data, based on a central phase of
θ0 = π/4, appear to be characterized by the lack of magnitude/phase correlation
associated with the superior activation of the CVNS model (see Figure 6).

5.3. Phase-only activation. Section ?? displays the activation maps obtained
when we applied the phase-only data-based methodology described in Section ??.
The resulting activation maps show a task-related phase change detected in the left
central sulcus (in addition to the previously displayed magnitude changes), and it
is the primary activation region identified.

6. Discussion. In this paper, we developed a Ricean model for fMRI magni-
tude time series that incorporates autoregressive time dependence. Our approach
applies AR(p) errors to the Gaussian-distributed real and imaginary components
from which the magnitudes are computed. We estimated model parameters from
the MO data using the EM algorithm with the phase portion of the latent complex-
valued data playing the role of missing data. We then extended the EM algorithm
to derive Wald and LRTs for activation and AR order detection.

We compared this AR(p) Ricean model to three other models within the frame-
work established in Section 3.1. Roughly, we expected the performance of the
Ricean model to fall below that of the two CV data-based models (due to the CV
data having twice the quantities) and above that of the MOG model (due to model-
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ing the Ricean magnitudes). This was the case for simulated data: the MOG model
produced the most biased parameter estimates, and the CV data-based parame-
ter estimates showed the lowest RMSEs. Also, the CV data-based activation tests
showed larger pAUCs than the two MO data-based tests, with the MOR model-
based test producing the higher pAUCs of the two MO tests. Whether considering
parameter estimates or activation detection, differences between the models in-
creased with decreasing SNR.

The two CV data-based models differed in whether they estimated the non-
sphericity of the real/imaginary covariance matrix. Simulations indicated that acti-
vation detection based on the nonspherical model outperformed its spherical coun-
terpart (and the MO data-based models) when the central phase direction differed
from both eigenvectors of the real/imaginary covariance matrix, which is the case
when magnitude and phase time series are correlated. In addition, the test based on
sphericity was not even reliable in terms of false positive rate when nonsphericity
was present.

Further, we tested our methodology on a finger-tapping experiment, acquiring
the data using the body coil to study a low-SNR dataset. Differing levels of spatial
smoothing led to datasets with differing SNRs. For the unsmoothed dataset with
the lowest SNR, the CV models produced lower p-values for activation than the
MO models for three of four voxels in the right central sulcus region displaying the
strongest activation. Further, we were able to consistently demonstrate improved
activation detection by the CV models when we added extra simulated white noise
to the experimental voxel time series; and in this case, the Ricean model showed
better performance than the MOG model as well. For the smoothed datasets with
higher SNR, the activation maps produced by the different models are similar to a
large extent, with dissimilarities that may be attributed to the different AR orders
selected by different models.

Future directions for this research can explore fMRI time series models that
allow for activation in magnitude and phase (Rowe, 2005a). The models we have
focused upon in this article (even the CV data-based ones) have assumed task-
related magnitude changes. We touched upon a phase-only data-based model for
task-related phase changes in Section 3.4.4; it may be worth exploring a single
model that allows for both task-related magnitude and phase changes. In addition,
it may also be worth expanding the modeling of Ricean time series presented here
to χ-distributed time series, as discussed in Wegmann, Eklund and Villani (2017).

REFERENCES

AALO, V. A., EFTHYMOGLOU, G. P. and CHAYAWAN, C. (2007). On the Envelope and Phase
Distributions for Correlated Gaussian Quadratures. IEEE Communications Letters 11 985-987.

ABRAMOWITZ, M. and STEGUN, I. (1965). Handbook of Mathematical Functions. Dover Publica-
tions.



RICE-DISTRIBUTED TIME SERIES MODELING IN FMRI 29

ADRIAN, D. W., MAITRA, R. and ROWE, D. B. (2013). Ricean over Gaussian modeling in magni-
tude fMRI analysis – Added complexity with neglible practical benefits. Stat 2 303-316.

ADRIAN, D. W., MAITRA, R. and ROWE, D. B. (2018). Complex-valued time series modeling for
improved activation detection in fMRI studies. Annals of Applied Statistics 12 1451-1478.

AITKIN, M. and AITKIN, I. (1996). A hybrid EM/Gauss-Newton algorithm for maximum likelihood
in mixture distributions. Statistics and Computing 6 127-130.

AKAIKE, H. (1973). 2nd International Symposium on Information Theory Information theory and
an extension of the maximum likelihood principle 267-281. Akademiai Kiado.

BANDETTINI, P. A., JESMANOWICZ, A., WONG, E. C. and HYDE, J. S. (1993). Processing strate-
gies for time-course data sets in functional MRI of the human brain. Magnetic Resonance in
Medicine 30 161-173.

BELLIVEAU, J. W., KENNEDY, D. N., MCKINSTRY, R. C., BUCHBINDER, B. R., WEIS-
SKOFF, R. M., COHEN, M. S., VEVEA, J. M., BRADY, T. J. and ROSEN, B. R. (1991). Func-
tional mapping of the human visual cortex by magnetic resonance imaging. Science 254 716-719.

BROWN, T. R., KINCAID, B. M. and UGURBIL, K. (1982). NMR chemical shift imaging in three
dimensions. In Proceedings of the National Academy of Sciences, USA 79 3523-3526.

BULLMORE, E., BRAMMER, M., WILLIAMS, S. C. R., RABE-HESKETH, S., JANOT, N.,
DAVID, A., MELLERS, J., HOWARD, R. and SHAM, P. (1996). Statistical methods of estimation
and inference for function MR image analysis. Magnetic Resonance in Medicine 35 261-277.

CARPENTER, M. B. (1991). Core Text of Neuroanatomy. Williams and Wilkins.
CASELLA, G. and BERGER, R. L. (2002). Statistical Inference, Second edition ed. Thomson Learn-

ing.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of Royal Statistical Society Series B 23 1-38.
DEN DEKKER, A. J., POOT, D. H. J., BOS, R. and SIJBERS, J. (2009). Likelihood-based hypothesis

tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
IEEE Transactions on Medical Imaging 28 287-296.

FISHER, N. I. and LEE, A. J. (1992). Regression Models for an Angular Response. Biometrics 48
665-677.

FORMAN, S. D., COHEN, J. D., FITZGERALD, M., EDDY, W. F., MINTUN, M. A. and NOLL, D. C.
(1995). Improved Assessment of Significant Activation in Functional Magnetic Resonance Imag-
ing (fMRI): Use of a Cluster-Size Threshold. Magnetic Resonance in Medicine 33 636-647.

FRISTON, K. J., JEZZARD, P. and TURNER, R. (1994). Analysis of functional MRI time-series.
Human Brain Mapping 1 153-171.

FRISTON, K. J., FRITH, C. D., LIDDLE, P. F., DOLAN, R. J., LAMMERTSMA, A. A. and FRACK-
OWIAK, R. S. J. (1990). The relationship between global and local changes in PET scans. Journal
of Cerebral Blood Flow and Metabolism 10 458-466.

FRISTON, K. J., HOLMES, A. P., WORSLEY, K. J., POLINE, J.-B., FRITH, C. D. and FRACK-
OWIAK, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear ap-
proach. Human Brain Mapping 2 189-210.

FRISTON, K. J., JOSEPHS, O., ZARAHN, E., HOLMES, A. P., ROUQETTE, S. and POLINE, J.-B.
(2000). To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. NeuroImage
12 196-208.

GENOVESE, C. R. (2000). A Bayesian Time-Course Model for Functional Magnetic Resonance
Imaging Data. Journal of the American Statistical Association 95 691–703. Available at http:
//www.jstor.org/stable/2669445

GENOVESE, C. R., LAZAR, N. A. and NICHOLS, T. E. (2002). Thresholding of statistical maps in
functional neuroimaging using the false discovery rate:. NeuroImage 15 870-878.

GLISSON, T. H. (2011). Introduction to Circuit Analysis and Design. Springer, The Netherlands.
GLOVER, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroIm-

http://www.jstor.org/stable/2669445
http://www.jstor.org/stable/2669445


30 ADRIAN AND MAITRA AND ROWE

age 9 416-429.
GUDBJARTSSON, H. and PATZ, S. (1995). The Rician distribution of noisy data. Magnetic Reso-

nance in Medicine 34 910-914.
HAHN, A. D., NENCKA, A. S. and ROWE, D. B. (2009). Improving robustness and reliability of

phase-sensitive fMRI analysis using temporal off-resonance alignment of single-echo timeseries
(TOAST). NeuroImage 44 742-752.

HAHN, A. D., NENCKA, A. S. and ROWE, D. B. (2012). Enhancing the Utility of Complex-
Valued Functional Magnetic Resonance Imaging Detection of Neurobiological Processes Through
Postacquisition Estimation and Correction of Dynamic B0 Errors and Motion. Human Brain Map-
ping 33 288-306.

HOOGENRAD, F. G., REICHENBACH, J. R., HAACKE, E. M., LAI, S., KUPPUSAMY, K. and
SPRENGER, M. (1998). In vivo measurement of changes in venous blood-oxygenation with high
resolution functional MRI at .95 Tesla by measuring changes in susceptibilty and velocity. Mag-
netic Resonace in Medicine 39 97-107.

JAIN, A. K. (1989). Fundaments of Digital Image Processing. Prentice Hall.
JESMANOWICZ, A., WONG, E. C. and HYDE, J. S. (1993). Phase Correction for EPI Using In-

ternal Reference Lines. In Proceedings from the International Society of Magnetic Resonance in
Medicine 12 1239.

JEZZARD, P. and CLARE, S. (2001). Principles of nuclear magnetic resonance and MRI. In Func-
tional MRI: An Introduction to Methods (P. Jezzard, P. M. Matthews and S. M. Smith, eds.) 3
67-92. Oxford University Press.

KUMAR, A., WELTI, D. and ERNST, R. R. (1975). NMR Fourier Zeugmatography. Journal of
Magnetic Resonance 18 69-83.

KWONG, K. K., BELLIVEAU, J. W., CHESLER, D. A., GOLDBERG, I. E., WEISSKOFF, R. M.,
PONCELET, B. P., KENNEDY, D. N., HOPPEL, B. E., COHEN, M. S., TURNER, R., CHENG, H.-
M., BRADY, T. J. and ROSEN, B. R. (1992). Dynamic Magnetic Resonance Imaging of Human
Brain Activity During Primary Sensory Stimulation. Proceedings of the National Academy of
Sciences of the United States of America 89 5675-5679.

LAZAR, N. A. (2008). The Statistical Analysis of Functional MRI Data. Springer.
LEE, C. C., JACK, C. R. and RIEDERER, S. J. (1998). Mapping of the Central Sulcus with Func-

tional MR: Active versus Passive Activation Tasks. American Journal of Neuroradiology 19 847-
852.

LEE, C. C., WARD, H. A., SHARBROUGH, F. W., MEYER, F. B., MARSH, W. R., RAFFEL, C.,
SO, E. L., CASCINO, G. D., SHIN, C., XU, Y., RIEDERER, S. J. and JACK, C. R. (1999).
Assessment of Functional MR Imaging in Neurosurgical Planning. American Journal of Neuro-
radiology 20 1511-1519.

LJUNGGREN, S. (1983). A Simple Graphical Representation of Fourier-Based Imaging Methods.
Journal of Magnetic Resonance 54 338-343.

LOCASCIO, J. J., JENNINGS, P. J., MOORE, C. I. and CORKIN, S. (1997). Time series analysis
in the time domain and resampling methods for studies of functional magnetic resonance brain
imaging. Human Brain Mapping 5 168-193.

LOGAN, B. R. and ROWE, D. B. (2004). An evaluation of thresholding techniques in fMRI analysis.
NeuroImage 22 95-108.

MARCHINI, J. L. and RIPLEY, B. D. (2000). A new statistical approach to detecting significant
activation in functional MRI. NeuroImage 12 366-380.

MARDIA, K. V. and JUPP, P. E. (2000). Directional Statistics. Wiley.
MCCLISH, D. K. (1989). Analyzing a Portion of the ROC Curve. Medical Decision Making 9 190-

195. Available at https://pubmed.ncbi.nlm.nih.gov/2668680/
MCLACHLAN, G. J. and KRISHNAN, T. (2008). The EM Algorithm and Extensions. Wiley.
MEILIJSON, I. (1989). A fast improvement to the EM algorithm on its own terms. Journal of the

https://pubmed.ncbi.nlm.nih.gov/2668680/


RICE-DISTRIBUTED TIME SERIES MODELING IN FMRI 31

Royal Statistical Society. Series B (Methodological) 51 127-138.
MENG, X.-L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a

general framework. Biometrika 80 267-278.
MENON, R. S. (2002). Postacquisition suppression of large-vessel BOLD signals in high-resolution

fMRI. Magnetic Resonace in Medicine 47 1-9.
MILLER, J. W. (1995). Exact Maximum Likelihood Estimation in Autoregressive Processes. Journal

of Time Series Analysis 16 607-615.
NENCKA, A. S., HAHN, A. D. and ROWE, D. B. (2008). The Use of Three Navigator Echoes in

Cartesian EPI Reconstruction Reduces Nyquist Ghosting. In Proceedings from the International
Society of Magnetic Resonance in Medicine 16 3032.

OGAWA, S., LEE, T. M., NAYAK, A. S. and GLYNN, P. (1990). Oxygenation-sensitive contrast
in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in
Medicine 14 68-78.

ORCHARD, T. and WOODBURY, M. A. (1972). A missing information principle: theory and applica-
tions. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
1 697-715. University of California Press, Berkeley, California.

POURAHMADI, M. (2001). Foundations of Time Series Analysis and Prediction Theory. Wiley.
RICE, S. O. (1944). Mathematical analysis of random noise. Bell Systems Technical Journal 23 282.
ROWE, D. B. (2005a). Modeling both the magnitude and phase of complex-valued fMRI data. Neu-

roImage 25 1310-1324.
ROWE, D. B. (2005b). Parameter estimation in the magnitude-only and complex-valued fMRI data

models. NeuroImage 25 1124-1132.
ROWE, D. B. (2016). Handbook of Neuroimaging Data Analysis Image Reconstruction in Functional

MRI 205-232. Chapman & Hall/CRC.
ROWE, D. B. and LOGAN, B. R. (2004). A complex way to compute fMRI activation. NeuroImage

23 1078-1092.
ROWE, D. B., MELLER, C. P. and HOFFMAN, R. G. (2007). Characterizing phase-only fMRI data

with an angular regression model. Journal of Neuroscience Methods 161 331-341.
RUMEAU, C., TZOURIO, N., MURAYAMA, N., PERETTI-VITON, P., LEVRIER, O., JOLIOT, M.,

MAZOYER, B. and SALAMON, G. (1994). Location of Hand Function in the Sensorimotor Cor-
tex: MR and Functional Correlation. American Journal of Neuroradiology 15 567-572.

SCHWARZ, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 461-464.
SHUMWAY, R. H. and STOFFER, D. S. (2006). Time Series Analysis and Its Applications, Second

Edition ed. Springer.
SOLO, V. and NOH, J. (2007). An EM algorithm for Rician fMRI activation detection. In ISBI 464-

467.
TANABE, J., MILLER, D., TREGELLAS, J., FREEDMAN, R. and MEYER, F. G. (2002). Com-

parison of Detrending Methods for Optimal fMRI Preprocessing. Neuroimage 15 902–907.
https://doi.org/10.1006/nimg.2002.1053
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SUPPLEMENT TO “RICE-DISTRIBUTED AUTOREGRESSIVE TIME
SERIES MODELING OF MAGNITUDE FUNCTIONAL MRI DATA”

BY DANIEL W. ADRIAN‡ AND RANJAN MAITRA*,§ AND DANIEL B. ROWE†,¶

Grand Valley State University‡ and Iowa State University§ and Marquette
University¶

S-1. Supplement to Section ?? – Further description of the dataset. In ad-
dition to the spatial structure emphasized in the images of Figure ??, Figure S-1
shows plots of the real, imaginary, magnitude, and phase time series at a single
voxel, which happens to be one of the voxels showing the most activation.

As discussed in Section ??, using detrending to correct for scanner drift is an
important preprocessing step. Figure S-2 shows a plot of the magnitude and phase
time series for a selected voxel and compares the fit from four curve fitting meth-
ods. One is the “CV running line” method introduced in Adrian, Maitra and Rowe
(2018) that fits linear models to both the magnitude and phase time series (simul-
taneously), using a moving window that only considers time points within 64 sec-
onds of the fitted time. The other three are more established curve fitting methods:
a polynomial of degree 8, a natural cubic spline with 6 evenly spaced knots, and a
smoothing spline with 8 effective degrees of freedom (Hastie, Tibshirani and Fried-
man, 2009). These last three methods are all based on fitting separate curves to the
real and the imaginary time series. As shown in Figure S-2(a), the four methods all
capture changes in the global nonlinear trend well. However, a closer look in Fig-
ure S-2(b) shows some differences. For one, the CV running line does not produce
a smooth curve, which may introduce additional variance to the detrended time se-
ries. Overall, it appears that the smoothing spline is the “Goldilocks’ choice” as it
seems to do the best in terms of not taking the largest or smallest fitted value across
all time points for both time series. (This property seems to hold across a variety
of other voxel time series as well.)

For clarity, we formally describe the detrending process using notation. First,
for the real and imaginary data, yRt and yIt, at a single voxel and time t, we use
one of the four methods to obtain the fitted trend values ŷRt and ŷIt. The detrended
values are then calculated as y̌ξt = yξt − ŷξt − ¯̂yξ, for ξ = R, I , where ¯̂yξ is the
mean of the fitted values across the corresponding time series.1 To produce a zero

*Research supported in part by the the National Science Foundation CAREER Grant # DMS-
0437555 and the National Institutes of Health (NIH) awards #R21EB016212 and #R21EB034184.

†Research supported in part by the National Institutes of Health (NIH) award #R21NS087450.
1The same approach applied to magnitude-only data produces the magnitude-only detrended data.
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FIG S-1. Time series of (from top) the real, imaginary, magnitude, and phase observations for one of
the voxels showing the most activation. Lighter lines in each display represents the raw time series,
while the darker lines show the result after applying a simple, central moving average filter with 5
nearest neighbors. The bottom display is of the 0/1 block design of the stimulus superimposed with
the stimulus/HRF convolution, after zero-centering and unit scaling.

mean phase for the time series, we calculate the detrended magnitude řt = (y̌2Rt +
y̌2It)

1/2 and phase ϕ̌t = arctan4(y̌It, y̌Rt). Then mean phase is then calculated as
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FIG S-2. Comparison of four curve fitting methods on a selected voxel’s time series for the purpose
of detrending to correct scanner drift: CV running line (Adrian, Maitra and Rowe, 2018), degree
8 polynomial, natural cubic spline with 6 evenly spaced knots, smoothing spline with 8 effective
degrees of freedom.

¯̌ϕ = arctan4(S̄, C̄), where S̄ = (1/n)
∑n

t=1 sin ϕ̌t and C̄ = (1/n)
∑n

t=1 cos ϕ̌t
(Mardia and Jupp, 2000). The final, zero mean phase, detrended time series are
then calculated as ỹRt = řt cos(ϕ̌t − ¯̌ϕ) and ỹIt = řt sin(ϕ̌t − ¯̌ϕ).

Figure S-3 shows images of the SNRs and CNRs at the different levels of spatial

3



Unsmoothed FWHM = 1.5 FWHM = 2 FWHM = 3 FWHM = 4

3

10

30

SNR

−0.3

0.0

0.3

0.6

CNR

0.2

0.4

0.6

0.8

1.0

1.2

β̂0

−0.050

−0.025

0.000

0.025

0.050

β̂1

0.05

0.10

0.15

σ̂

FIG S-3. Images of the SNRs, CNRs, and the estimates β̂0, β̂1, and σ̂ at each level of spatial smooth-
ing (columns) for the second slice.

smoothing. The SNRs and CNRs above were calculated as β̂0/σ̂ and β̂1/σ̂, respec-
tively, where the previous parameter estimates were calculated from the magnitude
voxel time series using ordinary least squares. In addition, Figure S-4 shows the
frequency distribution of the voxel-wise SNRs by smoothing level.

S-2. Supplement to Section ?? – Further Methodological Development.

S-2.1. CV AR(p) spherical (CVS) and MO AR(p) Gaussian (MOG) model method-
ology.
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FIG S-4. The voxel-wise SNRs by smoothing level.

S-2.1.1. CVS model. The log-likelihood function is given by

(S-1) log f(yR,yI ; τ ) = −n log σ2 − log |Rn| − h/(2σ2),

where

(S-2) h =

(
yR −Xβ cos θ
yI −Xβ sin θ

)′(
R−1

n 0
0 R−1

n

)(
yR −Xβ cos θ
yI −Xβ sin θ

)
.

The maximum likelihood estimate (MLE) of β is β̂ = β̂R cos θ̂ + β̂I sin θ̂, where
β̂R = (X ′R̂

−1

n X)−1X ′R̂
−1

n yR, β̂I = (X ′R̂
−1

n X)−1X ′R̂
−1

n yI , and R̂
−1

n is a
function of α̂, the MLE of α, according to the (2p + 1)-diagonal matrix given
in Pourahmadi (2001). Further, the MLEs of θ and σ2 are given by

(S-3) θ̂ =
1

2
arctan

[
2β̂

′
RX

′R̂
−1

n Xβ̂I

β̂
′
RX

′R̂
−1

n Xβ̂R − β̂
′
IX

′R̂
−1

n Xβ̂I

]

and σ̂2 = ĥ/(2n), where ĥ evaluates the parameters in (S-2) at their MLEs. We
obtain α̂ by solving the system of equations (Miller, 1995)

(S-4) d̂0k =

p∑
j=1

(d̂jk + 2jγ̂|j−k|)α̂j ,

for k = 1, . . . , p, with d̂ij =
∑n−i−j

t=1 η̂R,t+iη̂R,t+j + η̂I,t+iη̂I,t+j , 0 ≤ i, j ≤ p,
and γ̂k = d̂0k/(2n), wherein η̂Rt = yRt − x′

tβ̂ cos θ̂ and η̂It = yIt − x′
tβ̂ sin θ̂,
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t = 1, . . . , n. In practice, ML estimation consists of alternately updating (θ̂, β̂) and
(α̂, R̂

−1

n ) in a Cochrane and Orcutt (1949)-type procedure until convergence. The
LRT statistic for the test of H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-5) ΛCV S,p = 2n log

(
σ̃2

σ̂2

)
− 2 log

(∣∣∣R̃−1
p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ηR1, . . . , ηRp) = Cov(ηI1, . . . , ηIp), R−1

p

is a function of α as in Pourahmadi (2001), and the “hats” and “tildes” denote
quantities maximized with respect toHa andH0, respectively. It can be shown that
ΛCV S,p follows an asymptotic χ2

m null distribution, where m = rank(C).

S-2.1.2. MOG model. The log-likelihood function for the MOG model is given
by log f(r; τ ) = −n

2 log σ
2 − 1

2 log |Rn| − 1
2σ2 (r −Xβ)′R−1

n (r −Xβ), where
Rn is such that σ2Rn = Cov(ϵ). The MLEs of β and σ2 are given by β̂ =

(X ′R̂
−1

n X)−1X ′R̂
−1

n r and σ̂2 = (r −Xβ̂)′R̂
−1

n (r −Xβ̂)/n, respectively. We
obtain α̂ by solving the system of equations

∑p
j=1{d̂ij + (j/n)d̂0,|i−j|}α̂j = d̂0i,

i = 1, . . . , p, where d̂ij =
∑n−i−j

t=1 ϵ̂t+iϵ̂t+j , for 0 ≤ i, j ≤ p, and ϵ̂t = rt − x′
tβ̂,

t = 1, . . . , n. The estimation procedure begins with R̂n = In and then itera-
tively updates β̂, α̂, and R̂

−1

n until convergence. The LRT statistic for the test of
H0 : Cβ = 0 vs. Ha : Cβ ̸= 0 is given by

(S-6) ΛMOG,p = n log(σ̃2/σ̂2)− log
(∣∣∣R̃−1

p

∣∣∣ / ∣∣∣R̂−1

p

∣∣∣) ,
where Rp is such that σ2Rp = Cov(ϵ1, . . . , ϵp).

S-2.2. Relationships between CVS, MOR, and MOG model densities. We il-
lustrate some relationships between the probability density functions (PDFs) of the
CVS, MOR, and MOG models for the observations at a single voxel and time-
point. Before we get into the derivations, let us state these relationships:

1. Fact 1: The MOR model PDF is the marginal PDF for the magnitude in the
CVS model PDF.

2. Fact 2: For large SNR, the MOR model PDF approaches the MOG model
PDF.

Derivation of Fact 1. Under the CVS model (and suppressing subscripts for time),
the PDF is
(S-7)

f(yR, yI ;µ,γ0, θ) = (2πγ0)
−1 exp

[
−(yR − µ cos θ)2 + (yI − µ sin θ)2

2γ0

]
.
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Transforming this PDF for the real/imaginary data to the magnitude/phase data
yields

(S-8) f(r, ϕ;µ, γ0, θ) =
r

2πγ0
exp

[
−(r2 + µ2)

2γ0

]
exp

[
µr

γ0
cos(ϕ− θ)

]
.

The MO Ricean PDF then arises from integrating out ϕ in (S-8). That is, because∫ π
−π exp[µrγ0 cos(ϕ− θ)]dϕ = 2πI0(µr/γ0), the Ricean PDF (Rice, 1944) is

(S-9) f(r;µ, γ0) =
r

γ0
exp

[
−(r2 + µ2)

2γ0

]
I0
(
µr

γ0

)
.

Derivation of Fact 2. It can be shown the Ricean PDF approaches the Gaussian
PDF at large SNRs – that is, for large values of µ/

√
γ0. We use the approximation

(Abramowitz and Stegun, 1965) that for large values of x,

(S-10) I0(x) = (2πx)−1/2ex{1 + 1/(8x) +O(x−2)}.

Thus, for large SNR, which also implies large values of µr/γ0, substituting (S-10)
into the Ricean PDF (S-9) yields the Gaussian PDF

(S-11) f(r;µ, γ0) = (2πγ0)
−1/2 exp[−(r − µ)2/(2γ0)]

times two additional terms, (r/µ)1/2 and [1+(1/8)(µr/γ0)
−1] that approach unity

for large SNRs. (The former approaches unity because |r − µ| is on the order
of

√
γ0 ≪ µt. ) Indeed, Figure S-5 shows that the Ricean and Gaussian PDFs

converge with increasing SNR.

S-2.3. Supplement to Section ?? – Methodological details of the EM algorithm
corresponding to the AR(p) Ricean model.

S-2.3.1. Supplement to Section ?? – Univariate Expectations. To find the uni-
variate expectations Eϕt|rt;τ (k) [cos(ϕt−θ)], we show that the distribution of ϕt con-
ditional on rt is von Mises. From standard results, the conditional PDF f(ϕt|rt; τ )
is the joint PDF f(ϕt, rt; τ ) in (S-8) divided by the marginal PDF f(rt; τ ) in (S-9).
Thus, the conditional PDF is

(S-12) f(ϕt|rt; τ ) =
[
2πI0

(
µtrt
γ0

)]−1

exp

[
µtrt
γ0

cos(ϕt − θ)

]
,

which is the von Mises PDF with location parameter θ and concentration pa-
rameter µtrt/γ0 (Mardia and Jupp, 2000). It then follows from properties of the
von Mises distribution that the univariate expectations Eϕt|rt;τ (k) [cos(ϕt − θ)] =

A(rtµ
(k)
t /γ

(k)
0 ), t = 1, . . . , n.
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FIG S-5. As the SNR (here, µ) increases, the Ricean and Gaussian PDFs converge.

S-2.3.2. Supplement to Section ?? – Bivariate Expectations. Here, we show
that the bivariate expectations E[cos(ϕt − ϕt+j)|rt, rt+j , τ

(k)] can be reduced to
the univariate expectations in (??). Our strategy is to take the bivariate expecta-
tion as the “iterated expectations” Eϕt|rt [Eϕt+j |ϕt,rt,rt+j

{cos(ϕt+j − ϕt)}]. First,
expanding the cosine term yields

Eϕt|rt

{
cos(ϕt − θ)Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)]

+ sin(ϕt − θ)Eϕt+j |ϕt,rt,rt+j
[sin(ϕt+j − θ)]

}
.

(S-13)

We now derive the conditional PDF of ϕt+j given ϕt, rt, rt+j . Starting with the
distributions of (yRt, yR,t+j) and (yIt, yI,t+j), which are independent and bivariate
normal, and using its magnitude and phase transformations, it can be shown that

(S-14) f(ϕt+j |ϕt, rt, rt+j) ∝ exp[κ cos(ϕt+j − θ) + δ cos(ϕt+j − ϕt)],

where κ = rt+j(γ0µt+j − γjµt)/b and δ = γjrtrt+j/b, with b = γ20 − γ2j . It
can then be shown that ϕt+j |ϕt, rt, rt+j follows the von Mises distribution by
writing the bracketed portion of (S-14) as K cos(ϕt+j − Ψ) where K = [κ2 +
δ2 + 2κδ cos(ϕt − θ)]1/2 and Ψ is such that sin(Ψ − θ) = δ sin(ϕt − θ)/K and
cos(Ψ−θ) = [κ+δ cos(ϕt−θ)]/K. Thus, the conditional distribution of (ϕt+j−θ)
given ϕt, rt, rt+j is von Mises with location parameter Ψ−θ and concentration pa-
rameter K. It follows that Eϕt+j |ϕt,rt,rt+j

[cos(ϕt+j − θ)] = A(K) cos(Ψ− θ) and
8



Eϕt+j |ϕt,rt,rt+j
[sin(ϕt+j − θ)] = A(K) sin(Ψ− θ) (Mardia and Jupp, 2000). Sub-

stituting these expectations into (S-13) and using the earlier expressions for the
sine and cosine of (Ψ− θ), we obtain (??).

S-2.3.3. Supplement to Section ?? – Maximizing with respect to constraints.
To find β(k+1) = argmaxβQ(α(k+1),β, σ2(k); τ (k)) as part of the (conditional)
M-step, we must maximize with respect to the constraint Xβ(k+1) ≥ 0. In the
following, we illustrate this constrained maximization for the X matrix defined in
Section ??, which has two columns: the first is an intercept containing all ones and
the second is the expected BOLD response, which we denote by b. It can be shown
that Xβ ≥ 0 if and only if Aβ ≥ 0, where A contains only two rows of X:
the rows a′

1 = (1,min(b)) and a′
2 = (1,max(b)). To maximize with respect to

Aβ ≥ 0, we first calculate the unrestricted maximizer

(S-15) β̂ = (X ′R−1
n X)−1X ′R−1

n u(k).

If Aβ̂ ≥ 0, then β(k+1) = β̂. Otherwise, let J = {j : a′
jβ̂ < 0}. Calculate β̃j =

Ωjβ̂ for each j ∈ J , where Ωj = I2−[a′
j(X

′R−1
n X)−1aj ]

−1(X ′R−1
n X)−1aja

′
j .

Then β(k+1) is the β̃j which maximizes Q(α(k+1), β̃j , σ
2(k); τ (k)).

S-2.4. Supplement to Section ?? – Empirical Information Matrix. We illus-
trate the calculation of s(rt; τ ), t = p + 1, . . . , n, the contributions to the score
statistic from time t from which the empirical information matrix I e(τ ; r) is con-
structed as in (??). We denote the elements of s(rt; τ ) that come from taking the
partial derivatives in (??) with respect to σ2, α, and β by sσ2(t), sα(t), and sβ(t),
respectively. It can be shown that sσ2(t) = [α̃′Dtα̃ − 2σ2]/(2σ4), where Dt

is a matrix of order (p + 1) having (i, j)th entry dt(i, j) = rt−irt−jEt−i,t−j −
µt−iut−j − µt−jut−i + µt−iµt−j , 0 ≤ i, j ≤ p, with Ers = Eϕ|r;τ [cos(ϕr − ϕs)],
ut = rtA(rtµt/γ0), and µt = x′

tβ. Further, sα(t) = D′
t(0)α̃/σ

2, where Dt(0)

is the matrix Dt, but without the first row. Finally, sβ(t) = α̃′Dt,βα̃/(2σ
2),

where Dt,β is the partial derivative of Dt with respect to β, with (i, j)th entry
dt,β(i, j) = (ut−i − µt−i)xt−j + (ut−j − µt−j)xt−i.

S-2.5. Supplement to Section ?? – Further details regarding test statistics.

S-2.5.1. Supplement to Section ?? – Comparing false positive rates. The fol-
lowing simulation experiment examines the basic utility of the Wald and likelihood
ratio test (LRT) statistics in terms of whether they follow their theoretical null dis-
tributions. To mimic the finger-tapping experiment, we generated magnitude time
series from the AR(1) Ricean model with the two-column X matrix described
in Section ??. Of the parameter β = (β0, β1) corresponding to X , only β1 is

9



activation-related; thus, the activation test is H0 : β1 = 0 vs. Ha : β1 ̸= 0, and we
set β1 = 0 to examine the null distributions of the test statistics, which theoretically
should be χ2

1. To examine an SNR range similar to that in the dataset (see Figure S-
4), we set σ = 1 and varied β0 from 0.5 to 5.0. We set α1 = 0.3, generated 10,000
time series for each β0 value, and calculated the Wald and LRT statistics. Figure
S-6 shows the proportions of test statistics in which H0 was rejected (in effect,

sig. level =  0.01 sig. level =  0.05 sig. level =  0.1
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FIG S-6. The false positive rates of the Wald test statistics fall sharply below the significance levels
(shown by the thick grey lines) for β0/σ values below 2, showing that LRT statistic is more reliable
for low SNRs.

the false positive rates) based on the theoretical χ2
1 null distribution at significance

levels of 0.01, 0.05, and 0.10. If the test statistic truly followed the theoretical null
distribution, each false positive rate should be close to the significance level (with
small discrepancies explained by simulation variability). However, it is evident that
the Wald test is unusable at β0 values below 2 due to its false positive rates falling
sharply below the significance level. Overall, the LRT statistic seems more reliable
due to its false positive rates better conforming with the significance level.

S-2.5.2. Supplement to Section ?? – Ricean AR(1) LRT statistic. Here, we de-
rive the expression for f(rt|rt−1; τ ) in (??). For notational simplicity, we focus
on f(r2|r1). Starting with yR2|yR1 ∼ N(µ2 cos θ + α(yR1 − µ1 cos θ), σ

2) and
yR1 ∼ N(µ1 cos θ, σ

2/(1− α2)), and similarly for the imaginary component, and
transforming to magnitude and phase, it can be shown that
(S-16)
f(r1, ϕ1, r2, ϕ2) ∝ exp[C1 cos(ϕ1 − θ) + C2 cos(ϕ2 − θ) + C12 cos(ϕ1 − ϕ2)],

where C1 = r1(µ1 − αµ2)/σ
2, C2 = r2(µ2 − αµ1)/σ

2, and C12 = αr1r2/σ
2.

First, we integrate with respect to ϕ2. WritingC2 cos(ϕ2−θ)+C12 cos(ϕ1−ϕ2) =
K cos(ϕ2 − ψ), where K = [C2

2 + C2
12 + 2C2C12 cos(ϕ1 − θ)]1/2, and using
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∫ 2π
0 exp[K cos(ϕ2−ψ)]dϕ2 = 2πI0(K), we apply the Neumann Addition Formula

(Watson, 1948) to write

(S-17) I0(K) =
∞∑

m=0

ωmIm(C2)Im(C12) cos[m(ϕ1 − θ)],

where ωm = 1 for m = 0 and ωm = 2 for m ≥ 1. Also, using the result∫ 2π
0 cos[m(ϕ1 − θ)] exp[C1 cos(ϕ1 − θ)] = Im(C1), for m ≥ 0 (Mardia and Jupp,

2000), we obtain f(r1, r2). Dividing the result by (S-9), we obtain

(S-18) f(r2|r1) =
r2
σ2
eC0

[
I0
(
r1µ1
γ0

)]−1 ∞∑
m=0

ωmIm(C1)Im(C2)Im(C12),

where C0 = −[r22 + µ22 + α2(r21 + µ21)− 2αµ1µ2]/(2σ
2).

S-2.5.3. Supplement to Section ?? – Calculating the AR(1) log-likelihood func-
tion at high SNRs is computationally prohibitive. The following simulation study
demonstrates that calculation of the Ricean AR(1) log-likelihood function (??) be-
comes increasingly computationally prohibitive as the SNR increases. To vary the
SNR over the range of values seen in the dataset over different amounts of spatial
smoothing, we generated magnitude time series from the Ricean AR(1) model with
the X matrix described in Section ??, and β0 varied over {2j : j ∈ Z, 0 ≤ j ≤ 7}.
Other parameter values of σ2 = 1, α = 0.3, and β1 = 0 were held constant.

After the parameter estimates for each simulated time series were calculated us-
ing the hybrid EM/NR algorithm, we timed the calculation of the Wald and LRT
statistics. Timing results are from a Intel Core i5-6300M CPU 64-bit processor run-
ning Cwithin R (R Core Team, 2020). Figure S-7(a) shows that the calculation time
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FIG S-7. (a) The calculation time for the LRT statistic is greater than the Wald test statis-
tic, becoming prohibitive for high SNRs. (b) The average number of terms of the sum∑∞

m=0 ωmIm(C1)Im(C2)Im(C12) needed for convergence increases with SNR as well. (Note: Both
plots use log scales.)
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of the LRT statistic is uniformly higher than the Wald test statistic and increases
with the SNR. The computational time starts to become prohibitive from SNRs at
around 30, when it is aproximately 1 second per time series, and increases further
from there. As suggested by Figure S-7(b), this increase in computation time is
due to the increase in terms of the sum

∑∞
m=0 ωmIm(C1)Im(C2)Im(C12) in (??)

necessary for convergence (defined as a change of less than 10−10). As a result, we
will restrict our use of the LRT statistic to SNRs below 10 and use the Wald test
statistic otherwise (where the false positive rate problem illustrated in Figure S-6
does not appear to be an issue).

S-2.6. Supplement to Section ?? – Discussion of MO Ricean AR(p) model method-
ology. The computation time under the MOR model is much greater than the other
models because the convergence of the EM algorithm is slow, even with the accel-
eration provided by the hybrid scheme including Newton-Raphson steps. Figure
S-8 shows the computation times required for parameter estimation of 1000 simu-
lated time series under the four models. We generated these time series under the
CVS model with X matrix described in Section ??, σ2 = 1, β = (β0, 0)

′ for β0
from 0.5 to 5.0, and AR coefficients of 0.4, (0.4, 0.32), and (0.4, 0.3, 0.2). In our
calculation, we assumed the correct AR order was known. Per thousand time se-
ries, the computation times for MOR model range from 24 to 447 seconds, while
the other models are most always under one second. It is interesting to note that
the MOR model computation time decreases as the SNR increases, decreasing by
a factor of 10 as β0 increases from 0.5 to 5.0. Computation times also increase for
all models as the AR order increases.

α = 0.4 α = (0.4, 0.32) α = (0.4, 0.3, 0.2)
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FIG S-8. Computation times (sec) for parameter estimation per 1000 simulated time series under
the four models. The EM algorithm used by the MOR model has much slower convergence than the
other estimation schemes.

S-2.7. Supplement to Section ?? – Choosing the order of the AR model. We
performed a simulation study to compare the AR orders detected under the sequen-
tial testing method proposed in Section ?? with those detected under the AIC and
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BIC (Akaike, 1973; Schwarz, 1978) – i.e., more common model selection criteria.
We generated 10,000 time series under the CVS model with X matrix described
in Section ??, β = (5, 0)′, σ2 = 1, and four sets of different AR coefficients: (1)
α = 0 for temporal independence, (2) α = 0.1 and (3) α = 0.2 for AR(1) de-
pendence, and (4) α = (0.1, 0.1)′ for AR(2) dependence. The proportions of time
series detecting each AR order p̂ based on the AIC, BIC, and sequential testing
method using a significance level of δ = 0.1 (and under the 4 models) are shown
in Figure S-9.2
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FIG S-9. Proportion of simulated time series in which each AR order (0-4) is detected for four
different sets of AR coefficients (columns), based on the AIC, BIC, and sequential testing methods
(rows) and the four models (colored bars). Note that MOR model results are not shown for the AIC
and BIC because the MOR model log-likelihood is not tractable for general p.

Two main results are worthy of special attention: first, the sequential testing
method in general detects a similar distribution of orders as the AIC and BIC. The
BIC is more similar to the sequential method, which can be explained by the fact
that the BIC penalty for each additional parameter of log n = 6.43 (here) is closer
to the sequential testing threshold of χ2

1,0.99 = 6.63 than the AIC penalty of 2. The
second result is that the MO-based order detection methods are more likely to have
a negative bias, and under-detect orders (in this case, especially for α = 0.1 and
α = (0.1, 0.1)′) than CV-based methods. Applying the framework in Table ??,
this difference can be attributed to the fact that CV-based methods have twice the

2Note that MOR model results are not shown for the AIC and BIC because the MOR model
log-likelihood is not tractable for general p.
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amount of data, which gives them more power in the sequential testing method.

S-2.8. Supplement to Section ?? – Clarification of SNR and CNR. We will fol-
low our previous definition of the SNR for a magnitude time series as the ratio of
the mean baseline signal to the standard deviation of the noise. The CNR is the ratio
of the size of the BOLD response (i.e., the difference of the means under maximum
activation and at baseline) to the standard deviation of the noise. An advantage of
the MOG model under independence is that its parameters lend themselves easily
to the specification of the SNR and CNR. That is, for the X matrix described in
Section ?? with two columns – an intercept and a zero-centered waveform model-
ing the BOLD response, β0 is the mean baseline signal level, β1 is the size of the
BOLD response, and σ is the noise standard deviation. Thus, the SNR is β0/σ and
the CNR is β1/σ. However, this is not the case under more complicated models.
For instance, if we introduce an AR(1) dependence to the noise with AR coefficient
α and white noise variance σ2 – hereafter abbreviated by AR(1, α, σ2), the SNR
and CNR are in terms of a noise variance of γ0 = σ2/(1− α2).

Interpreting the SNR and CNR in our Ricean framework is complicated by the
fact that the location and scale parameters of the Rice(ν, γ0) distribution are not
the its mean and variance. For Y ∼ Rice(ν, γ0), E(Y ) =

√
γ0π/2L1/2(ν

2/(2γ0))
and Var(Y ) = (2γ0 + ν2) − πγ0/2L2

1/2(ν
2/(2γ0)), where the Laguerre poly-

nomial L1/2(x) = e−x[(1 + x)I0(x/2) + xI1(x/2)] (Zhu et al., 2009). (For an
AR(1, α, σ2) Ricean model, we would replace γ0 by σ2/(1 − α2) in the formulas
for the mean and variance.) Note that we have so far only defined SNR and CNR
for magnitude time series; for complex-valued time series we define them in terms
of the SNR/CNR of the calculated magnitude time series.3 For instance, the SNR
for the AR(1, α, σ2) CVS model would be based on the formulas for the mean and
variance of the Rice distribution above.

Figure S-10 plots the mean, standard deviation, SNR, and CNR for the AR(1)
Rice models with σ2 = 1, β1 = 0.2, β0 varying from 0 to 5, and α varying from
0 to 0.8. Specifically, if R0 ∼ Rice(β0, γ0) and R1 ∼ Rice(β0 + β1, γ0), where
γ0 = σ2/(1 − α2) as before, the mean, standard deviation, SNR, and CNR are
calculated as E(R0), SD(R0), E(R0)/SD(R0), and [E(R1) − E(R0)]/SD(R0),
respectively. (Note that the mean is always greater than β0 but approaches β0, as β0
increases.) The standard deviation is less than γ1/20 = σ/(1−α2)1/2 but approaches
it as β0 increases as well. Focusing on the independent Rice model, we see that the
SNR and CNR approach the values of β0 and β1, respectively as β0 increases.

For the CVNS model, the SNR and CNR are impacted by the specification of
(the non-spherical) Σ. To illustrate this, consider the CVNS model with β0 = 5,

3Indeed, because the complex-valued model captures the true underlying source of fMRI data, it
could be claimed that the SNR should be defined in terms of it instead.
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θ = π/4, σ2R = σ2I = 1 and varying real/imaginary correlation ρ. Figure S-11(a)
displays 90% probability contours of this bivariate normal distribution for ρ = 0
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FIG S-11. (a) 90% probability contours for the CVNS model distribution with parameters β0 = 5,
θ = π/4, σ2

R = σ2
I = 1 and varying real/imaginary correlation ρ, and the corresponding (b)

magnitude probability density functions, (c) signal-to-noise ratio, and (d) contrast-to-noise ratio.

and ±0.8. These contours suggest that the distribution of the magnitudes based on
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this CVNS model will have more spread for positive ρs than for negative ρs. This
is verified by the magnitude probability density functions (Aalo, Efthymoglou and
Chayawan, 2007) in Figure S-11(b). As a result, the SNRs and CNRs, as compared
with the values for ρ = 0, increase and decrease as ρ becomes more negative and
positive, respectively, as shown in Figure S-11(c)(d). The phase location θ also
plays a role: effect of Σ on the SNRs and CNRs will vary depending on θ.

S-2.9. Supplement to Section ?? – Phase-only activation. The model assumes
that each phase measurement ϕt is independent and follows the von Mises distri-
bution with location parameter θt = θ + g(w′

tδ) and concentration parameter κ.
In the previous, g(·) = 2 arctan(·) and w′

t is the tth row of a n× b matrix W that
describes the phase change in time. Note that the matrix W does not contain the
intercept column used in regression because the baseline phase is already modeled
by θ. (In our case, W is a single column and is the same as the second column of
X which comes from convolving the stimulus time course with the HRF.) Thus,
the log-likelihood function is given by

(S-19) logL(θ, δ, κ|ϕ) = −n log(2πI0(κ)) + κ
n∑

t=1

cos
(
ϕt − θ − g(w′

tδ)
)
.

An iterative algorithm for ML parameter estimation (Fisher and Lee, 1992) is as
follows: after calculating the OLS-based starting value δ(0) = 0.5(W ′W )−1W ′ϕ
(or utilizing another method), calculate the updated parameter estimates at the kth
iteration as

θ(k+1) = arctan4(S
(k), C(k))(S-20)

κ(k+1) = A−1(R(k))(S-21)

δ(k+1) = δ(k) + (W ′G2W )−1W ′G2z.(S-22)

In (S-20), arctan4(y, x) is the 4-quadrant arctangent such that arctan4(y, x) =
arctan(y/x), S(k) = (1/n)

∑n
t=1 sin(ϕt−g(w′

tδ)), andC(k) = (1/n)
∑n

t=1 cos(ϕt−
g(w′

tδ)). In (S-21),R(k) = [S(k)2+C(k)2]1/2 andA−1(·) is the inverse of the ratio
of modified Bessel functions A(·) = I1(·)/I0(·). The inverse can be well approxi-
mated (Mardia and Jupp, 2000) as
(S-23)

A−1(R) =


2R+R3 + 5R5/6 R < 0.53
−0.4 + 1.39R+ 0.43/(1−R) 0.53 ≤ R < 0.85[
2(1−R)− (1−R)2 − (1−R)3

]−1
R ≥ 0.85

Last, in (S-22), G is a diagonal matrix with entries g′(w′
tδ) = 2/(1+(w′

tδ)
2), t =

1, . . . , n, and z is an n-vector with tth entry zt = sin(ϕt−θ−g(w′
tδ))/[A(κ)g

′(w′
tδ)].

The iterations proceed till convergence of (S-19).
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Finally, a Wald test statistic for H0 : δ = 0 vs. Ha : δ = 0 can be calculated
from the MLE δ̂ and its asymptotic covariance matrix
(S-24)

Var(δ̂) =
1

κ̂A(κ̂)

{
(W ′G2W )−1 +

(W ′G2W )−1W ′gg′W (W ′G2W )−1

n− g′W (W ′G2W )−1W ′g

}
,

as per Fisher and Lee (1992), where g is a vector of the diagonal elements of G.

S-3. Supplement to Section ?? – Further Simulation-based analyses.

S-3.1. Supplement to Section ?? – Missing information matrix. The Fisher in-
formation matrix is commonly used to estimate the standard errors of parame-
ter estimates (Casella and Berger, 2002) and in-so-doing, quantify the amount of
“information” given in the data about a parameter. In the framework of the EM
algorithm, separate information matrices can be derived based on the complete,
observed, and missing data (McLachlan and Krishnan, 2008). This extension al-
lows us to quantify the amount of “missing information” in the missing data about
a parameter (Orchard and Woodbury, 1972). In our context, recall that the magni-
tude, phase, and magnitude-phase constitute the observed, missing, and complete
data, respectively. Thus, by deriving the missing information matrix, we can quan-
tify the amount of “missing information” in the phase we miss out on when using
magnitude-only data.

For simplicity, consider a single complex-valued measurement, with magnitude
r and phase ϕ. We assume that the real and imaginary components yR and yI are
independent and normally distributed, with means µ cos θ and µ sin θ, respectively,
and identical variances σ2. The log-likelihood function of the observed data r is
equal to that of the complete data (r, ϕ) minus the missing data ϕ; that is,

(S-25) logL(τ ; r) = logLc(τ ; r, ϕ)− log k(ϕ|r; τ ).

Differentiating with respect to τ twice and obtaining its expectation with respect
to ϕ, conditional on r, gives the following relationship between the information
matrices:

(S-26) I (τ ; r) = I c(τ ; r)− I m(τ ; r).

In words, the observed information is equal to the complete information minus the
missing information.
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It can be shown that observed-, complete-, and missing-data log-likelihoods are

logL(τ ; r) = − log σ2 − r2 + µ2

2σ2
+ log I0

(µr
σ2

)
(S-27)

logLc(τ ; r, ϕ) = − log σ2 − r2 + µ2

2σ2
+
µr

σ2
cos(ϕ− θ)(S-28)

log k(ϕ|r; τ ) = − log I0

(µr
σ2

)
+
µr

σ2
cos(ϕ− θ),(S-29)

respectively. For simplicity, suppose it is known that σ2 = 1. Then, differentiating
twice with respect to µ shows that the complete- and missing-data information
matrices are I c(µ; r) = 1 and I m(µ; r) = ∂2

∂µ2 log I0(µr), respectively. It can be
shown that

(S-30) I m(µ; r) = r2 − rA(µr)/µ− r2A2(µr),

where A(·) = I1(·)/I0(·) as before.
After averaging over the Rice(µ, 1) distribution of R using Monte-Carlo in-

tegration, these information matrices are displayed in Figure S-12. Note that the
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FIG S-12. Plots of the information matrices as a function of the SNR. Note that the fraction of
the complete-data (total) information provided by the magnitude-only data increases as the SNR
increases.

fraction of the complete-data (total) information provided by the magnitude-only
data increases as the SNR increases. This is similar to the graphs in Figure ?? com-
paring the pAUCs of the complex-valued and the magnitude-only data-based test
statistics.

Interestingly, the rate of convergence of the EM algorithm is a function of the
missing- and complete-data information matrices (Dempster, Laird and Rubin,
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1977). Specifically, defining the rate of convergence as rc = limk→∞ ||τ (k+1) −
τ̂ ||/||τ (k) − τ̂ ||, it can be shown that rc is given by the largest eigenvalue of
I−1
c (τ̂ ; r,ϕ)Im(τ̂ ; r). This information ratio matrix measures the proportion of

information about τ that is missing by not also observing ϕ in addition to r
(McLachlan and Krishnan, 2008, Section 3.9.3). The greater the proportion of
missing information, the slower the rate of convergence. We then see a connec-
tion between the large proportion of missing information at low SNRs in Figure
S-12 and the higher computation times of the MOR model at low SNRs in Figure
S-8. As the SNR increases, the proportion of missing information decreases and so
does the computation time.

S-3.2. Supplement to Section ?? – Further nonsphericity-related simulation stud-
ies. We checked the false positive rates of the four model-based LRT statistics
(LRTSs), assuming the same parameter estimates as Section ?? – except with the
activation parameter β1 set to zero. Figure S-13 displays the false positive rates
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FIG S-13. False positive rates of the model-based test statistics at the 0.05 significance level, based
on simulated data.

based on a significance level of 0.05, the proportion of the time series with LRTS
greater than the 0.95 quantile of the χ2

1 distribution. The false positive rate of the
CVS model-based LRT statistic does not in general conform to the significance
level of 0.05, except for certain special cases including the spherical case where
Σ = σ2I2. This indicates that the CVS model-based LRTS is not of practical use
when sphericity cannot be established.

We used simulation to augment our explanation of the relationship between the
size of the CVNS model-based pAUC improvement over the MO model and the
specification of θ and Σ (see Figure ??), demonstrating that time series with non-
spherical Σ possess correlated magnitude and phase time series. Further, we sug-
gest that this correlation appears to be connected to superior activation detection
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performance of the CVNS model. Figure S-14 shows plots of a single time series
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FIG S-14. Magnitude/phase correlation is demonstrated by a simulated complex-valued time series
(a) plotted in polar coordinates and (b) with magnitude-phase transformed to Cartesian coordinates.

generated from the CVNS model with β0 = (5, 0)′, θ = 0, σ2R = σ2I = 1, and
ρ = 0.8. When the magnitude and phase in the polar-coordinate plot in Figure
S-14(a)4 are plotted on the Cartesian coordinates in Figure S-14(b), the substantial
magnitude/phase correlation is clearly represented. We next showed how the mag-
nitude/phase correlation depended on the specification of ρ, σR/σI , and θ by gener-
ating time series from the same parameter values as in Section ??. Based on 10,000
time series, Figure S-15 shows the Pearson correlation5 values, using the same lay-
out as Figure ?? for comparison. Viewing Figures S-15 and ?? side-by-side yields
interesting results: first, the cases where the CVNS and MO model-based pAUCs
are the closest are exactly when the magnitude/phase correlation is zero. Second,
when the CVNS model-based pAUCs are higher, the size of the difference seems
to be connected to the size of the correlation. This correlation indicates that the
phase data provides important additional information about the magnitude-related
activation.

S-4. Supplement to Section ?? – Further Analysis of low-SNR Dataset.
4The concentric semi-circles represent the magnitudes values and the “spokes” represent the

phase values.
5Using the linear-circular correlation as defined by Mardia and Jupp (2000, p. 245), which may

be more appropriate in this case, provides similar results to the Pearson correlation.
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FIG S-15. Pearson correlations between the magnitude and phase, summarized as mean ± one
standard deviation, of simulated time series from the CVNS model.

S-4.1. Supplementary figures. The figures presented are given in the order to
which they are referred in the main article. Figure S-16 shows the frequency dis-
tributions of the voxel-wise detected AR orders for the five datasets and the four

Unsmoothed FWHM = 1.5 FWHM = 2 FWHM = 4 FWHM = 6

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

5000

10000

15000

20000

Detected AR orders

V
ox

el
s

Model

CVNS

CVS

MOR

MOG

FIG S-16. Frequency distributions of detected AR orders for the unsmoothed and smoothed datasets
with FWHMs = 1.5, 2, 4, and 6 under the four models.

models. The orders were detected using the sequential testing procedure described
in Section ?? with a significance level of 0.01. The orders were limited to a maxi-
mum of 4 due to large computational times using the MOR model; if a larger cap
on orders is desired in practice, we suggest using the MOG model as a surrogate,
as it gives very similar results without such computational issues.

Figure S-17 shows the activation maps of all slices for the unsmoothed data. All
slices are shown here to demonstrate that the maps shown of slice 2 in Figure ??
show more activation than the other slices (although, admittedly, the activation is
sparse for all slices).

Figure S-18 refers to our study of adding extra noise to the original unsmoothed
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FIG S-17. Activation maps for the unsmoothed data for all slices.

data to further lower the SNR and CNR of the dataset. The plots show the average
SNRs and CNRs for 10,000 simulation-based time series generated from each of
the 10 voxel time series identified in Figure ????. The results verify that adding
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FIG S-18. The SNRs and CNRs of the ten voxels identified in Figure ???? decrease when extra noise
with standard deviation σa is added to the raw data (σa = 0 refers to raw data).

extra noise to the raw data does indeed lower the SNRs and CNRs and that the
effect is intensified as the noise standard deviation σa increases.

Figure S-19 shows the activation maps of slices 1 and 3 of the smoothed datasets
with FWHMs = 1, 2, 4, and 6. These plots are provided as evidence that the acti-
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FIG S-19. Activation maps of slices 1 (left) and 3 (right) calculated under the different models
(columns) and smoothing levels (rows).

vation maps for slice 2 in Figure ?? are representative of other slices. The compar-
isons made between the different model-based maps in regards to slice 2 may be
extended to other slices as well.

Last, Figure S-20 shows activation maps of slice 2 calculated under an assumed
AR order of 1 at all voxels. This is provided as evidence that differences between
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FIG S-20. Activation maps of slice 2 calculated under an assumed AR order of 1 at all voxels.

the complex-valued data-based activation maps and their magnitude-only data-
based counterparts in Figure ?? may be attributed to differences in the detected
AR orders. That is, the maps in Figure S-20 based on the same AR order for all
models are notably more similar than the detected-order-based maps in Figure ??.

S-4.2. Supplement to Section ?? – parameter estimate summary. Figures S-
21 and S-22 show spatial and frequency distributions, respectively, of the CVNS
model-based MLEs under an assumed AR order of 1 for all voxel time series. These
summaries allow us to examine the effect of spatial smoothing on the parameter es-
timates. To summarize, for the unsmoothed data; it appears the AR(0) CVS model
is adequate, as the distributions of ρ̂ and α̂ are both centered closely around zero.
When smoothing is applied, the spatial distributions of β̂0 and β̂1 are blurred and
the noise standard deviations σ̂R and σ̂I decrease; the net effect is an increase in
SNR and CNR, as shown in Figure S-3. More interestingly, smoothing induces
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FIG S-21. Images of the CVNS model parameter estimates for the second slice of (moving left to
right within each subfigure) the unsmoothed data and the smoothed datasets with FWHMs of 1.5, 2,
4, and 6 voxels.
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FIG S-22. Density estimates of the distributions of the CVNS model MLEs of (left to right) ρ̂, α̂, and
σ̂R/σ̂I for the five different datasets with different smoothing levels.

correlation in the dataset, both real/imaginary correlation and temporal correlation,
as the distributions of ρ̂ and α̂ become more negative and positive, respectively,
more so as the FWHM increases. However, the frequency distribution of σ̂R/σ̂I is
not much affected by spatial smoothing, still being closely centered around one,
although the spatial distribution is more smooth.
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S-4.3. Supplement to Section ?? – phase-only activation. Here, we present the
results of applying the phase-only data-based model methodology described in S-
2.9 to the finger-tapping dataset. Figure S-23 shows the task-related phase acti-
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FIG S-23. (Left) Phase-only data-based activation map of slice 2 of the unsmoothed dataset. (Right)
Map zoomed in to same ROI around the left central sulcus as in Figure ??; the numbers 1-10 are
the same as in Figure ??, showing the voxels with the smallest p-values for task-related magnitude
activation (which interestingly do not often coincide with the voxels showing task-related phase ac-
tivation).

vation map for slice 2 of the unsmoothed dataset. Comparing to the four maps
showing in the task-related magnitude activation in Figure ??, the phase-only data-
based map also identifies the left central sulcus as the region of primary activa-
tion. However, a closer look shows that very few of the magnitude-activated vox-
els in ?? (which are also labeled by the numbers 1-10 in Figure S-23) and the
phase-activated voxels are in common. It is interesting to note that magnitude-
and phase-activated voxels are often neighbors. This would fit the ”brain or vein”
paradigm previous discussed, in which phase-activation occurs in draining veins
located close to the grey matter regions of interest.

Figure S-24 shows the phase-only data-based activation maps for slice 2 of the
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FIG S-24. Phase-only data-based activation maps for slice 2 of the smoothed datasets.
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smoothed datasets. As in the magnitude-activation maps of Figure ??, these phase-
activation maps prominently identify the left central sulcus. It could even be argued
that the latter due so more clearly.
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