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8.1 The Sample Mean and Sample Vairince

Suppose we have X1,…,Xn independent and identically distributed all 

from f(X). Let θ=E[Xi] and σ2=var[Xi], i.e. same mean and variance.

With the arithmetic mean being                  ,

we know that

                                                   .
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8.1 The Sample Mean and Sample Variance

If the expected value of a statistic is equal to the parameter it is 

estimating, it is said to be an unbiased estimator.

To determine the “worth” of     an estimator for θ,

We look at expected squared difference.
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8.1 The Sample Mean and Sample Vairince

By Chebyshev’s inequality

                                          .

But using the Central Limit Theorem when n is large, 

where Φ is the cumulative distribution function of the 

standard normal distribution. 
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8.1 The Sample Mean and Sample Vairince

If we define S2 to be

                             ,

we know that it is unbiased because

                           ,

and because the mean of a χ2 is df=(n-1), therefore

                                                                                     . 
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8.1 The Sample Mean and Sample Vairince

In a simulation, we often generate an extremely large

number of random variates (i.e. 106).

It would be great if we knew when we had enough.

Assume that we are interested in estimating the value of θ=E[Xi].

One stopping rule is to specify a standard deviation d for    .

Then, continue generating random variates until S/√n<d.

When n is small the following is recommended.
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8.1 The Sample Mean and Sample Variance

Method for Determining When to Stop Generating New Data

1. Choose an acceptable value of d for the standard deviation of 

 the estimator.

2. Generate at least 100 data values. 

3. Continue to generate additional data values, stopping when

  you have generated k values and S/√k<d, where S is the

  sample standard deviation based on those k values.

4. The estimate of θ is given by                    .
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8.2 Interval Estimates of a Population Mean

Assume we have X1,…,Xn iid all from the same distribution f(X).

We use    as a “point” estimator for the population mean θ.

We can also generate an “interval” estimator for θ.

We know that               and                     .

We use the fact that when n is large,     has an approximate

normal distribution, i.e.                       .
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8.2 Interval Estimates of a Population Mean

What this implies is that

has an approximate standard deviation!

or more generally,                                . 
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8.2 Interval Estimates of a Population Mean

The inequality
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8.2 Interval Estimates of a Population Mean

The inequality
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8.2 Interval Estimates of a Population Mean

We can see the equivalency of these statements

Thus a (1-α)×100% confidence interval for θ is

which if α=0.05, a 95% confidence interval for θ is

                                                   .
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8.2 Interval Estimates of a Population Mean

Using similar logic, it is also true that when σ is unknown,

a (1-α)×100% confidence interval for θ is 

and if n is large,

which if α=0.05, a 95% confidence interval for θ is

                                .
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8.2 Interval Estimates of a Population Mean

For Bernoulli random variates, where

we have the same scenario. Using similar logic,

a (1-α)×100% confidence interval for p is

when n is large.
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8.2½ Confidence Intervals for the Variance

We know that if x1,..,xn are iid N(µ,σ2) then the distribution of            

is a χ2 with n-1 degrees of freedom. 

A χ2 distribution with n-1 degrees of freedom has a mean 

of n-1 and a variance of 2(n-1). 

This means that the mean and variance of s2 are σ2 and          !
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8.2½ Confidence Intervals for the Variance

Following the general PE±CV×SE(PE) procedure, 

the confidence interval for the variance should be

                         ?

This is what you were taught in your first stats class.

Is this correct even though the χ2 distribution is not symmetric?

The answer is no. 
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8.2½ Confidence Intervals for the Variance

We know                  has a chi-square 

PDF with (n-1) degrees of freedom
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8.2½ Confidence Intervals for the Variance

So we should be able to find a and b such that 
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8.2½ Confidence Intervals for the Variance

Once we have a and b, we can look at

then do a little algebra to get

                                                .
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8.2½ Confidence Intervals for the Variance

So

is a 100(1-α)% confidence interval

for σ2.

a =  1.6899, b =16.0128

L=0.0625s2, U=0.5918s2

U-L=0.5293s2
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8.2½ Confidence Intervals for the Variance

But this confidence interval 

is not best!

We can find a minimum length 

confidence interval for σ2 where

the probability in each tail is not 

equal. 
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8.2½ Confidence Intervals for the Variance

So the goal is to minimize 

subject to the constraint

that                          .

Some amount αL in lower tail

and some amount αU in upper tail.

αL+αU =α
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8.2½ Confidence Intervals for the Variance

In terms of a cost/score function, 

where λ is the Lagrange multiplier. 

a =1.6899, b =16.0128

L=0.0625(n-1)s2, U=0.5918(n-1)s2

U-L=0.5293(n-1)s2

c =2.1473, d =23.7944

L=0.0420(n-1)s2, U=0.4657(n-1)s2

U-L=0.4237(n-1)s2.
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8.3 The Bootstrapping Technique for Estimating Mean Squares

Assume that X1,…,Xn are independent and identically distributed from 

cumulative distribution function F.

If θ is a parameter of interested and g(X1,…,Xn) an estimator,

we would like to estimate the value of 

we can usually estimate it analytically if F is known
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8.3 The Bootstrapping Technique for Estimating Mean Squares

But when F is not known, all we have is X1,…,Xn.

As we know we can estimate F by the empirical CDF

Fe should be “close” to F especially if n is large and 

Fe converges to F as n →∞. 
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8.3 The Bootstrapping Technique for Estimating Mean Squares

Let’s examine the bootstrap approximation to the MSE.

when we don’t need it. Assume θ=μ and g(X1,…,Xn) =    .

Then we know that                                     ,

which we would estimate by S2/n.

To estimate the MSE via bootstrap, we have to calculate
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8.3 The Bootstrapping Technique for Estimating Mean Squares

If we think of X1,…,Xn as a population of values, then the

vector (x1,…,xn), where each element is drawn from

X1,…,Xn with replacement can take on nn possible values.

The MSE is then approximately
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8.3 The Bootstrapping Technique for Estimating Mean Squares

The MSE is approximately

But this requires summing nn terms, a daunting task.

If n=20, then there are 1.0486×1026 terms!

To get around this, we use simulation and approximate the

empirical MSE.
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8.3 The Bootstrapping Technique for Estimating Mean Squares

From X1,…,Xn, generate r samples of size n with replacement
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8.3 The Bootstrapping Technique for Estimating Mean Squares

From X1,…,Xn, generate r samples of size n with replacement
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Discussion

 Questions?
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Homework 10

1. Generate 106 sets of 8 random data values from a normal μ=100, σ=3. 

 Calculate s2 for each. 

 Make a histogram and form eCDF.

 Compare the eCDF percentiles to the theoretical percentiles.

2. Find the 4% minimum length CI for σ2 when we have ν=7.  

 Compare the min length Confidence Interval values to the usual 

 2% in each tail. Generically assume s2 =1. Comment.
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Homework 10

3. Generate n=25 random numbers from a normal distribution 

 with µ=100 and σ=5. Compute    and s2.

 Generate m=105 bootstrap samples of size n=25 from your sample. 

 a) Compute the mean and variance of each sample. 

 b) Make a histograms of means and variances in a).

 c) Compute mean and variance of means and variances in a).

 d) Compute bootstrap estimate of var(s2). 

 e) Compare theoretical values to bootstrap values. 

 g) Repeat with larger/smaller n. 

 h) Comment.

 

34D.B. Rowe

MSSC 6020 Statistical Simulation

[ ]E x =
2

var[ ]


=x
n

2 2[ ]E s =
4

2 2
var[ ]

1
s

n


=

−

x


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

