Chapter 6: The Multivariate Normal Distribution and Copulas

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Agenda

- **6.1 The Multivariate Normal**
- 6.2 Generating a Multivariate Normal Random Vector
- 6.3 Copulas
- 6.4 Generating Variables from Copula Models Symmetric Matrix Factorizations

In 1-D, we can obtain a random variable x that has a general normal distribution with mean μ and variance σ^2 via the transformation

 $x = \sigma z + \mu$

The PDF of x can be obtained by

 $f(x \mid \mu, \sigma^2) = f(z(x)) \times |J(z \rightarrow x)|$

where z(x) is z written in terms of x and $J(\cdot)$ is the Jacobian of the transformation.

3

6.1 The Multivariate Normal-Bivariate

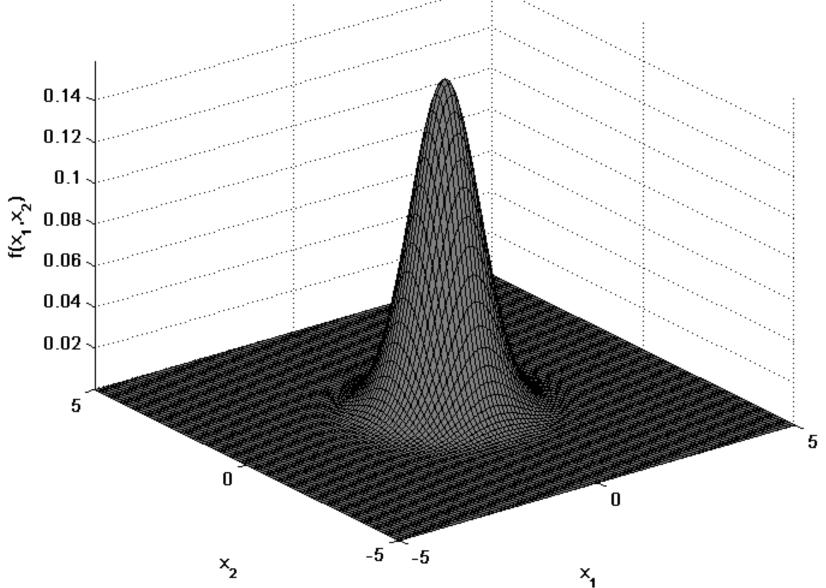
A bivariate (2-D) PDF

of two continuous random

variables (x_1, x_2) depending upon parameters θ satisfies

1)
$$0 \le f(x_1, x_2 \mid \theta), \ \forall (x_1, x_2)$$

2)
$$\iint_{x_1x_2} f(x_1, x_2 \mid \theta) dx_1 dx_2 = 1$$

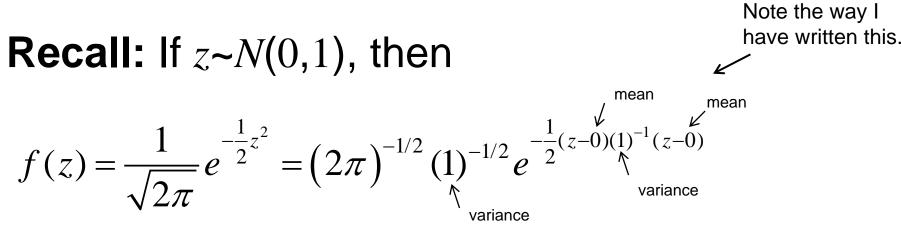


Let
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 be a 2-dimensional (or *p*-dimensional) random values
with PDF of x being $f(x|\theta)$, then
 $E(x|\theta) = \begin{pmatrix} E(x_1|\theta) \\ E(x_2|\theta) \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ Marginal means.
 $= \mu$
 2×1 Marginal values.
 $\operatorname{cov}(x|\theta) = \begin{pmatrix} \operatorname{var}(x_1|\theta) & \operatorname{cov}(x_1, x_2|\theta) \\ \operatorname{cov}(x_1, x_2|\theta) & \operatorname{var}(x_2|\theta) \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$
 $= \sum_{2 \times 2}$

Scalars and vectors and are lower case, matrices are upper case.

ariable

6.1 The Multivariate Normal-Bivariate



We can obtain a random variable *x* that has a

general normal distribution with mean μ and

variance σ^2 via the transformation $x = \sigma z + \mu$.

6.1 The Multivariate Normal-Univariate

The PDF of *x* can be obtained by $f(x \mid \mu, \sigma^2) = f(z(x)) \times |J(z \to x)|$ $J(z \to x) = \frac{dz(x)}{dx}$

where $z_{1\times 1} = z(x)$ and $J(\cdot)$ is the Jacobian of the transformation.

The PDF of x is $f(x \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ Which can be written as $f(x \mid \mu, \sigma^2) = \left(2\pi\right)^{-1/2} \left(\sigma^2\right)^{-1/2} e^{-\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)}$ Note the way I have written this.

6.1 The Multivariate Normal-Univariate

Given two continuous random variables (z_1, z_2) , we write

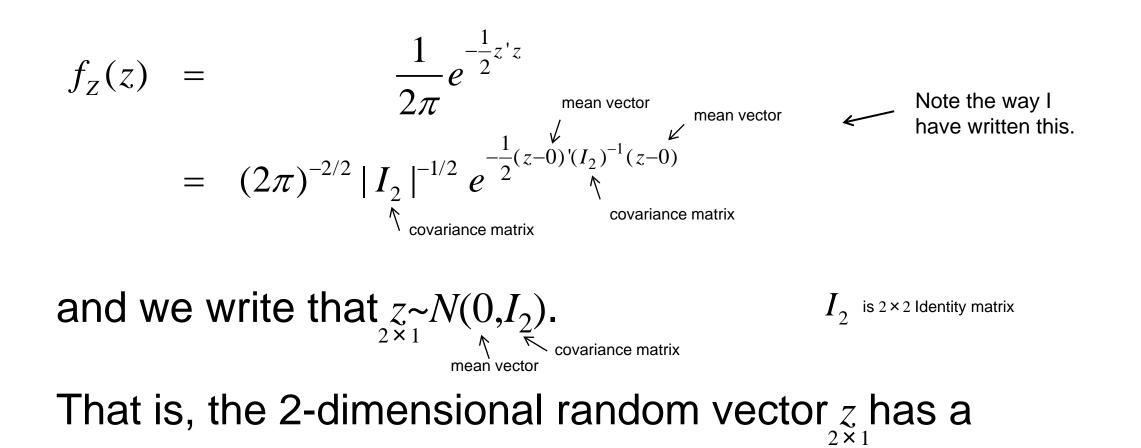
them as a 2-dimensional vector $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$, and this vector

If z_1 and z_2 are independent, then $f_Z(z | \theta) = f_{Z_1}(z_1 | \theta_1) f_{Z_2}(z_2 | \theta_2)$

Let
$$z_1$$
 and z_2 be iid $N(0,1)$ random variables.
Then, $z_{2\times 1} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ has PDF $f_{Z_1,Z_2}(z_1,z_2) = f_{Z_1}(z_1)f_{Z_2}(z_2)$.
 $= \frac{1}{2\pi}e^{-\frac{1}{2}(z_1^2+z_2^2)}$
With vector $z_{2\times 1}$ this can be rewritten as $f_Z(z) = (2\pi)^{-\frac{2}{2}}e^{-\frac{1}{2}z'z}$.

6.1 The Multivariate Normal-Bivariate

This can also be written as



mean vector of zero and identity variance-covariance matrix.

D.B. Rowe

$z = \begin{pmatrix} z_1 \\ z_2 \\ z_2 \end{pmatrix}$

This means that

$$f_{Z}(z) = (2\pi)^{-2/2} |I_{2}|^{-1/2} e^{-\frac{1}{2}(z-0)'(I_{2})^{-1}(z-0)}$$

$$E(z) = \begin{pmatrix} E(z_{1}) \\ E(z_{2}) \end{pmatrix} = \begin{pmatrix} \mu_{1} \\ \mu_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$= \mu = 0$$

$$2 \times 2 \text{ Identity matrix}$$

$$cov(z) = \begin{pmatrix} var(z_{1}) & cov(z_{1}, z_{2}) \\ cov(z_{1}, z_{2}) & var(z_{2}) \end{pmatrix} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \sum_{2 \times 2} = I_{2}$$

D.B. Rowe

$z = \begin{pmatrix} z_1 \\ z_{\times 1} \\ z_2 \end{pmatrix}$

11

If
$$z \sim N(0, I_2)$$
, then
 $f(z) = (2\pi)^{-2/2} |I_2|^{-1/2} e^{-\frac{1}{2}(z-0)'(I_2)^{-1}(z-0)}$

We can obtain a random variable $x_{2\times 1}$ that has a general normal distribution with mean vector μ and variancecovariance matrix $\sum_{2 \times 2} via$ the transformation $x = A z + \mu$ where $\sum_{2 \times 2} = AA'$, is a factorization (i.e. Cholesky or Eigen).

 $z = \begin{pmatrix} z_1 \\ z_{\times 1} \\ z_2 \end{pmatrix}$

 $\begin{array}{c} x = \begin{pmatrix} x_1 \\ \\ x_2 \end{pmatrix} \\ \begin{array}{c} x \\ x_2 \end{array}$ $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

6.1 The Multivariate Normal-Bivariate

If a random variable x has a normal distribution with mean vector μ and variance-covariance matrix Σ , then 2×2 2×1 $f(\underset{2\times1}{x} \mid \mu, \Sigma) = (2\pi)^{-p/2} \mid \underset{\mathbb{N}}{\Sigma} \mid^{-1/2} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)} \overset{\text{rean vector}}{\overset{\text{rean vecto$ mean vector $x, \mu \in \mathbb{R}^p$ p = 2 $\Sigma > 0$ ↑ set of pos def matrices mean vector and we write $x \sim N(\mu, \Sigma)$. The covariance matrix Σ , has to be of full rank (there is an inverse in PDF). make sure you know what this means

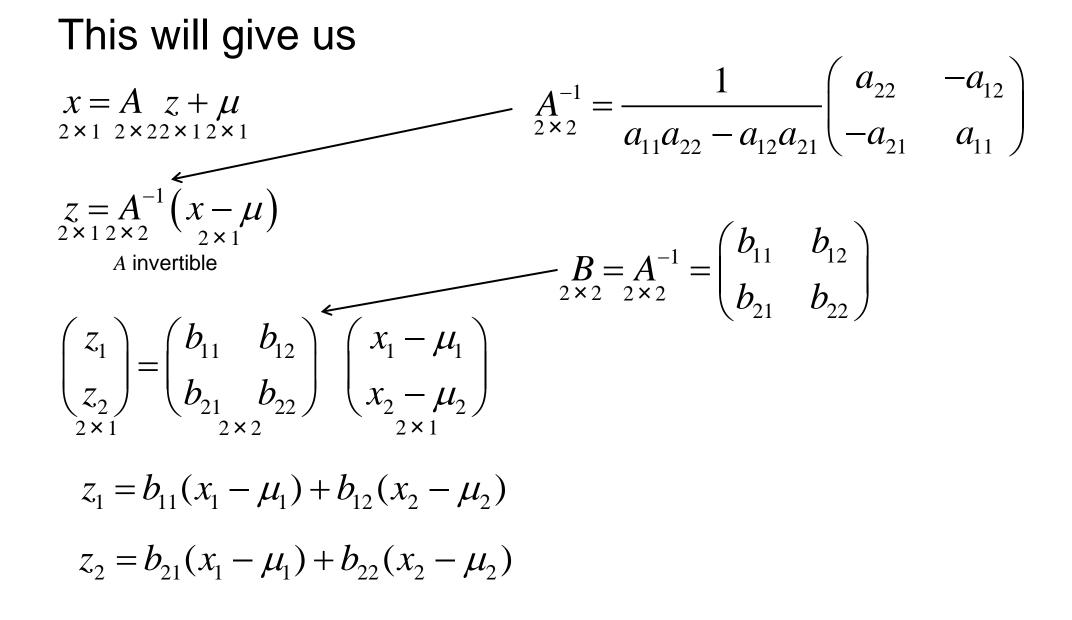
Let's take a closer look at this bivariate transformation.

 $\underset{2 \times 1}{x} = A \underset{2 \times 2}{z} \underset{2 \times 1}{z} + \mu \underset{2 \times 1}{\mu}$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$x_1 = a_{11}z_1 + a_{12}z_2 + \mu_1$$
$$x_2 = a_{21}z_1 + a_{22}z_2 + \mu_2$$

We can solve for $z_1 and z_2$ in terms of $x_1 and x_2$.

6.1 The Multivariate Normal-Bivariate



6.1 The Multivariate Normal-Bivariate

$$z_1 = b_{11}(x_1 - \mu_1) + b_{12}(x_2 - \mu_2)$$
$$z_2 = b_{21}(x_1 - \mu_1) + b_{22}(x_2 - \mu_2)$$

Continuing on, this leads to

$$J(z_{1}, z_{2} \to x_{1}, x_{2}) = \begin{vmatrix} \frac{\partial z_{1}(x_{1}, x_{2})}{\partial x_{1}} & \frac{\partial z_{1}(x_{1}, x_{2})}{\partial x_{2}} \\ \frac{\partial z_{2}(x_{1}, x_{2})}{\partial x_{1}} & \frac{\partial z_{2}(x_{1}, x_{2})}{\partial x_{2}} \end{vmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \underset{2 \times 2}{B}$$

i.e. with $z=B(x-\mu)$, the vector derivative is $J = \frac{\partial z}{\partial x} = B_{2\times 2}$.

The distribution of the vector variable $x_{2\times 1}$ (joint of x_1 and x_2) is

$$\begin{aligned} f_X(x \mid \theta) &= f_Z(z(x)) \times |J(z \to x)| \\ f(z) &= (2\pi)^{-p/2} |I_p|^{-1/2} e^{-\frac{1}{2}(z-0)'(I_p)^{-1}(z-0)} \qquad J = \frac{\partial z}{\partial x} = B \\ f_X(x \mid \mu, \Sigma) &= (2\pi)^{-2/2} |I_p|^{-1/2} e^{-\frac{1}{2}(B(x-\mu)-0)'(I_p)^{-1}(B(x-\mu)-0)} |B| \end{aligned}$$

$$\Sigma = AA', |\Sigma| = |A| |A'| = |A|^2, |\Sigma|^{1/2} = |A|, B = A^{-1} |\Sigma|^{-1/2} = |B|$$

$$f_X(x \mid \mu, \Sigma) = (2\pi)^{-p/2} \mid \Sigma \mid^{-1/2} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)} \quad x, \mu \in \mathbb{R}^p$$

$$\Sigma > 0$$

 $z = B(x - \mu)$

This form may be more familiar

$$f_{X}(x_{1}, x_{2} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2}\rho}$$
$$Q = \frac{1}{(1-\rho^{2})} \left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho \left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right) \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right) + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2} \right]$$

 $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1$

 $\rho = \sigma_{12} / (\sigma_1 \sigma_2) \qquad \sigma_{12} = \operatorname{cov}(x_1, x_2)$

6.1 The Multivariate Normal

Theorem: If *x* is a 2-D (or *p*-D) random variable from $f(x|\mu,\Sigma)$, with

 $E(x \mid \mu, \Sigma) = \mu$ think of p=2 $cov(x \mid \mu, \Sigma) = \Sigma$

 $p \times p$

then we form $y = A x + \delta$ where dimensions match

and A full column rank (A: $r \times p$, $r \leq p$), then

$$E(y \mid \mu, \Sigma, \delta, A) = \underset{r \times pp \times 1}{A} \underset{r \times 1}{\mu + \delta} \text{ and } var(y \mid \mu, \Sigma, A) = \underset{r \times pp \times pp \times r}{A} \underset{r \times pp \times pp \times r}{\Delta}$$

6.2 Generating a Multivariate Normal Random Vector

Recall: Let u_1 ~uniform(0,1) and u_2 ~uniform(0,1).

Let
$$z_1 = \sqrt{-2\ln(u_1)}\cos(2\pi u_2)$$
 and $z_2 = \sqrt{-2\ln(u_1)}\sin(2\pi u_2)$
then $u_1(z_1, z_2) = e^{-\frac{1}{2}(z_1^2 + z_2^2)}$ and $u_2(z_1, z_2) = \frac{1}{2\pi} \operatorname{atan}\left(\frac{z_2}{z_1}\right)$.

$$f_{Z_1,Z_2}(z_1,z_2 \mid \theta) = f_{U_1,U_2}(u_1(z_1,z_2),u_2(z_1,z_2) \mid \theta) \times |J(u_1,u_2 \to z_1,z_2)|$$

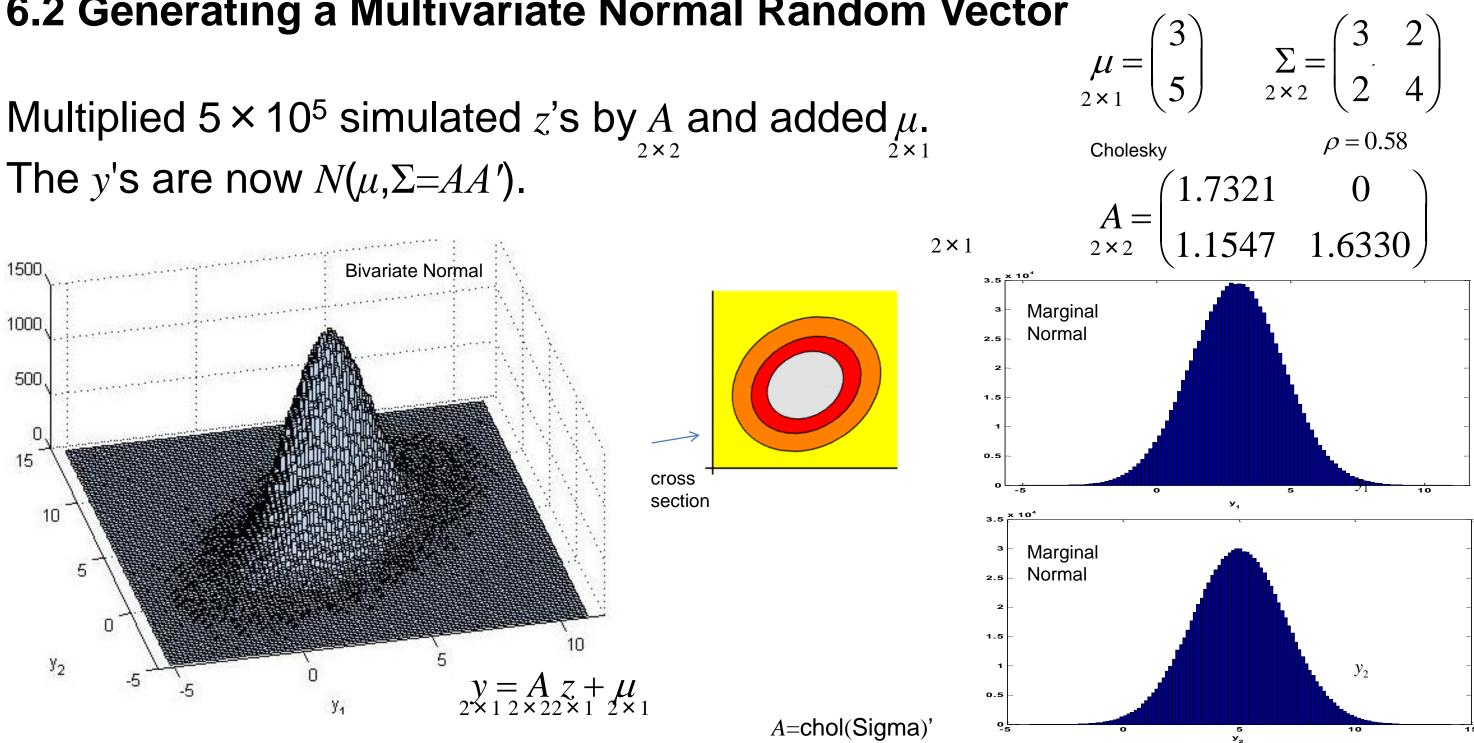
$$f_{Z_1,Z_2}(z_1,z_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z_1^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z_2^2}$$

This means $z_1 \sim N(0,1)$, $z_2 \sim N(0,1)$, z_1 and z_2 are independent.

MSSC 6020 Statistical Simulation 6.2 Generating a Multivariate Normal Random Vector Obtain 2-D standard normal variates $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ by transforming two independent standard uniform random variates u_1 and u_2 . **Bivariate Normal Bivariate Normal** 0.15 1000 0.1 500 0.05 \mathbf{z}_{2}

First half of 10⁶ standard normal variates as z_1 's and second half as z_2 's. Produce 5 × 10⁵ statistically independent z's

6.2 Generating a Multivariate Normal Random Vector



Symmetric Matrix Factorizations-Cholesky

6.1.6.1 Cholesky Factorization

Cholesky's method for factorizing a symmetric positive definite matrix Σ of dimension p is very straightforward. This factorization $\Sigma = A_{\Sigma}A'_{\Sigma}$ has the property that A_{Σ} be a lower triangular matrix. Denote the ij^{th} element of Σ and A_{Σ} to be σ_{ij} and a_{ij} respectively. Simple formulas [32] for the method are

$$a_{11} = \sqrt{\sigma_{11}}$$
(6.1.38)

$$a_{ii} = \sqrt{\sigma_{ii} - \sum_{k=1}^{i-1} a_{ik}^2}$$
(6.1.39)

$$a_{i1} = \frac{\sigma_{i1}}{a_{11}}$$
(6.1.39)

$$i = 1, \dots, n$$
(6.1.40)

$$a_{ij} = \frac{1}{a_{jj}} \left(\sigma_{ij} - \sum_{k=1}^{j-1} a_{ik} a_{jk} \right)$$
(6.1.41)
Rowe, 2003

Symmetric Matrix Factorizations-Cholesky

$$\Sigma = \begin{bmatrix} 4 & .75 \cdot 2 \cdot 4 \\ .75 \cdot 2 \cdot 4 & 16 \end{bmatrix}$$
$$a_{11} = \sqrt{4} = 2$$
$$a_{21} = \frac{.75 \cdot 2 \cdot 4}{\sqrt{4}} = 3$$
$$a_{22} = \sqrt{16 - a_{21}^2} = 2.6458$$
$$A = \begin{bmatrix} 2.0000 & 0 \\ 3.0000 & 2.6458 \end{bmatrix}$$

$$a_{11} = \sqrt{\sigma_{11}}$$

$$a_{ii} = \sqrt{\sigma_{ii} - \sum_{k=1}^{i-1} a_{ik}^2}$$

$$i = 2,$$

$$a_{i1} = \frac{\sigma_{i1}}{a_{11}}$$

$$i =$$

$$a_{ij} = \frac{1}{a_{jj}} \left(\sigma_{ij} - \sum_{k=1}^{j-1} a_{ik} a_{jk} \right)$$

$$i = j +$$

Sigma=[4,2*4*.75;2*4*.75,16]; a11=sqrt(4) a21=.75*sqrt(4*16)/sqrt(4) a22=sqrt(16-a21^2) A=[a11,0;a21,a22]

\dots, n

 $1,\ldots,n$

$1,\ldots,n;j\geq 2.$

24

Symmetric Matrix Factorizations-Eigenvector

Given a matrix Σ , it can be factorized symmetrically into $\Sigma = AA'$, where $A = UD^{1/2}$ with D being a diagonal matrix of eigenvalues and U being a matrix of eigenvectors.

Solve
$$|\Sigma - \lambda I| = 0$$
 to get $\lambda_1 > \dots > \lambda_p$

Then solve $\Sigma u_i = \lambda_i u_i$ to get $U = [u_1, \dots, u_p]$, $i = 1, \dots, p$.

Form A as $A = UD^{1/2}$.

25

Symmetric Matrix Factorizations-Eigenvector

$$\Sigma = \begin{bmatrix} 4 & .75 \cdot 2 \cdot 4 \\ .75 \cdot 2 \cdot 4 & 16 \end{bmatrix}$$
$$\begin{vmatrix} 4 & 6 \\ 6 & 16 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} = 0$$
$$\lambda^{2} - 20 + 28 = 0$$
$$\lambda_{1} = 10 + 6\sqrt{2}$$
$$\lambda_{2} = 10 - 6\sqrt{2}$$

$$U = \begin{bmatrix} 0.3827 & -0.9239 \\ 0.9239 & 0.3827 \end{bmatrix}$$
$$D = \begin{bmatrix} 18.4853 & 0 \\ 0 & 1.5147 \end{bmatrix}$$
$$A = \begin{bmatrix} 1.6453 & -1.1371 \\ 3.9722 & 0.4710 \end{bmatrix}$$
$$\Sigma = AA'$$

Sigma=[4,6;6,16] A=U*sqrt(D) A*A'

Cholesky

$$A = \begin{bmatrix} 2.0000\\ 3.0000 \end{bmatrix}$$

D.B. Rowe

[U,D]=eigs(Sigma,2,'largestabs')

0 2.6458)

Homework 4

Chapter 6: # 4, 5, 6.

- A. Assume Marquette Undergrads heights h have $\mu_{k}=67$ in and $\sigma_{k}=2$ in while their weights w have $\mu_{w}=150$ lbs and $\sigma_{w}=4$ lbs with $\rho=.75$.
- a) Present an algorithm for generating random height & weights using both Cholesky and Eigen factorizations.
- b) Generate 10,000 using each factorizations.

Compute summary means, variances, covariance and correlation. Make 2-D & 3-D histograms. Comment?

Homework 4

B. Generate 1000 bivariate observations (*h*,*w*) from the bivariate normal PDF $f(x \mid \mu, \Sigma) = (2\pi)^{-p/2} \mid \Sigma \mid^{-1/2} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}$ where $\underset{2 \times 1}{x = \binom{h}{w}}$, $\underset{2 \times 1}{\mu = \binom{\mu_h}{\mu_w}} = \binom{6'}{150}$

For this you will need an instrumental PDF

 $g(y_1, y_2)$ that you shift c for your "envelope" distribution.

Accept the bivariate random $(h,w) = (y_1,y_2)$ if $U < f((y_1,y_2)/(c g(y_1,y_2)))$. Then (h,w) has the desired PDF.

Make a histogram of the bivariate (h,w)'s. In Matlab use hist3. Calculate means, variances, and correlation. Comment.

D.B. Rowe

and $\sum_{2 \times 2} = \begin{pmatrix} \sigma_h^2 & \sigma_{hw} \\ \sigma_h & \sigma_h^2 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 16 \end{pmatrix}$

Assume: 59<h<75 134<w<166

