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6.1 The Multivariate Normal-Univariate

In 1-D, we can obtain a random variable x that has a general 

normal distribution with mean μ and variance σ2 via the transformation

                .

The PDF of x can be obtained by

where z(x) is z written in terms of x and J(∙) is the Jacobian of the

transformation.
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6.1 The Multivariate Normal-Bivariate

A bivariate (2-D) PDF                  
 
of two continuous random 

variables (x1,x2) depending 

upon parameters θ  satisfies

1) 

2)                                .

4D.B. Rowe

MSSC 6020 Statistical Simulation

1 2 1 20 ( , | ), ( , ) f x x x x

1 2

1 2 1 2( , | ) 1 =
x x

f x x dx dx



6.1 The Multivariate Normal-Bivariate

Let              be a 2-dimensional (or p-dimensional) random variable 

with PDF of x being f(x|θ), then
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6.1 The Multivariate Normal-Bivariate

Recall: If z~N(0,1), then 

                                                               

We can obtain a random variable x that has a 

general normal distribution with mean μ and 

variance σ2 via the transformation x = σ  z  + μ.
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6.1 The Multivariate Normal-Univariate

The PDF of x can be obtained by

where z=z(x) and J(∙) is the Jacobian of the transformation.
 

The PDF of x is

which can be written as  
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6.1 The Multivariate Normal-Univariate

Given two continuous random variables (z1,z2), we write

 

them as a 2-dimensional vector            , and this vector

has the PDF fz(z|θ). 

If z1 and z2 are independent, then

                                          .

8D.B. Rowe

MSSC 6020 Statistical Simulation

1

2

z
z

z

 
=  
 2×1

1 21 1 2 2( | ) ( | ) ( | )Z Z Zf z f z f z  =

vector

vector



6.1 The Multivariate Normal-Bivariate

Let z1 and z2 be iid N(0,1) random variables. 

Then,              has PDF                                          .

With vector z, this can be rewritten as                           .
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6.1 The Multivariate Normal-Bivariate

This can also be written as   

and we write that z~N(0,I2). 

That is, the 2-dimensional random vector z has a 

mean vector of zero and identity variance-covariance matrix.
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6.1 The Multivariate Normal-Bivariate

This means that
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6.1 The Multivariate Normal-Bivariate

If z~N(0,I2), then 

We can obtain a random variable x that has a general 

normal distribution with mean vector μ and variance-

covariance matrix Σ via the transformation x = A z + μ                          

where Σ = A A′ , is a factorization (i.e. Cholesky or Eigen).
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6.1 The Multivariate Normal-Bivariate

If a random variable x has a normal distribution with 

mean vector μ and variance-covariance matrix Σ, then 

and we write x~N(μ, Σ). The covariance matrix Σ, has to

be of full rank (there is an inverse in PDF).
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6.1 The Multivariate Normal-Bivariate

Let’s take a closer look at this bivariate transformation.

We can solve for z1 and z2 in terms of x1 and x2.
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6.1 The Multivariate Normal-Bivariate

This will give us
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6.1 The Multivariate Normal-Bivariate

Continuing on, this leads to

i.e. with z=B(x-μ), the vector derivative is               . 
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6.1 The Multivariate Normal-Bivariate

The distribution of the vector variable x (joint of x1 and x2) is

             ,                       ,               ,
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6.1 The Multivariate Normal-Bivariate

This form may be more familiar
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6.1 The Multivariate Normal

Theorem:

If x is a 2-D (or p-D) random variable from f(x|μ,Σ), with

 

then we form y = A x + δ where dimensions match 

and A full column rank (A: r×p, r≤p), then

                                  and                                .
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6.2 Generating a Multivariate Normal Random Vector

Recall: Let u1~uniform(0,1) and u2~uniform(0,1). 

Let                                         and                                        

then                          and                                 .

This means z1~N(0,1), z2~N(0,1), z1 and z2 are independent.
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6.2 Generating a Multivariate Normal Random Vector

Obtain 2-D standard normal variates             by transforming

two independent standard uniform random variates u1 and u2.

First half of 106 standard normal variates as z1's and second 

half as z2's. Produce 5×105 statistically independent z's
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6.2 Generating a Multivariate Normal Random Vector

Multiplied 5×105 simulated z’s by A and added μ.

The y's are now N(μ,Σ=AA′).
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Symmetric Matrix Factorizations-Cholesky
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Symmetric Matrix Factorizations-Cholesky
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Symmetric Matrix Factorizations-Eigenvector

Given a matrix Σ, it can be factorized symmetrically into Σ=AA ′, 

where A=UD1/2 with D being a diagonal matrix of eigenvalues

and U being a matrix of eigenvectors.

Solve                  to get 

Then solve Σui=λiui to get U=[u1,…,up], i=1,…,p.

Form A as A=UD1/2.

25D.B. Rowe

MSSC 6020 Statistical Simulation

0 − =I 1 ....   p



Symmetric Matrix Factorizations-Eigenvector
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Homework 4

Chapter 6: # 4, 5, 6. 

 A. Assume Marquette Undergrads heights h have 

 μh=67 in and σh=2 in while their weights w have

 μw=150 lbs and σw=4 lbs with ρ=.75.

 a) Present an algorithm for generating random height & weights using 

 both Cholesky and Eigen factorizations.

 b) Generate 10,000 using each factorizations. 

 Compute summary means, variances, covariance and correlation. 

 Make 2-D & 3-D histograms. Comment?
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Homework 4

B. Generate 1000 bivariate observations (h,w) from the bivariate 

normal PDF                                                       where             , 

                                                                  and 

For this you will need an instrumental PDF 

g(y1,y2) that you shift c for your “envelope” distribution. 

Accept the bivariate random (h,w)=(y1,y2) if U < f((y1,y2) /(c g(y1,y2)).

Then (h,w) has the desired PDF.

Make a histogram of the bivariate (h,w)‘s. In Matlab use hist3. 

Calculate means, variances, and correlation. Comment.
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Assume: 
59<h<75

134<w<166
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