

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

Department of Mathematical and Statistical Sciences Marquette University

Syllabus Spring 2024

Course: MSSC 6020 Statistical Simulation

Time: TuTh 5:00 pm - 6:15 pm

Location: Cudahy 137 (in-person)

Office Hours: TuTh 4:00 pm - 5:00 Cudahy 313 & by arrangement.

Instructor: Daniel B. Rowe, Ph.D. daniel.rowe@marquette.edu

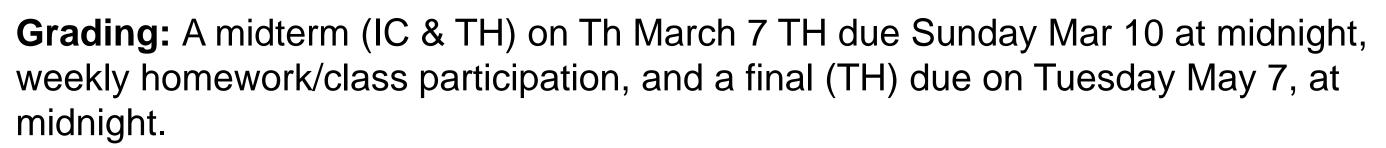
Course Description From The University Bulletin

MSSC 6020. Statistical Simulation. 3 cr. hrs.

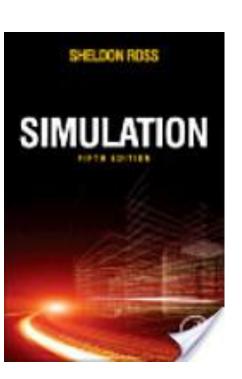
Elements of statistical simulation and modeling with applications. Generation of random variables, simulating statistical models, Monte Carlo method, Markov chains, birth-and-death processes, queues, variance reduction, Markov chain Monte Carlo (MCMC) methods and applications, bootstrapping, validation and analysis of simulated data. Prereq: MSSC 6010 and programming competency in a high-level language.

I am not the prerequisite enforcer!

Office Hours: TuTh 4:00-5:00 pm & by arrangement


Office: Cudahy Hall 313

E-mail: daniel.rowe@marquette.edu


Text: Ross, Sheldon. (2012).

Simulation, Fifth edition, Academic Press.

ISBN: 0124159710

Homework/Participation (30%), Midterm (30%), Final (40%).

Chapter 2: Elements of Probability

Covered by prerequisite.

Sample Space and Events, Axioms of Probability, Random Variables, Expectation, Discrete RVs, Continuous RVs, Conditional Expectation and Variance

Numerical Integration

Chapter 3: Random Numbers

Number Generation, Random Numbers to Evaluate Integrals

Chapter 4: Generating Discrete RVs

Inverse Transform, Poisson RV, Binomial RV, Acceptance-Rejection, Composition Approach, Alias Method, Random Vectors

Transformation of Variables

Continuous Distributions, PDF, CDF, Transformation of Variable, Uniform, Normal Distribution

Chapter 5: Generating Continuous RVs

Inverse Transform, Rejection Polar Method for Normal RVs, Poisson Processes, Nonhomogeneous Poisson Processes, 2D Poisson Process.

Bivariate Transformation of Variables

Chapter 6: Multivariate Normal and Copulas

Multivariate Normal, Generating Multivariate Normal RVs, Copulas,

Generating Variables from Copula Models

Wishart Distribution

Line Fitting and Univariate Multiple Regression

Multivariate Multiple Regression

Chapter 7: Discrete Event Simulation

Discrete Events, Queueing Systems, Inventory Model, Insurance Risk Model, Repair Problem, Stock Option

Chapter 8: Analysis of Simulated Data

Sample Mean and Variance, Interval Estimates of Mean, Bootstrapping for Mean Square Error

Chapter 9: Variance Reduction Techniques

Antithetic Variables, Control Variates, Variance Reduction by Conditioning, Stratified Sampling, Importance Sampling, Common Random Numbers, Exotic Option

Confidence Intervals for Variance

The Correlation Coefficient

Bayesian Statistics

Chapter 10: Additional Variance Reduction Techniques

Conditional Bernoulli Sampling, Normalized Importance Sampling,

Latin Hyper Cube Sampling

Chapter 11: Statistical Validation Techniques

Goodness of Fit Tests, Two Sample Problem, Validating Assumptions of a Nonhomogeneous Poisson Process

Chapter 12: Markov Chain Monte Carlo Methods

Markov Chains, Hastings-Metropolis Algorithm, Gibbs Sampler, Markov Chains and Queueing Loss, Simulated Annealing, Sampling Importance Resampling

Numerical Flavor

All slides are a summary of the material and do not contain all detail. Book is ultimate authority.

Familiarize yourself with Matlab.

Questions?