Transformation of Variables

Daniel B. Rowe, Ph.D.

Professor
Department of Mathematical and Statistical Sciences

Outline

Continuous Distributions

PDF, Moments, CDF

Transformation of Variable

Uniform, Normal Distribution

Continuous RVs, PDFs, and CDFs

Assume that the continuous random variable (RV) can take on values

$$x \in [a,b]$$

then, the probability distribution function (PDF) is given by

$$f(x | \theta)$$
 defined for $x \in [a,b]$

where x can be defined within an infinite interval

and θ are any parameters that the PDF depends on.

Continuous RVs, PDFs, and CDFs

Further, the cumulative distribution function (CDF) is given by

$$F(x \mid \theta) = \int_{t=-\infty}^{x} f(t \mid \theta) dt$$

Additionally, any PDF must satisfy

$$1) \qquad 0 \le f(x \mid \theta)$$

$$2) \int_{x} f(x \mid \theta) dx = 1 .$$

Continuous Expectation

Given an arbitrary continuous probability distribution $f(x|\theta)$, we want to

compute quantitative population summaries of it such as

population mean,
$$\mu = \int_{x=-\infty}^{\infty} x f(x \mid \theta) dx$$

population variance,
$$\sigma^2 = \int_{x=-\infty}^{\infty} (x - \mu)^2 f(x \mid \theta) dx$$

population standard deviation, $\sigma = \sqrt{\sigma^2}$

Continuous Summaries

Given an arbitrary continuous probability distribution $f(x|\theta)$, we want to

compute quantitative population summaries of it such as

population median
$$\tilde{x}$$
, $\int_{x=-\infty}^{\tilde{x}} f(x \mid \theta) dx = \frac{1}{2}$

population mode \hat{x} ,

$$\left. \frac{\partial}{\partial x} f(x \mid \theta) \right|_{\hat{x}} = 0$$

Provided f is differentiable. Max if 2nd der neg at point. Check boundary points for max.

Continuous Expectation

These population moment numerical summaries are found by expectation

$$E[g(X) | \theta] = \int_{x=-\infty}^{\infty} g(x) f(x | \theta) dx$$

The mean is

$$\mu = E(X \mid \theta)$$

and the variance is

$$\sigma^2 = E[(X - \mu)^2 \mid \theta]$$

Change of Variable

Given a random variable x, with probability

distribution function $f_X(x|\theta)$, we often would

like to know the probability distribution of a

random variable y, that is a function y(x) of x,

$$y=y(x)$$
.

Change of Variable

Let y=y(x) be a one-to-one transformation

with inverse transformation x=x(y).

Then, if $f_X(x|\theta)$ is the PDF of x, the PDF of y can be found as

$$f_{Y}(y \mid \theta) = f_{X}(x(y) \mid \theta) \times |J(x \rightarrow y)|$$

where
$$J(x \to y) = \frac{dx(y)}{dy}$$
.

Suppress PDF subscripts.

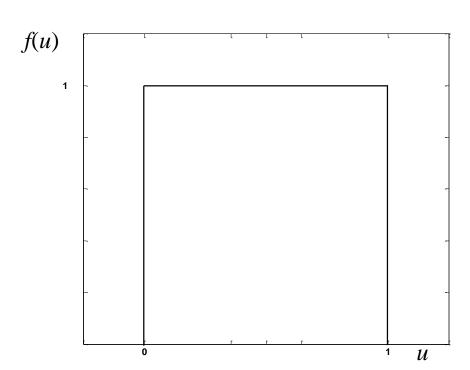
A random variable u has a continuous uniform distribution, u~uniform(0,1) if

$$f(u) = \begin{cases} 1 & \text{if } u \in [0,1] \\ 0 & \text{if } u \notin [0,1] \end{cases},$$

and

$$\mu_u = \frac{1}{2}$$

$$\sigma_u^2 = \frac{1}{12}$$

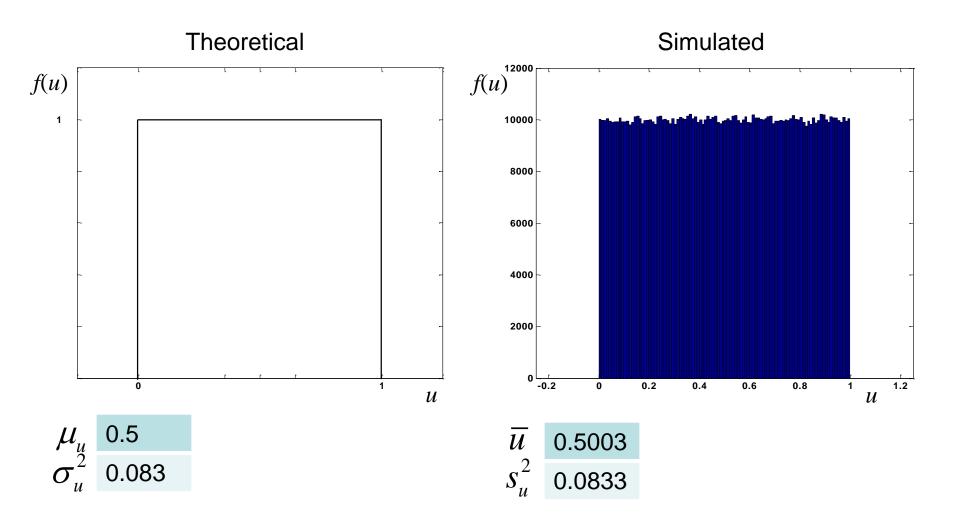


We can generate 10⁶ random uniform(0,1) variates and compare theoretical PDF to empirical histogram

$$f(u) = \begin{cases} 1 & \text{if } u \in [0,1] \\ 0 & \text{if } u \notin [0,1] \end{cases}$$

along with mean and variance

```
u=rand(10^6,1);
hist(u,100)
mean(u)
var(u)
```



We can obtain a random variable x that has a general uniform distribution in the interval a to b via the transformation

$$x = (b - a)u + a$$

The PDF of x can be obtained by

$$f(x|a,b) = f(u(x)) \times |J(u \rightarrow x)|$$

where u(x) is u written in terms of x and $J(\cdot)$ is the Jacobian of the transformation.

The original variable u in terms of the new variable is

$$u(x) = \frac{x - a}{b - a}$$

and the Jacobian of the transformation is

$$J(u \to x) = \frac{du(x)}{dx} = \frac{1}{b-a} .$$

This yields

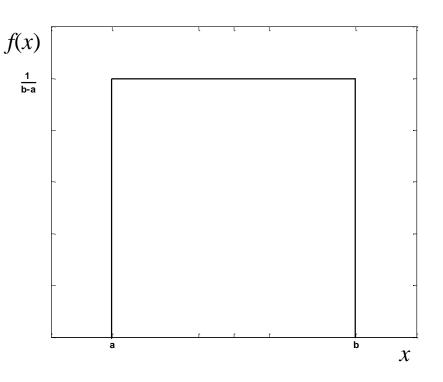
$$f(x \mid a, b) = f(u(x)) \times |J(u \to x)| = 1 \times \left| \frac{1}{b - a} \right|.$$

A random variable x has a continuous uniform distribution, x-uniform(a,b) if

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$$

where, $a,b \in \mathbb{R}$, a < b.

Note that u=0 mapped to x=a and u=1 mapped to x=b.



We can generate 10^6 random uniform(a,b) variates and compare theoretical PDF to empirical histogram

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$$

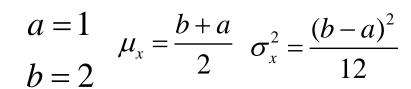
along with mean & variance by transforming random variates

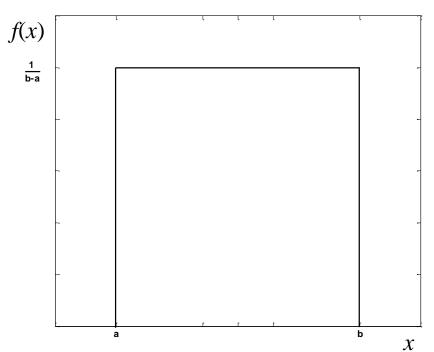
```
a=1;,b=2;

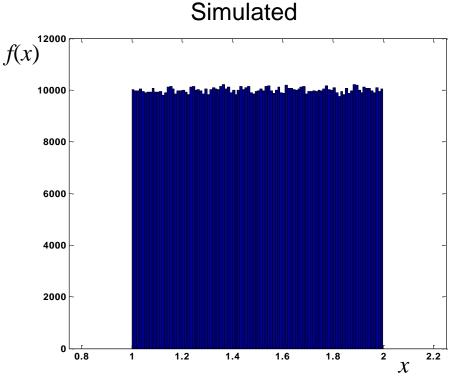
x=a+(b-a)*u;

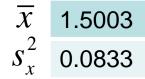
hist(x,100)

mean(x), var(x)
```









Change of Variable

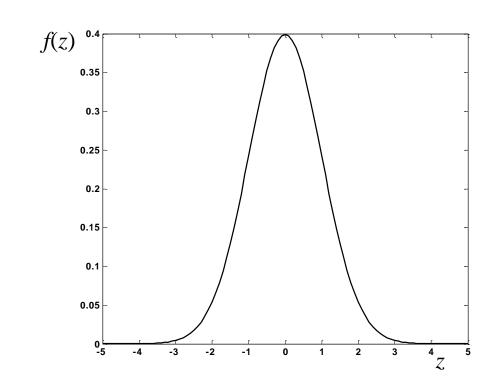
Normal: The same process can be applied.

A random variable z has a standard normal distribution, z~normal(0,1) if

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2},$$

where $z \in \mathbb{R}$ and

$$\mu_z = 0 \qquad \sigma_z^2 = 1 \cdot$$

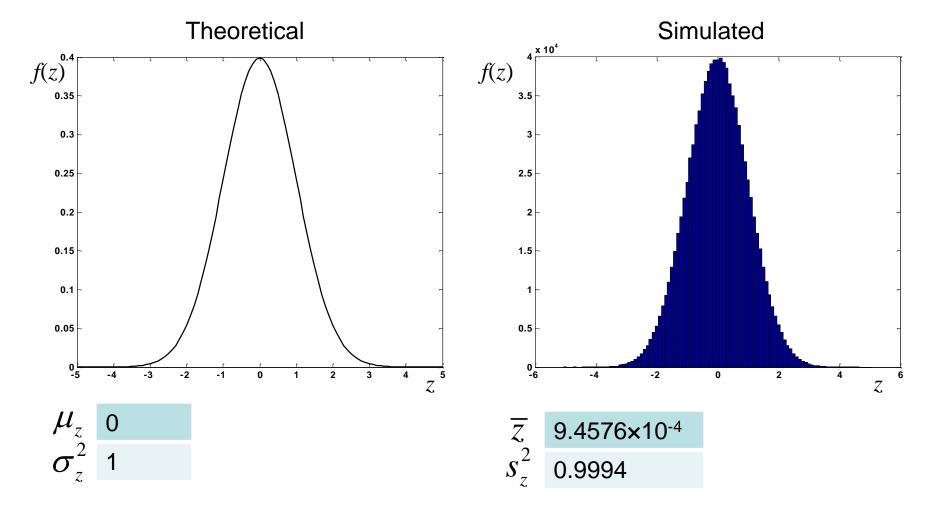


We can generate 10⁶ random normal(0,1) variates and compare theoretical PDF to empirical histogram

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

along with mean and variance

```
z=randn(10^6,1);
hist(z,(-5:.1:5))
mean(z), var(z)
xlim([-5 5])
```



We can obtain a random variable x that has a general normal distribution with mean μ and variance σ^2 via the transformation

$$x = \sigma z + \mu$$

The PDF of x can be obtained by

$$f(x \mid \mu, \sigma^2) = f(z(x)) \times |J(z \rightarrow x)|$$

where z(x) is z written in terms of x and $J(\cdot)$ is the Jacobian of the transformation.

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

The original variable z in terms of the new variable is

$$z(x) = \frac{x - \mu}{\sigma}$$

and the Jacobian of the transformation is

$$J(z \to x) = \frac{dz(x)}{dx} = \frac{1}{\sigma} .$$

This yields

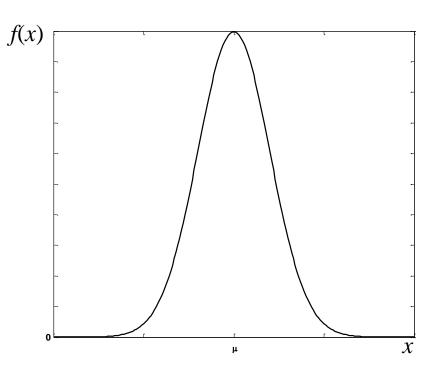
$$f(x \mid \mu, \sigma^2) = f(z(x)) \times |J(z \to x)| = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} \times \left|\frac{1}{\sigma}\right|.$$

A random variable x has a general normal distribution, x-normal(μ , σ ²) if

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} f(x)$$

where, $x, \mu \in \mathbb{R}$, $0 < \sigma$.

Note that $z=-\infty$ mapped to $x=-\infty$ and $z=\infty$ mapped to $x=\infty$.



We can generate 10^6 random normal(μ , σ^2) variates and compare theoretical PDF to empirical histogram

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

along with mean & variance by transforming random variates

```
mu=5;,sigma=2;

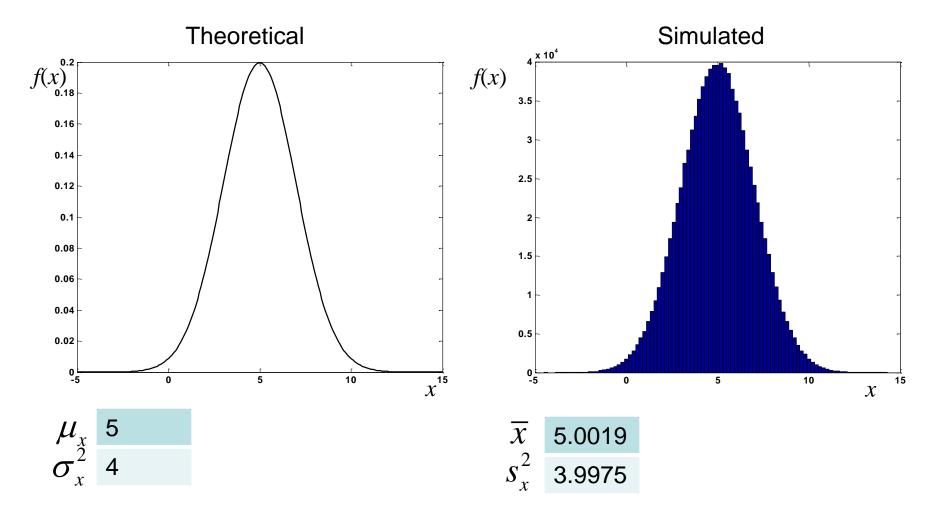
x=mu+sigma*z: 10^6 standard normal variates

z=randn(10^6,1);

hist(x,(-5:.2:15))

mean(x), var(x), xlim([-5 15])
```

$$\mu = 5$$
 $\sigma^2 = 4$



Change of Variable

This process can be used to find the distribution of more than linear functions y=y(x) of random variables.

For example, let $x\sim \text{normal}(\mu,\sigma^2)$.

Assume we want to know the distribution of $y = \left(\frac{x - \mu}{\sigma}\right)^2$.

We can determine f(y) through the transformation of variable procedure.

$$f_{Y}(y | \theta) = f_{X}(x(y) | \theta) \times |J(x \to y)|$$
 Homework problem.

Change of Variable Not one-to-one

Let y=y(x) be a not one-to-one transformation, (i.e. $y=x^2$, then $x_1(y)=+\sqrt{y}$ and $x_2(y)=-\sqrt{y}$.)

We can still perform the change of variable by breaking up the transformation into pieces that are 1-to-1.

$$f_Y(y | \theta) = \sum_j f_X(x_j(y) | \theta) \times \left| \frac{dx_j(y)}{dy} \right|$$

i.e.
$$f_Y(y | \theta) = f_X(\sqrt{y} | \theta) \left| \frac{1}{2\sqrt{y}} \right| + f_X(-\sqrt{y} | \theta) \left| \frac{-1}{2\sqrt{y}} \right|$$

- 1) Let $x \sim \text{Normal}(\mu, \sigma^2)$.
 - a) Derive the distribution of $y = \left(\frac{x \mu}{\sigma}\right)^{x}$ using the transformation of variable technique.
 - b) What is the name of the distribution?
 - c) What are the mean and variance of this distribution?
- 2) Generate 10⁶ Normal(5,4) random variates.
 - a) Make a histogram, 50 bins.
 - b) Compute sample mean and variance.
 - c) Subtract 5 from each random variate, divide by 2, square.
 - d) Make a histogram, 50 bins.
 - e) Compute sample mean and variance.

- 3) Let u~uniform(0,1).
 - a) Derive the distribution of $y=-2\ln(u)$ using the transformation of variable technique.
 - b) What is the name of the distribution?
 - c) What are the mean and variance of this distribution?
- 4) Generate 10⁶ uniform(0,1) random variates.
 - a) Make a histogram, 50 bins.
 - b) Compute sample mean and variance.
 - c) Take natural log of each variate then multiply by -2.
 - d) Make a histogram, 50 bins.
 - e) Compute sample mean and variance.

- 5) Let u~uniform(- π /2, π /2).
 - a) Derive the distribution of $y=\tan(u)$ using the transformation of variable technique.
 - b) What is the name of the distribution?
 - c) What are the mean and variance of this distribution?
- 6) Generate 10^6 uniform $(-\pi/2, \pi/2)$ random variates.
 - a) Make a histogram, 50 bins.
 - b) Compute sample mean and variance.
 - c) Take tangent of each variate.
 - d) Make a histogram, 50 bins.
 - e) Compute sample mean and variance.

- 7) Let $x \sim \text{normal}(0,1)$.
 - a) Use the transformation of variable technique for y=1/x.
 - b) What can you tell us about the distribution of *y*?
- 8) Numerically integrate the f(y) PDF with rectangles to find the 99th percentile.
- 9) Generate 10⁶ normal(0,1) random variates.
 - a) Make a histogram, 50 bins.
 - b) Compute sample mean and variance.
 - c) Take the reciprocal of each random variate for y=1/x.
 - d) Make a histogram, 50 bins.
 - e) Compute sample mean and variance.
 - f) Find the .99*106 largest value x_0 . (Compare to 8)