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In MRI and fMRI, images or voxel measurement are complex valued

or bivariate at each time point. Recently, (Rowe, D.B., Logan, B.R.,

2004. A complex way to compute fMRI activation. NeuroImage 23 (3),

1078–1092) introduced an fMRI magnitude activation model that

utilized both the real and imaginary data in each voxel. This model,

following traditional beliefs, specified that the phase time course were

fixed unknown quantities which may be estimated voxel-by-voxel.

Subsequently, (Rowe, D.B., Logan, B.R., 2005. Complex fMRI analysis

with unrestricted phase is equivalent to a magnitude-only model.

NeuroImage 24 (2), 603–606) generalized the model to have no

restrictions on the phase time course. They showed that this

unrestricted phase model was mathematically equivalent to the usual

magnitude-only data model including regression coefficients and voxel

activation statistic but philosophically different due to it derivation

from complex data. Recent findings by (Hoogenrad, F.G., Reichenbach,

J.R., Haacke, E.M., Lai, S., Kuppusamy, K., Sprenger, M., 1998. In

vivo measurement of changes in venous blood-oxygenation with high

resolution functional MRI at .95 Tesla by measuring changes in

susceptibility and velocity. Magn. Reson. Med. 39 (1), 97–107) and

(Menon, R.S., 2002. Postacquisition suppression of large-vessel BOLD

signals in high-resolution fMRI. Magn. Reson. Med. 47 (1), 1–9)

indicate that the voxel phase time course may exhibit task related

changes. In this paper, a general complex fMRI activation model is

introduced that describes both the magnitude and phase in complex

data which can be used to specifically characterize task related change

in both. Hypotheses regarding task related magnitude and/or phase

changes are evaluated using derived activation statistics. It was found

that the Rowe–Logan complex constant phase model strongly biases

against voxels with task related phase changes and that the current

very general complex linear phase model can be cast to address several

different hypotheses sensitive to different magnitude/phase changes.
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Introduction

It is well known that in magnetic resonance imaging (MRI) and

functional magnetic resonance imaging (fMRI), images or voxel

measurements are complex valued or bivariate due to phase

imperfections and thus in fMRI, voxel time course measurements

appear in both the real and imaginary channels (Bernstein et al.,

1989; Haacke et al., 1999; Macovski, 1996). An example of a

voxel’s complex valued time course with assumed magnitude task

related changes and a constant phase is presented in Fig. 1, where

the length of the vector from the origin to the point in real-

imaginary space is the magnitude and the angle the vector makes

with the real axis is the phase. In fMRI, the real and imaginary

components are the quantities that are measured with observation

error. For example in a block design finger tapping experiment, the

vector described by the arrow in Fig. 1 appears to bjitter Q around in
a lower vector length state during the control task than the length of

this vector appears to bjitterQ around in a higher vector length state.

Any apparent bjitterQ in the phase would be purely from measure-

ment error in the real and imaginary components of the vector. In

fMRI, complex valued voxel time courses are generally converted

to magnitude and phase time courses then task related magnitude-

only data activation determined with the phase voxel time course

discarded (Bandettini et al., 1993; Cox et al., 1995). The original

complex data are unrecoverable after discarding the phase and the

magnitude-only operation is nonunique. Other attempts have been

made to avoid complex voxel time courses such as phasing them

into the real channel (Bernstein et al., 1989).

Rowe and Logan (2004) introduced a general complex fMRI

magnitude activation model in which multiple regressors were

allowed using the standard general linear statistical model,

hypothesis tests were formulated in terms of contrasts, and the

phase was directly modeled as a fixed unknown quantity which

may be estimated voxel by voxel (Rowe and Logan, 2004).

Furthermore, a large sample Chi-square distributed statistic was

presented for comparability between the two models. In Rowe and

Logan (2005), the complex model was generalized to have an

unrestricted phase time course (Rowe and Logan, 2005). They

showed that this model was mathematically equivalent to the usual

magnitude-only data model in terms of regression coefficients and
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Fig. 1. Complex valued voxel time course.

Fig. 2. Task related magnitude/phase changes. (a) Magnitude-alone change.

(b) Magnitude and phase change.
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voxel activation statistic but philosophically different due to its

derivation from complex data. The magnitude-only or equivalently

complex unrestricted phase data models only utilize information in

the magnitude through the exact Ricean distribution or through the

large signal-to-noise ratio (SNR) normal distribution approxima-

tion (Gudbjartsson and Patz, 1995; Rice, 1944). Parameter

estimation in the complex constant phase model and the

magnitude-only or equivalently complex unrestricted phase data

model were examined in Rowe (2005). Rowe (2005) found that the

magnitude-only data model with a normal approximation to a

Ricean distribution exhibited decreased activation detection power

at lower SNRs when compared to the complex constant phase

model but a Taylor series approximation to the Ricean distribution

showed modest improvement (Rowe, 2005).

However, Hoogenrad et al. (1998) and Menon (2002) presented

evidence to suggest that the voxel phase angle time courses may

not be exactly constant over time but may also exhibit task related

phase changes in voxels with blargeQ vessels (Hoogenrad et al.,

1998; Menon, 2002). This is the motivation for this work.

Specifically, a model is developed to help us characterize voxels

in terms of task related magnitude and/or phase changes. Voxels in

parenchyma with task related magnitude changes are of primary

interest, but voxels with task related phase changes, although not of

interest in themselves, their characterization helps us identify

voxels that only have task related magnitude changes that are of

interest.

In this paper, a general complex fMRI activation model is

introduced that describes both the magnitude and phase which can

be used to specifically model and test for task related changes in

the magnitude, the phase, or both the magnitude and phase. Thus,

in principle, activation can be determined from voxels with bsmallQ
vessels such as those in the capillary bed of parenchymal tissue

having solely magnitude changes and not voxels with blargeQ
vessels having task related changes in both the magnitude and

phase. This implies that the phase may contain information about

the brain that is not present in the magnitude of the response. The

situation of the vector valued voxel observation residing in the two

magnitude length states is depicted in Fig. 2a while the situation of

the two vector states that involve a lengthening and rotation is

depicted in Fig. 2b. Where for example, the magnitude and phase

are described by linear models with xtV being the t
th row of a design

matrix X having, for example, a column of ones, a column of

counting numbers, and a square wave reference function with

corresponding coefficients (b0, b1, b2) and (g0, g1, g2). The
activation model from magnitude-only data is sensitive to voxels

that have task related changes in the magnitude regardless of

whether there are changes of any kind in the phase, while

magnitude activation from complex data specifically describes

and dictates whether or not we wish to include voxels that have

task related phase changes. Menon sought to account for changes

in the observed magnitude that could be accounted for by changes

in the phase by including voxel phase values as a random

independent regressor variable in a least squares model (Menon,

2002).

In fMRI, we seek voxels with small vessels in parenchymal

tissue having random orientations whose phase contributions

are small in aggregate. Thus, in principle, the phase angle



D.B. Rowe / NeuroImage 25 (2005) 1310–13241312
contains information about the vasculature in the vicinity of the

voxel. It is this information that is sought to be modeled and

utilized. A generalization of the Rowe–Logan complex activa-

tion models (Rowe and Logan, 2004, 2005) is developed where

the phase angle can be described with a linear model where

task related changes in the phase can be quantified. With this

model, several pairs of hypotheses can be tested including

determining voxels that exhibit task related magnitude-alone

changes, phase-alone changes, along with task related magni-

tude and/or phase changes. Task related magnitude and/or phase

activation maps can be generated from complex valued voxel

time courses and an appropriate threshold determined (Logan

and Rowe, 2004).

Results of the proposed complex linear phase model with five

different hypothesis pairs are compared to a complex unrestricted

phase or strict magnitude-only data model, a phase-only data

model, and the Rowe–Logan complex constant phase data model

in terms of (1) thresholded activation maps for a real dataset then

(2) activation power for simulated data. The simulations are

performed with several magnitude contrast-to-noise ratios (CNRs)

and task related phase changes (TRPC) for two different signal-to-

noise ratios (SNRs).
Table 1

Some possible hypotheses for testing

Ha: Ch p 0, Dg p 0

Hb: Ch = 0, Dg p 0

Hc: Ch p 0, Dg = 0

Hd: Ch = 0, Dg = 0
Model

As previously noted, in MRI/fMRI due to random noise, phase

imperfections, and possible biophysical processes that produce

phase signal variation, we obtain a complex valued measured

object that consists of a true complex valued object plus complex

valued noise.

Neglecting the voxel location and focusing on an individual

voxel, the complex valued image yt measured over time t can be

described with a nonlinear multiple regression model that

includes both a temporally varying magnitude qt and phase ht

given by

yt ¼ qtcosht þ hRt½ � þ i qtsinht þ hI t½ �

qt ¼ xtVb ¼ b0 þ b1x1t þ : : : þ bq1xq1t

ht ¼ utVg ¼ g0 þ g1u1t þ : : : þ gq2uq2t; t ¼ 1;: : :; n ð2:1Þ

where hRt;hI tð ÞVfN 0;RÞ;ð xtVis the tth row of an n � ( q1 + 1)

design matrix X for the magnitude, utV is the tth row of an n �
( q2 + 1) design matrix U for the phase, and

P
= r2 I2 while b

and g are magnitude and phase regression coefficient vectors

respectively. Note that a separate design matrix U for the phase

has been incorporated but X and U can be the same. If g j = 0 for

j = 1,. . ., q2 then this becomes the Rowe–Logan constant phase

model. The complex valued observation yt can be represented at

time point t as a 2 � 1 vector instead of as a complex number

yRt
yIt

�
¼ qtcosht

qtsinht

�
þ hRt

hI t

�
; t ¼ 1;: : :; n:

���

The distributional specification is on the real and imaginary

parts of the voxel signal and not on the magnitude or length of a

vector. The phase signal in Eq. (2.1) is a temporally varying

quantity, which is described with a general linear model and

estimated voxel by voxel.
The Rowe–Logan complex fMRI activation models can be

written more generally as

y
2n�1

¼
 

A1 0

0 A 2

!
2n�2n

 
X 0

0 X

!
2n�2 q1þ1ð Þ

 
b
b

!
2 q1þ1ð Þ�1

þ h
2n�1

ð2:2Þ

imaginary values and the vector of errors h ¼ hRV;hIVð ÞVfN
0;R � Uð Þ is similarly defined where � is the Kronecker product

operation that multiplies every element of its first matrix argument

by its entire second matrix argument. Here, we specify that A = r2

I2 and U = In. Furthermore, A1 and A2 are square diagonal

matrices with tth diagonal element cos ht and sin ht respectively.
Activation

Linearly constrained magnitude and/or phase hypotheses can be

tested on an individual voxelwise basis with linear constraint

matrices C for the magnitude coefficients and D for the phase

coefficients that are of dimension r1 � ( q1 + 1) and r2 � ( q2 + 1)

respectively. Model parameters are estimated under appropriately

constrained null and alternative hypotheses then activation

determined with a generalized likelihood ratio statistic. Denote

the maximum likelihood estimators under the alternative hypo-

thesis using hats and those under the null hypothesis using tildes.

Then, the generalized likelihood ratio statistic as derived in

Appendix A for this task related magnitude and/or phase complex

fMRI activation model is

	 2logk ¼ 2nlog
r̃r2

r̂r2

�
:

�
ð3:1Þ

This statistic has an asymptotic vr
2 distribution where r is the

difference in the number of constraints between the alternative and

null hypotheses. Denoting r1 and r2 as the full row ranks of C and

D respectively, the degrees of freedom is either r1, r2, or r1 + r2.

With this model, there are four hypotheses that can readily be

seen as presented in Table 1. The parameters are estimated under

each of the hypotheses so that pairs of hypotheses can be used in a

generalized likelihood ratio test. Hypothesis Ha places no

constraints on either the magnitude or phase coefficients; hypo-

thesis Hb places constraints on the magnitude coefficients but not

on the phase coefficients; hypothesis Hc places constraints on the

phase coefficients but not on the magnitude coefficients; hypothesis

Hd places constraints on both the magnitude and phase coefficients.

From the four hypotheses, five meaningful hypothesis pairs can be

formed in which the parameter space of the null hypothesis is

contained within the parameter space of the alternative hypothesis.

The hypothesis pair Hd vs. Ha should detect task related voxel

activation either in the magnitude, the phase, or both since the

parameters are estimated under the null hypothesis with magnitude

and phase linear contrast equality constraints while under the

alternative hypothesis without magnitude or phase linear contrast
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equality constraints; Hd vs. Hb should detect task related voxel

activation in the phase while focusing on voxels without task related

magnitude changes since the parameters are to be estimated under

both hypotheses with the magnitude linear contrast equality

constraints; Hd vs. Hc should detect task related voxel activation

in the magnitude while focusing on voxels without task related

phase changes since the parameters are to be estimated under both

hypotheses with the phase linear contrast equality constraints; Hc

vs. Ha should detect task related voxel activation in the phase

regardless of whether or not there is task related changes in the

magnitude since the parameters are to be estimated under both

hypotheses without any magnitude linear contrast equality con-

straints; Hb vs. Ha should detect task related voxel activation in the

magnitude regardless of whether or not there is task related changes

in the phase since the parameters are to be estimated under both

hypotheses without any phase linear contrast equality constraints.

For example, consider a model with a magnitude design matrix

with three columns, the first being ones, the second being counting

numbers, and the last being a stimulus or task related reference

function along with a phase design matrix that is identical to the

magnitude one. The magnitude and phase regression coefficients

b0 and g0 represent intercepts; b1 and g1 representing a linear

drift over time; while b2 and g2 represent task related effects.

Then, for example, in hypothesis Hd, the linear coefficient

constraints of Hd: b2 = 0, g2 = 0 can be described by C = (0, 0,

1) and D = (0, 0, 1) so that the null hypothesis is Hd: b2 = 0, g2 =

0. It should be noted that the Rowe–Logan (Rowe and Logan,

2004) complex constant phase model is equivalent to the

hypothesis test of Hd vs. Hc with D = (0, Iq2
) or Hb vs. Ha with

U = (1,. . .,1)V and D = 1 while the complex unrestricted phase

model is equivalent to a hypothesis test of Hb vs. Ha with U = In
and D = In.

The existing hypotheses of magnitude-only data activation and

magnitude activation from complex data with constant phase are

supported within this framework. This framework allows for

additional hypotheses regarding task related activation in the

magnitude and/or phase in complex data. As previously noted,

voxels with task related magnitude and phase changes are

potentially ones that contain large vessels and not those that we

seek in parenchymal tissue with small vessels.
Real fMRI data

A bilateral sequential finger tapping experiment was per-

formed in a block design with 16 s off followed by eight epochs

of 16 s on and 16 s off. Scanning was performed using a 1.5T

GE Signa in which 5 axial slices of size 96 � 96 were acquired

with a full k-space single shot gradient echo pulse sequence

having a FA = 908 and a TE = 47ms. In image reconstruction,

the acquired data were zero filled to 128 � 128. After Fourier

image reconstruction, each voxel has dimensions in of 1.5625 �
1.5625 � 5. Observations were taken every TR = 1000 ms so

that there are 272 in each voxel. Data from a single axial slice

through the sensorimotor cortex was selected for analysis. Pre-

processing included the removal of the first three points to omit

magnetic field equalization effects followed by the use of an

ideal 0/1 frequency filter (Gonzales and Woods, 1992; Press et

al., 1992) to remove respiration and low frequency physiological

noise. Where necessary, the phase time courses were unwrapped

for jumps greater than p between successive observations.
In Figs. 3a–c are 5% false discovery rate (FDR) thresholded v2-

statistic maps with real fMRI data for (a) the complex unrestricted

phase (UP) or usual magnitude-only data model; (b) a phase-only

(PO) data model (activation from phase-only data assuming

normality); (c) the Rowe–Logan complex constant phase (CP)

activation model; along with overlap maps in (d)–(f) zoomed in to

a central 64 � 64 section for (d) the models in (a) and (c); (e) the

models in (a) and (b); and (f) the models in (b) and (c).

Additionally, the same v2-statistic and overlap maps are presented

in Figs. 4a–f except a 5% Bonferroni familywise error (FWE) rate

thresholded is applied. In Figs. 3d–f and 4d–f, voxels that were

above threshold only for the UP model are colored red, only for the

CP model colored orange, only for the UP and CP models colored

yellow, only for the PO model colored light blue, only for the UP

and PO models colored pink, only for the CP and PO models

colored dark blue.

In Figs. 3d and 4d, it can be seen that the voxels that are above

threshold for the CP model are essentially a subset of those above

threshold for the UP model. In Figs. 3e and 4e, it can be seen that

the voxels that are above threshold for the UP model include many

voxels that are also above threshold for the PO model. In Figs. 3f

and 4f, it can be seen that the voxels that are above threshold for

the CP model include very few voxels that are also above threshold

for the PO model as compared to the UP model. These phenomena

are more prominent for a Bonferroni FWE threshold. Summariz-

ing, it can be seen from both the activation and overlap maps in

Figs. 3 and 4 that the complex unrestricted phase model declares

any voxels as active that have statistically significant TRPC and

that the Rowe–Logan complex activation model with a constant

phase biases against voxels with TRPC as seen by fewer voxels

colored dark blue than pink.

For the same data, the v2 activation maps from the five

hypothesis pairs from the current complex model (CM) are applied

and presented in Figs. 5a–e. Different hypothesis pairs of the

current complex linear TRPC model are sensitive to different

things. The properties of this model are pictorially presented in

Figs. 5 and 6. It can be seen that the hypothesis test pair Hd vs. Hc

in Fig. 5c and the pair Hb vs. Ha in Fig. 5e are very similar to the

CP activation map. This similarity is because, in the null

hypotheses, there is no task related magnitude changes, and in

the alternative hypotheses, there are unrestricted task related

magnitude changes. Furthermore, the test pairs Hd vs. Hb in Fig.

5b and Hc vs. Ha in Fig. 5d are very similar to the PO activation

map. This similarity is because, in the null hypotheses, there is no

task related phase changes, and in the alternative hypotheses, there

are unrestricted task related phase changes. In addition, the pair Hd

vs. Ha in Fig. 5a appears to be a combined UP and PO activation

map because the null hypotheses has no task related magnitude

and/or phase changes and in the alternative hypotheses there are

unrestricted task related magnitude and/or phase changes. In Fig.

5f is a two sided Bonferroni FWE corrected activation map for the

PO model in which it can be noted that the activations in the

sensorimotor area are positive (yellow) while others are negative

(light blue) with a colorbar to the right. Perhaps one sided tests

involving the phase are more appropriate.

In Figs. 6a–f are maps of overlapping voxels zoomed in for a

central 64 � 64 portion that are above a 5% Bonferroni FWE

threshold for the UP model, the PO model, and individually each

of the maps given in Figs. 5a–e and 4a–c.

In Fig. 6, red indicates voxels that are above threshold only for

the UP model; light blue indicates voxels that were above threshold



Fig. 3. Thresholded 5% FDR v2-statistic activation and overlap maps. (a) Unrestricted phase, (b) phase only, (c) constant phase, (d) overlap map of UP and CP,

(e) overlap map of UP and PO, and (f) overlap map of CP and PO.
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Fig. 4. Thresholded 5% FWE v2-statistic activation and overlap maps. (a) Unrestricted phase, (b) phase only, (c) constant phase, (d) overlap map of UP and CP,

(e) overlap map of UP and PO, and (f) overlap map of CP and PO.
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Fig. 5. Thresholded 5% FWE v2 -statistic activation and maps. (a) Hd: Ch = 0, Dg = 0 vs. Ha: Ch p 0, Dg p 0; (b) Hd: Ch = 0, Dg = 0 vs. Hb: Ch = 0, Dg p 0;

(c) Hd: Ch = 0, Dg = 0 vs. Hc: Ch p 0, Dg = 0; (d) Hc: Ch p 0, Dg = 0 vs. Ha: Ch p 0, Dg p 0; (e) Hb: Ch = 0, Dg p 0 vs. Ha: Ch p 0, Dg p 0; (f) PO

t-statistics.
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Fig. 6. Thresholded 5% FWE overlap maps. (a) UP, PO, and Hd vs. Ha; (b) UP, PO, and Hd vs. Hb; (c) UP, PO, and Hd vs. Hc; (d) UP, PO, and Hc vs. Ha; (e)

UP, PO, and Hb vs. Ha; (f) UP, PO, and CP.
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Fig. 7. Anatomical with ROIs.
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only for the PO model; orange indicates voxels that are above

threshold only for the appropriate complex model (CM); light

green indicates voxels that are above threshold voxels for all three

models, the UP, PO, and the appropriate complex model (CM);

yellow indicates voxels that are above the threshold for both the

UP and appropriate complex model (CM); dark blue indicates

voxels that are above threshold for both the PO and appropriate

complex models (CM); pink indicates voxels that are above the

threshold for both the UP and PO models; and voxels that were not

above threshold for any of the three models retained their

anatomical gray scale value.

It can be seen that the overlapping voxel maps from the UP

model, the PO model, and CM hypothesis test pairs Hd vs. Hc in

Fig. 6c and Hb vs. Ha in Fig. 6e are very similar to the UP, PO, and

CP overlap map in Fig. 6f; the overlapping voxel maps from the

UP model, the PO model, and the CM hypothesis test pairs Hd vs.

Hb in Fig. 6b and Hc vs. Ha in Fig. 6d are very similar to the PO

activation map; while the UP model, the PO model, and pair Hd vs.

Ha in Fig. 6a appear to be a combined UP and PO overlap map.
Simulated fMRI data

Data are generated to simulate voxel activation from a block

design fMRI experiment similar to that of Rowe and Logan

(2004) except here, there are six areas of activation that are 5 �
5. The block design consisted of 16 s off followed by eight

epochs of 16 s on and 16 s off with an observation interval of 1 s

or a TR = 1000 ms. To mimic real data that require magnetic

field stabilization, the first three observations were omitted. The

simulation consisted of n = 269 points where the true activation

structure is known to be within the regions of interest (ROIs) so

that the models can be evaluated.

Simulated fMRI data are constructed according to the pre-

viously described complex time course multiple regression model

with a magnitude design matrix X and a phase design matrix U.

The magnitude design matrix is specified to have three columns,

the first a column of ones for intercept, the second a column of

counting numbers (centered about the mean time) for a linear time

trend, and the third a square wave reference function related to a

block experimental design. For simplicity, the phase design matrix

is taken to be the same as the magnitude design matrix. This model

dictates that at time t,

yt ¼ b0 þ b1t þ b2x2tð Þcos g0 þ g1t þ g2x2tð Þ þ hRt½ �

þ i b0 þ b1t þ b2x2tð Þsin g0 þ g1t þ g2x2tð Þ þ hI t½ �; ð5:1Þ

where gRt and gIt are i.i.d. N(0,r2).

In this simulation study, the intercept and observation error

standard deviation for all voxels was selected to be b1 = 0.00001,

and r = 0.04909 which are values taken from a highly active voxel

(Rowe and Logan, 2004). Therefore, since the variance is held

fixed, the SNR within a square 64 � 64 region similar to the brain

region in the real data is parameterized by varying b0 so that the

ratio SNR = b0/r takes on values 5 and 30, where 30 is

approximately the value of SNR found in bhighly activeQ voxels,
and smaller values represent decreased SNR. The coefficient for

the reference function b2 within the ROIs has a value determined

by a contrast-to-noise ratio (CNR = b2/r).
For the simulation, the phase was assigned to follow a linear

model ht = g0 + g1t + g2x2t or have a task related phase change
(TRPC) g2. In all voxels g0 = p/6, g1 = 0.00001 and for all voxels

outside the four ROIs, g2 = 0. In the five ROIs lightened in Fig. 7,

the (CNR, TRPC) values are in the order of numerically increasing

ROIs (1/4, 0), (1/2, p/180), (1/4, p/180), (1/2, p/36), (1/4, p/36),
and (0, p/180). The TRPC of p/36 is consistent with previous

blargeQ vessel results (Menon, 2002). Simulated data as just

described are generated 1000 times.

In Figs. 8a–c are the 5% Bonferroni FWE detection power

maps or percent of the time that the given voxel was above the

threshold with simulated data at an SNR = 30 for the (a) complex

UP (usual magnitude-only data) model, (b) PO model, (c) the

Rowe–Logan complex CP activation model, (d)–(h) the current

complex linear regression modeled TRPC activation under five

different hypothesis pairs with simulated data at SNR = 30. The

same power maps are presented in Fig. 9 except with SNR = 5.

From Figs. 8 and 9, it can be seen that unrestricted phase

(magnitude-only data) model detects task related changes in the

magnitude regardless of whether or not there is TRPC but is

decreased for decreased CNR and the phase-only data model

detects task related changes in the phase regardless of whether or

not there is task related magnitude changes but is decreased for

ROIs with the lower TRPC value when considering the lower SNR

value. The Rowe–Logan complex activation model with a constant

phase exhibits the same power to detect task related magnitude

changes when no TRPC is present. The complex constant phase

model exhibits lower power when TRPC is present or biases

against voxels with TRPC when the SNR is high.

In the real fMRI data, this biasing property of the complex

constant phase model appears to be the reason why voxels were

above the Bonferroni FWE threshold for the unrestricted phase

model but not for the Rowe–Logan constant phase model. In the

real fMRI data, the complex constant phase model biased against

voxels that demonstrated TRPC which are potentially ones with

large vessels.

It appears to focus on voxels with only task related changes in

the magnitude and not those that also demonstrate TRPC unless the

CNR is very high such as those in parenchymal tissue. The current

complex linear TRPC model was implemented with five hypoth-

esis pairs. The hypothesis pair Hd vs. Ha in Figs. 8d and 9d detects

task related activation either in the magnitude, the phase, or both
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Fig. 8. v2-statistic 5% FWE detection power maps SNR = 30. (a) Unrestricted phase; (b) phase only; (c) constant phase; (d) Hd: Ch = 0, Dg = 0 vs. Ha: Ch p 0

Dg p 0; (e) Hd: Ch = 0, Dg = 0 vs. Hb: Ch = 0, Dg p 0; (f) Hd: Ch = 0, Dg = 0 vs. Hc: Ch p 0, Dg = 0; (g) Hc: Ch p 0, Dg = 0 vs. Ha: Ch p 0, Dg p 0; (h

Hb: Ch = 0, Dg p 0 vs. Ha: Ch p 0, Dg p 0.
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Fig. 9. v2-statistic 5% FWE detection power maps SNR = 5. (a) Unrestricted phase; (b) phase only; (c) constant phase; (d) Hd: Ch = 0, Dg = 0 vs. Ha: Ch p 0,

Dg p 0; (e) Hd: Ch = 0, Dg = 0 vs. Hb: Ch = 0, Dg p 0; (f) Hd: Ch = 0, Dg = 0 vs. Hc: Ch p 0, Dg = 0; (g) Hc: Ch p 0, Dg = 0 vs. Ha: Ch p 0, Dg p 0; (h)

Hb: Ch = 0, Dg p 0 vs. Ha: Ch p 0, Dg p 0.
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but has low power regardless of SNR for the low (CNR, TRPC)

combination and low phase activation combination; Hd vs. Hb in

Figs. 8e and 9e detects task related activation in the phase

regardless of whether or not there is task related changes in the

magnitude but loses its ability to detect phase activation at the

lower SNR; Hd vs. Hc in Figs. 8c and 9c detects task related

activation in the magnitude strongly biasing against voxels with

TRPC when the SNR is high much like the constant phase model;

Hc vs. Ha in Figs. 8g and 9g detects task related activation in the

phase regardless of whether or not there is task related changes in

the magnitude but loses its ability to detect phase activation at the

lower SNR; Hb vs. Ha in Figs. 8h and 9h detects task related

activation in the magnitude regardless of whether the phase has

TRPC and regardless of SNR.
Conclusion

A generalization of the Rowe–Logan complex activation model

was developed that specifically allows for modeling task related

changes in both the magnitude and phase. Hypotheses regarding

task related magnitude and phase changes are evaluated using

derived activation statistics. Activation maps were generated on

real data and activation power maps on simulated data for the

unrestricted phase or magnitude-only data model, a phase-only

data model, the Rowe–Logan constant phase model, and five

hypothesis pairs of a newly introduced linear phase model. It was

found that the magnitude-only data model declares voxels as active

regardless of any phase changes, phase-only data model declares

voxels as active regardless of any magnitude changes, and the five

complex linear phase models were sensitive to different (CNR,

TRPC) combinations. The current complex linear phase model is

very general and includes all previously introduced activation

models as special cases. Perhaps this model will reach its full

potential with other experimental data acquisition methods such as

flow tagging or steady state free precession.
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Appendix A. Generalized likelihood ratio test

Upon converting from rectangular coordinates ( yRt, yIt) in Eq.

(2.1) to magnitude and phase polar coordinates (rt, /t), the

observed data at time point t can be represented as a 2 � 1 vector

instead of as a complex number

rtcos/t

rtsin/t

�
¼ qtcosht

qtsinht

�
þ hRt

hI t

�
; t ¼ 1;: : :; n

���

where rt and /t are the observed magnitude and phase at time t.

With the aforementioned distributional specifications, the joint

distribution of the complex or bivariate observation ( yRt, yIt) at time

t is

p yRt; yItjqt; ht; r
2

� �
¼ 2pr2
� �	2

2exp 	 yRt 	 qtcoshtð Þ2 þ yIt 	 qtsinhtð Þ2

2r2

)
;

(

which upon making the transformation ( yRt, yIt) = (rt cos /t, rt sin

/t) from rectangular coordinates to polar coordinates with

Jacobian of the transformation J ( yRt, yIt Y rt, /t) = rt and

some algebra is

p rt;/tjqt; ht; r
2

� �
¼ rt

2pr2
exp 	 r2t þ q2

t 	 2rtqtcos /t 	 htð Þ
2r2



:

�

Under appropriate restricted hypotheses, the Lagrange con-

straints wV (Cb	0) and dV (Dc 	 0) need to be added to the

logarithm of the likelihood.

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood LL with

respect to the parameters. With n temporal observations, the

logarithm of the likelihood is

LL ¼ 	 nlog 2pð Þ 	
Xn
t¼1

log rt 	 nlogr2 	 1

2r2

�
Xn
t¼1

r2t þ xtVbð Þ2 	 2 xtVbð Þrtcos /t 	 utVgð Þ
h i

¼ 	 nlog 2pð Þ 	
Xn
t¼1

log rt 	 nlogr2

	 1

2r2
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r4ð ÞVXb½ � ðA:1Þ

where the linear representations of qt and ht have been used while

r has tth element rt and r
*
has tth element rt cos(/ t 	 utVg).

The likelihood ratio statistics is computed by maximizing the

logarithm of the likelihood LL with respect to the parameters in b,
g , and r2 under the appropriate null and alternative hypotheses.

Denote the maximized values under the null hypothesis by (b̃, c̃,
r̃2) and those under the alternative hypothesis as (b̂, ĉ, r̂2). These

maximized values are then substituted into the likelihoods and the

ratio taken.

Then, the generalized likelihood ratio is

k ¼
p r;/jb̃b; c̃c; r̃r2;X;U
� �

pðr;/jb̂b; ĉc; r̂r2;X;UÞ

¼
ðr̃r2Þ	2n=2

exp 	 r	 Xb̃b
� �

V r	Xb̃b
� �

þ2 r 	 r̃r
4

� �
VXb̃b

� �
= 2r̃r2ð Þ

� �
r̂r2ð Þ	2n=2

expf	½ðr	Xb̂bÞVðr	Xb̂bÞþ2ðr 	 r̂r
4
ÞVXb̂b�=ð2r̂r2Þg

;

ðA:2Þ

and Eq. (3.1) for the GLRT follows.
Appendix B. Hypotheses

With this model, there are four linear hypotheses that can

readily be seen and combined pairwise in several different ways to

test distinct hypotheses. The parameters are estimated under each

of the hypotheses so that pairs of hypotheses can be used in a

generalized likelihood ratio test. Let C and D be r1 � ( q1 + 1) and

r2 � ( q2 + 1) matrices of full row rank containing the linear

hypothesis constraints in the following.

B.1. Ha: Cb p 0, Dc p 0

For hypothesis a of unrestricted magnitude and phase, the

logarithm of the likelihood is differentiated without any
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restrictions. Differentiation of the logarithm of the likelihood

with respect to the magnitude regression coefficients b proceeds

as follows

BLL

Bb
¼ 	 1

2r2

B

Bb
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r

4

� �
VXb

� �

¼ 	 1

2r2

B

Bb
	 2XVr 	 2XVXbþ 2XV r 	 r

4

� �� �
:

By setting this derivative equal to zero, denoting the parameters

with hats, and solving, we get the MLE estimator under the

unrestricted model given in Eq. (B.3).

Differentiation of the logarithm of the likelihood with respect to

the phase regression coefficients g proceeds as follows

BLL

Bg
¼ 	 1

2r2

B

Bg

�
Xn
t¼1

r2t þ xtVbð Þ2 	 2 xtVbð Þrtcos /t 	 utVgð Þ
h i

c
1

r2

B

Bg

Xn
t¼1

rt xtVbð Þ½1	 /t 	 utVgð Þ=2�

¼ 1

r2

B

Bg

Xn
t¼1

½rt xtVbð Þ 	 ð/t4
	 ztVgÞ=2�

¼ 1

r2

B

Bg
½rVXb	 1

2
ð/

4
	 ZgÞVð/

4
	 ZgÞ�

¼ 1

r2
½ 	 2ZV/

4
þ 2ZVZg�

where f̂
*
is an n � 1 vector with tth element /t ¼ /t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb

p
, and

Z is an n � ( q2 + 1) matrix with tth row ztV ¼ utV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtðxtVbÞ

p
. By

setting this derivative equal to zero, denoting the parameters with

hats, and solving, we get the MLE estimator in Eq. (B.3). Note that

a Taylor series approximation to the cosine was used. This

approximation is robust to a mild difference in its argument a =

/t 	 utVg . For example, if a = p/12 radians or 15 degrees, the

exact cosine is 0.9659 while the approximation yields 0.9657.

Results from previous literature (Menon, 2002) find that the phase

may deviate from its mean by as much as 5 degrees in voxels with

large vessels. Note that the same result is found by differentiating

the cosine exactly and approximating the resulting sinusoid,

B

Bg
cos /t 	 utVgð Þ ¼ 	 utsin /t 	 utVgð Þ

c	 ut /t 	 utVgð Þ:

Differentiation of the logarithm of the likelihood with respect to

the variance r2 proceeds as follows

BLL

Br2
¼ 	 n r2

� �	1

	 1

2
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r

4

� �
VXb

� �
ðr2Þ	2:
By setting this derivative equal to zero, denoting the parameters

with hats, and solving, we get the MLE under the unrestricted

model given in Eq. (B.3).

The maximum likelihood estimators under this hypothesis are

given by

b̂ ¼ XVXð Þ	1
XVr̂

4

ĝg ¼ ẐZVẐZ
� �	1

ẐZ/̂
4

r̂r2 ¼ 1

2n
r 	 Xb̂b
� �

V r 	 Xb̂b
� �

þ 2ðr 	 r̂r
4
ÞVXb̂b� �

; ðB:3Þ

where r̂
*
is an n � 1 vector with tth element rt cos(/t	utVĉ), Ẑ is

an n � ( q2 + 1) matrix with tth row ẑtV ¼ utV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̂

p
;f

*
is an n �

1 vector with tth element /t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̂

p
, and r is an n � 1 vector of

observed magnitudes. In deriving the MLE ĝ , an approximation

was made for a cosine term.

B.2. Hb: Cb = 0, Dc p 0

For hypothesis b of restricted magnitude but not phase, the

logarithm of the likelihood is differentiated with the added

Lagrange restriction WV (Cb 	 0). Differentiation of the loga-

rithm of the likelihood that includes the Lagrange constraint with

respect to the magnitude regression coefficients b proceeds as

follows

BLL

Bb
¼ B

Bb
1

2r2
½ðr	XbÞVðr	XbÞþ 2ðr	r

4
ÞVXb�þ wVðCb	 0Þ


�

¼ 	 1

2r2
	 2XVr 	 2XVXbþ 2XV r 	 r

4

� �� �
þ CVw

where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with breves, and

solving, we get the MLE estimator in Eq. (B.4) below.

Differentiation of the logarithm of the likelihood with respect to

the phase regression coefficients g proceeds as follows

BLL

Bg
¼	 B

Bg

�
1

2r2

Xn
t¼1

½r2t þ ðxtVbÞ2	 2ðxtVbÞrtcosð/t 	 utVgÞ�



c
B

Bg

�
1

2r2

Xn
t¼1

rtðxtVbÞ½1	 ð/t 	 utVgÞ=2�



¼ B

Bg

�
1

2r2

Xn
t¼1

½rtðxtVbÞ 	 ð/t4
	 ztVgÞ=2�




¼ B

Bg

�
1

2r2
½rVXb	 1

2
ð/

4
	 ZgÞVðf

4
	 ZgÞ�




¼ 1

2r2
½ 	 2ZV/

4
þ 2ZVZg�

where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with breves, and

solving, we get the MLE estimator in Eq. (B.4) below.
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Differentiation of the logarithm of the likelihood with respect to

the variance r2 proceeds as follows

BLL

Br2
¼ 	 nðr2Þ	1

	 1

2
½ðr 	 XbÞVðr 	 XbÞ þ 2ðr 	 r4ÞVXb�ðr2Þ	2:

By setting this derivative equal to zero, denoting the parameters

with breves, and solving, we get the MLE under the unrestricted

model given in Eq. (B.4) below.

The maximum likelihood estimators under this hypothesis are

given by

b̆¼ W XVXð Þ	1
XVr̆4

ğ¼ Z˘VZ˘
� �	1

Z̆ZVf̆
4

r̆ 2 ¼ 1

2n
½ðr 	 Xb˘ÞVðr 	 Xb˘Þ þ 2ðr 	 r˘4ÞVXb

˘ �

W ¼ Iq1þ1 	 XVXð Þ	1
CV C XVXð Þ	1

CV
h i	1

C; ðB:4Þ

where r̆* is an n � 1 vector with tth element r̆t cos(/t	utVğ), Z̆ is

an n � ( q2 + 1) matrix with tth row z̆tV ¼ utV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̆

p
, f̆

*
is an

n � 1 vector with tth element /t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̆

p
, and r is as above. In

computing maximum likelihood estimates, an iterative max-

imization algorithm (Lindley and Smith, 1972; Rowe, 2001,

2003) is used.

B.3. Hc: Cb p 0, Dc = 0

For hypothesis c of restricted phase but not magnitude, the

logarithm of the likelihood is differentiated with the added

Lagrange restrictions dV(Dc 	 0). Differentiation of the logarithm

of the likelihood that includes the Lagrange constraints with

respect to the phase regression coefficients b proceeds as follows

BLL

Bb
¼ B

Bb
1

2r2
r 	 Xbð ÞV r	Xbð Þþ2 r	r

4

� �
VXb

� �
þ dVDg 	 0ð Þ


�

¼ 	 1

2r2
	 2XVr 	 2XVXbþ 2XV r 	 r

4

� �� �
where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with breves, and

solving, we get the MLE estimator in Eq. (B.4) below.

Differentiation of the logarithm of the likelihood that includes

the Lagrange contraints with respect to the phase regression

coefficients g proceeds as follows

BLL

Bg
¼ 	 B

Bg

n 1

2r2

Xn
t¼1

r2t þ xtVbð Þ2 	 2 x Vt b
� �

rtcos /t 	 utVgð Þ
h i

þ dV Dg 	 0ð Þ
o

c
B

Bg
1

2r2

Xn
t¼1

rt xtVbð Þ 1	 /t 	 utVgð Þ=2½ � þ dVDg

)(
¼ B

Bg
1

2r2

Xn
t¼1

rt xtVbð Þ 	 /t4
	 ztVg

� �
=2

� �
þ dVDg

)(

¼ B

Bg
1

2r2
rVXb	 1

2
ðf

4
	 ZgÞVðf

4
	 ZgÞ

�
þ dVD

� 
�

¼ 1

2r2
½ 	 2ZVf

4
þ 2ZVZg� þ dVDg

where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with bars, and

solving, we get the MLE estimator in Eq. (B.5) below.

Differentiation of the logarithm of the likelihood with respect to

the variance r2 proceeds as follows

BLL

Br2
¼ 	 n r2

� �	1

	 1

2
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r

4

� �
VXb

� �
r2
� �	2

:

By setting this derivative equal to zero, denoting the parameters

with bars, and solving, we get the MLE under the unrestricted

model given in Eq. (B.5) below.

The maximum likelihood estimators under this hypothesis are

given by

b̄¼ XVXð Þ	1
XVr̄

4

ḡ¼ X Z̄ZVZ̄Z
� �	1

Z̄Vf̄
4

r̄ 2 ¼ 1

2n
r 	 Xb̄
� �

V r 	 Xb̄
� �

þ 2 r 	 r̄4ÞVXb̄ �
��

X ¼ Iq2þ1 	 ðZ̄VZ̄Þ	1
DV½DðZ̄VZ̄Þ	1

DV�	1
D; ðB:5Þ

where r̄
*
is an n � 1 vector with tth element r̄t cos(/t	utVḡ), Z̄ is

an n � ( q2 + 1) matrix with tth row z̄tV ¼ utV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̄b;

q
f̄

*
is an

n � 1 vector with tth element /̄t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̄

p
, and r is as above. In

computing maximum likelihood estimates, an iterative max-

imization algorithm is used (Lindley and Smith, 1972; Rowe,

2001, 2003).

B.4. Hd: Cb = 0, Dc = 0

For hypothesis d of linearly restricted magnitude and phase, the

logarithm of the likelihood is differentiated with the added

Lagrange restrictions wV (Cb 	 0) and dV (Dc 	 0). Differ-

entiation of the logarithm of the likelihood that includes the

Lagrange constraints with respect to the magnitude regression

coefficients b proceeds as follows

BLL

Bb
¼ B

Bb

�
1

2r2
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r4ð ÞVXb½ �

þ wV Cb	 0ð Þ þ dV Dg 	 0ð Þ



¼ 	 1

2r2
	 2XVr 	 2XVXbþ 2XV r 	 r4ð Þ½ � þ CVw
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where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with tildes, and

solving, we get the MLE estimator in Eq. (B.6).

Differentiation of the logarithm of the likelihood that includes

the Lagrange constraints with respect to the phase regression

coefficients g proceeds as follows

BLL

Bg
¼	 B

Bg

(
1

2r2

Xn
t¼1

r2t þ xtVbð Þ2 	 2 xtVbð Þrtcos /t 	 utVgð Þ
h i

þ wV Cb	 0ð Þ þ dV Dg 	 0ð Þ
)

c
B

Bg
1

2r2

Xn
t¼1

rt xtVbð Þ 1	 /t 	 utVgð Þ=2½ � þ dVDg

)(

¼ B

Bg
1

2r2

Xn
t¼1

½rtðxtVbÞ 	 ð/t4
	 ztVgÞ=2� þ dVDg

)(

¼ B

Bg
1

2r2
rVXb	 1

2
ðf

4
	 ZgÞVðf

4
	 ZgÞ

�
þ dVDg

� 
�

¼ 1

2r2
½ 	 2ZVf

4
þ 2ZVZg� þ DVd

where the variables are as previously defined. By setting this

derivative equal to zero, denoting the parameters with tildes, and

solving, we get the MLE estimator in Eq. (B.6).

Differentiation of the logarithm of the likelihood with respect to

the variance r2 proceeds as follows

BLL

Br2
¼ 	 n r2

� �	1

	 1

2
r 	 Xbð ÞV r 	 Xbð Þ þ 2 r 	 r

4

� �
VXb

� �
r2
� �	2

:

By setting this derivative equal to zero, denoting the parameters

with tildes, and solving, we get the MLEs under the unrestricted

model given in Eq. (B.6) below.

The maximum likelihood estimators under this hypothesis are

given by

b̃b ¼ W XVXð Þ	1
XVr̃r

4

g̃g ¼ X Z̃ZVZ̃Z
� �	1

Z̃ZVf˜
4

r̃ 2 ¼ 1

2n
r 	 Xb̃b
� �

V r 	 Xb̃b
� �

þ 2 r 	 r̃r
4

� �
VXb̃b

� �

W ¼ Iq1þ1 	 XVXð Þ	1
CV C XVXð Þ	1

CV
h i	1

C

X ¼ Iq2þ1 	 Z̃ZVZ̃Z
� �	1

DV D Z̃ZVZ̃Z
� �	1

DV
h i	1

D; ðB:6Þ
where r̃* is an n � 1 vector with tth element r̃t cos(/t 	utVc̃), Z̃ is

an n � ( q2 + 1) matrix with tth row z̃ztV ¼ utV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̃b

q
, f̃

*
is an n �

1 vector with tth element /t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rtxtVb̃b

q
, and r is as above. In

computing maximum likelihood estimates under both hypotheses,

an iterative maximization algorithm is used (Lindley and Smith,

1972; Rowe, 2001, 2003).
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