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Generalized Likelihood Ratio Detection
for fMRI Using Complex Data

Fangyuan Y. Nan and Robert D. Nowak*

Abstract—The majority of functional magnetic resonance imag- state and active state image, a two-santptest is routinely

ing (fMRI) studies obtain functional information using statistical ysed. In repetitive experiments involving a dynamic time
tests based on the magnitude image reconstructions. Recently, a,

; sequence of images, a correlation method is common in
complex correlation (CC) test was proposed based on the complex hich th lation bet h | i . d
image data in order to take advantage of phase information WNICN the correlation between each voxel ime series and a

in the signal. However, the CC test ignores additional phase reference signal is used to decide whether or not activity is
information in the baseline component of the data. In this paper, present [2]. We will focus on the repetitive experiments in this

a new detector for fMRI based on a generalized likelihood ratio paper, however, similar results and conclusions can be drawn
test (GLRT) is proposed. The GLRT exploits the fact that the G, ohar contexts such as event-related experiments. Many

fMRI response signal as well as the baseline component of the o . L .
data share a common phase. Theoretical analysis and Monte generalizations and extensions of this simple idea have been

Carlo simulation are used to explore the performance of the proposed [8], [9], [14], [18], [21]-{23], and under various
new detector. At relatively low signal intensities, the GLRT assumptions and experimental setups the fMRI detection
outperforms both the standard magnitude data test and the CC  proplem is equivalent to well-known statistical tests including
test. At high signal intensities, the GLRT performs as well as the ¢ tests, I tests, andy? tests. Bayesian strategies have also

standard magnitude data test and significantly better than the
CC test. 9 9 Y been recently proposed for fMRI [7], [13].

Index Terms—Functional magnetic resonance imaging (fMRI), Almost all IMRI tests are based on the ma-gthde 'mage
generalized likelihood ratio test (GLRT), hypothesis testing, sig- data. In Stand'ard practlce, the rz';\vv. MRI data is reconstructed
nal detection. and the magnitude is taken to eliminate the (unknown) phase.

A common approach to fMRI detection is based on a test
statistic obtained by correlating the magnitude voxel time-
. INTRODUCTION series data with a known reference signal which is assumed to

N functional magnetic resonance imaging (fMRI) a seridse representative of the BOLD response. We call this detector

of MR images of the brain are acquired over time tthe magnitude correlation (MC) test. Recently, however, Lai
detect neural activity. Neural activity has been linked to bloceghd Glover proposed a complex correlation (CC) test based
oxygenation levels in blood vessels near active neurons. This the complex image data (i.e., image data before taking the
relationship is called the blood oxygenation level dependemiagnitude of each voxel), in order to take advantage of phase
(BOLD) effect [24]. Subtle variations in the magnetic propinformation in the data and improve the detectability of fMRI
erties of oxygenated and deoxygenated blood induce changesponses [14].
in the MR signal intensity which can be used to detect neuralHere, we show that the CC test statistic Asdistributed
activity. The BOLD effect can be used to obtain maps of activend has a constant false-alarm rate (CFAR) property. This
and nonactive regions of the brain. In order to achieve a higheans that a specified false-alarm rate, i.e., the probability
signal-to-noise ratio (SNR), the spatial and temporal imaging deciding a voxel is active when in fact it is not, can be
resolution must be limited [12]. Unfortunately, low-resolutiorachieved irrespective of the SNR, which is generally unknown
imaging may lead to a loss in signal information originating ia priori. Throughout the paper we denote the false-alarm rate
microvasculature [22]. Hence, there is a fundamental tradeoff ;. Despite the CFAR property, the CC test focuses only on
between resolution and SNR in fMRI. It is therefore of greahe response component of the data and ignores the constant
interest to develop reliable detection methods for fMRI in thigaseline component of the data. The constant component does
presence of noise. not contain information relevant to the response itself, but it

Most fMRI methods are based on detecting intensiyoes contain important information about the phase. Although
changes in a sequence of two or more MR images of a certgie phase is a nuisance parameter in the testing problem, more
volume of the brain. When comparing just two images, a regécurate knowledge of the phase can improve the detectability

of the fMRI response. In this paper, we propose a new test
o i e . B o o sy e on the generalized kelihood ratio est (SLRT) princpl
recommending its publication was X. Histerisk indicates corresponding tﬁat allows us to incorporate the phase information contained
author. in the constant data component.
En';-in\e(ér:\r‘]z]” Nfllizﬂig*; S'?éu’;‘a"r‘]’iﬁ\ll';r:ift? Vgittatg‘seinge’a?rggggz ?sti'?g_t:f;'_ Theoretical and Monte Carlo studies are used to show that
nanfangy@egr.msu.edu: nowak@egr.msu.edu). k‘he GLRT outperforms the CC test. Specifically, we show that
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higher than that of the CC test. Furthermore, we show thaodel, but our results are easily extended to more general
the GLRT also performs significantly better than the MC tesases. The second componéntis the oscillatory response
at low SNR. The performances of the GLRT and MC test agignal. The vectorr is a reference function that models
roughly the same at high SNR, and in such situations batie expected response characteristic and it is assumed to be
perform better than the CC test. known throughout the paper. The amplitutleharacterizes
In this paper we stress very simple voxelwise testing baste strength of the response. In the absence of activity0.
on a Gaussian white noise observation model. VoxelwiseThe baseline component and oscillatory signal component
testing ignores spatial relationships in fMRI data. Moreoveshare a common phage Hence, we model this phase coupling
the white noise model does not capture more complicatbg multiplying both components by the complex number
disturbances present in fMRI data such as time-correlatess? + isin? where i = /—1. In addition to the two
noises due to physiologic motions. However, since the focusgifnal components, an additive complex Gaussian white noise
this work is to assess the potential benefits of fMRI detectimomponenten. models random fluctuations in the fMRI
using complex data, we employ a simple data model atiche series. The term,. denotes a standard (zero mean unit
testing procedure to explore this basic issue, realizing owsriance) complex Gaussian vector. The factoscales the
assumptions are perhaps too simplistic in many practical casasise resulting in a variance of. In general, the parameters
However, it is possible to extend our results and conclusionsdbthis modela, b, ¥, and o2 are unknown and are different
more elaborate approaches based on more realistic data anfioeach voxel time series. We have compared this model to
correlated noise models, potentially accounting for uncertaiaetual fMRI time series and found that our assumptions are
ties in the BOLD response and/or spatial relationships amofairly reasonable. In particular, the phase coupling between
neighboring voxels. Such extensions are briefly discussedtie constant and response components has been verified by
the conclusions. our experiments. Fig. 1 shows the real part, imaginary part,
The paper is organized as follows. In Section I, we reviewand phase of one time series from real fMRI experiment and
basic model for fMRI data and establish some vector notatidnis illustrative of the constant phase idea. One limitation of
that will be used throughout the paper. In Section Ill, weur model, as mentioned earlier, is the white noise assumption.
examine the standard MC and CC tests and study the statistiElaé white noise model is generally an oversimplification of the
properties of each. We also derive the new GLRT for fMRhoises inherent in fMRI (e.g., physiologic motions), but it is
The properties of the GLRT are discussed and mathematieairactable model for exploring the potential of complex data
analysis is relegated to the Appendices. In Section IV, wietection schemes. Extensions of this work to more realistic
compare the performance of the MC test, CC test, and GLRbise models are discussed in Section V.
in various SNR regimes. Although the GLRT statistic does A GLRT can be derived directly from this complex model
not have a standard distribution, we use exhaustive Mor(t8, but this form is not well suited for mathematical analysis.
Carlo simulation to assess the performance of the detectBecause complex numbers can be interpreted as pairs of real
Our results show that the GLRT does have a CFAR propettymbers, we reexpress the complex model (1) @¥Vax 1-
and we give a simple rule for choosing the threshold level timensional real-valued model
achieve a desired’s. We also demonstrate the performance
of all methods in a simulated fMRI experiment. We close in y =8¢+ pH¢ +on (2)

Section V with discussion and conclusions. where ;i = b/a and

Il. fMRI SIGNAL MODEL y = | R g1 0 H= | ©
. . ) . X7 |’ 0 1}’ 0 r|’
The most common reconstruction technique in MRI is to

compute the inverse discrete Fourier transform (DFT) of the ¢ = {a C,OS::} n= [HCR}
raw data. Due to phase errors which are difficult to control, @S Ner

the signal component of the measurements appears in both i@@ subscriptsk and I denote real and imaginary parts,
and imaginary channels [16], [5]. This suggests the followingspectively. The phase-coupling in the complex model is
simple model for an fMRI voxel time series. Letdenote an manifest in the real model as a nonlinear coupling between
N x 1 vector Containing the voxel time series data the parametef: and the parametep.

We point out here that this (nonlinear) model stands in

x = (a1 +br)(cosd +isind) + on,. (1) marked contrast to the classical linear regression model

The data_vectox con5|st§ of two complex ;lgnal compo- v = Sé1 + pHeps + on 3)

nents. The first componeal is a constant baseline component
where 1 denotes anN x 1 vector of ones andz > 0 where$; and¢, are independent. In the next section we show
is the amplitude of the constant component. This vecttiat the CC test proposed by Lai and Glover [14] can be
represents the average value of the time series. More generalbtived from the linear model in (3). It is our contention that
a nonconstant multiparameter baseline model can be employtesl nonlinear model is a more accurate representation of the
(e.g., a linear of low-order polynomial model) to account for | o ) . .

We focus on repetitive experiments with (known) oscillatory response

S!OWIY Vary'ng_ drifts |'n the base“n'e' To keep the presemat'%nals to illustrate our ideas. However, it may be possible to extend the
simple, we will restrict our attention to the simple constaninalysis and results to other situations such as event-related experiments.



322 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 4, APRIL 1999

X 104 Real Part

1 T T T T ! T T T T

Phase: radian

10 20 30 40 50 60 70 80 90 100
Time index: n

Fig. 1. The real part, imaginary part, and phase of one time series from a real fMRI experiment, illustrating the constant phase idea in our model.

physical fMRI problem, and, indeed, the new GLRT based dhree tests may be interpreted as GLRT’s based on different

the nonlinear model outperforms the CC test. data models as we will show. These interpretations illuminate
Before moving on, let us establish some basic mathematitia¢ underlying (although sometimes overlooked) modeling

conventions and notation that are used throughout the pamssumptions associated with each method. Before we look at

All vector norms are the standard (Euclidean) two norneach method, let us briefly review the GLRT principle.

Let M denote anp x ¢ matrix, (e.g.,S or H). Let Py

denote the operator that projects a vector onto the subspacegeneralized Likelihood Ratio Tests

spanned by the columns &1. Specifically, in matrix form, o . ) i
Py = M(MTM)~'M7 where the superscriff’ denotes The likelihood ratio test (LRT) [11] is an optimal method

matrix transposition. Similarly, LePJ; denote the operator 'O déciding which of two hypotheses (competing data models)
projecting a vector onto the complementary subspace thaPfSt describe a set of observed data. The data model corre-
orthogonal to the subspace spanned by the columng.dflote sponding to each hypothesis is a probablllty density function
P = I— Py wherel denotes the x p identity matrix. Two (pdf). Unfortunately, however, to implement the LRT, the
other notations ar@L = I— P, — P, and P+, = I— Ps— Py pdf's under each hypothesis must be completely specified. This
(3], [20]. e : SH— is not the case in fMRI. In fMRI, we have two hypotheses;
Finally, throughout the paper we will assu&r = 0 and o, BOLD response abse( = 0), and,, BOLD response
Tr — N. The second condition can always be satisfied sinBEeSent(x # 0). Under hypothesigiy, the vector¢ and the

we can always normalize the reference signal without changiﬂ@'Se powen? are unknown. Under hyppthe%’ ¢, 0% and
the problem essentially. The first condition is generally nét @€ unknown. Due to the unknowns, in fMRI we have what
immediately fulfilled, however it is easily achieved by orthog!S clled a composite hypothesis test. _

onalization. For example, if is not orthogonal to the baseline " SPecial cases, it is possible to derive uniformly most

constant signal, then we define an orthogonal response signBPerful (UMP) tests for a composite hypothesis. However, in

F = Piir. Hence, without loss of generality, we assumis the complicated problgms V\_/ith multiple nuisance pargmeters,
orthogonal to1. UMP tests are not easily derived or, more often, unavailable. In

complicated cases, such as the fMRI problem at hand, there are

two standard approaches to composite hypothesis testing. The
IIl. M ETHODS FORFUNCTIONAL MRI DETECTION Bayesian approach prescribes prior pdf's for the unknown pa-

In this section we review the basic MC and CC tests amdmeters themselves and the likelihoods are integrated against
introduce the new GLRT test for fMRI detection. In fact, althese pdf's to eliminate the dependence of the LRT on the
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unknown parameters. The generalized likelihood ratio teBhe magnitude ofz; is given in the equation at the bottom
(GLRT) is another approach to composite hypothesis testirgj. this page. Note thatir; cosé + ny;siné is nothing but
The GLRT is often preferable to Bayesian approaches daeother Gaussian random variable. We denote it asAlso

to its ease of implementation and less restrictive assumptionste thatn,; andn, are independent fof # k. ”?%j + nﬁj is
(specifically, the GLRT does not require the specification @fy3 random variable. Under the assumptions that ¢ and
prior probability distributions for the unknown parameters) = b/a is very small, the third term under the square root
[11], [19]. For these reasons, we focus on the GLRT in thiggn below is much smaller than the second one and therefore

paper. can be neglected. Then using the expansion
The idea of GLRT is motivated by the classical likelihood 1
ratio test. In a simple hypothesis testing problem, the pdf vitrml4ox ] <1

for each hypothesis is completely known. Let. (x;©;), .

1 = 0,1 denote the pdf's corresponding to the two hypothesevél.e arrive at
Recall thatx denotes the data. The argumedf denotes a Yj = a+bry+on;.
known parameter that specifies the precise form of the p ance. a verv common approach to fMRI detection is to use
For example®; may represent the mean and covariance of f ”’ . yG ) pproa tion:

multivariate Gaussian density. The LRT decidés if the following Gaussian approximation:

_ pu(x01)
L) = x:00)

y ~ al +br + on 4

> where herey = [x|, n=[n; na --- ny]? is (real) Gaussian
distributed asN(0,I) and withb = 0 under Hy andb # 0

wherer is a user specified threshold which can be chosendaderH;. Hence, in this cas®g = [a 0?] and©; = [a b 2]

achieve a desired’;. The likelihood ratio (LR),L(x) is a Bear in mind that this approximation does not accurately

function of the datax and it is called the test statistic. model the data in cases in whieffo is relatively small, as

The GLRT is also based on the LR, but in the composite cage shall see later in some examples.
the parameters are unknown. The key idea in the GLRT is toThe GLRT for this problem is based on the following test
replace the unknown parameters by their maximum likelihoagatistic [19], [20]:

estimates (MLE’s). In general, the GLRT decidHs if IP, PJ_yHQ
(x:61) tl(Y)I(N—l)ﬁI(N—l)[Ll(Y)—l] (5)
L(X) _ PH XS - 1 > || r 41 Y||
P, (X5 ©0) where
~ Ja L z
whereO; is the MLE of ©; assumingH; is true andoy is the Li(y) = M
MLE of ©, assumingHy is true. The MLE of a parameter is | PLyl

simply the value that makes the observed data most likely (i.e. ¢ #.(y) > m then we decide;, otherwise we choosHo.

the value of the parameter that maximizes the correspondifgh aIl this test the MC test because the test statistig)
pdf evaluategl ak). The _GLRT has no optimality property inq proportional to the correlation between the magnitude data
general, but it asymptotically approaches the UMP test am0§9and the reference signal

all parameter-invariant tests [6]. For more details on maximumThe test statistict,(y) under the assumption that is

likelihood estimation and the GLRT, see [11]. truly Gaussian is distributed a&; (y_;)(SNR) [20] where
_ _ SNR = ;i2a?/o%. That isSNR is the noncentrality parameter
B. Method 1: Magnitude Correlation Test of F distribution. Unfortunately, the Gaussian approximation

Under the assumption of a Gaussian white noise modé) is inaccurate when/o < 3. In fact, whena/o is small,
for the Comp|ex data, the magnitude of fMRI data is RiciaWe€ don’t know the distribution of MC detector nor whether
distributed [16]. However, for large values of the ratigo ©Of not it has CFAR property. So determination of a proper
(ratio of baseline signal intensity to noise standard deviatioH)reshold (to obtain a desirdgy) is theoretically very difficult.
the Rician density can be well approximated as Gaussian. N@reover, since the Gaussian approximation is no longer
see this, note that;, the jth observation in the time seriesreasonable in this case, one expects the performance of the

can be written as MC test to suffer. This is indeed the case as we shall see in
the next section. How to solve this problem will be explained
x; = (a+brj)cosf + ong; +i[(a+ bry)sinf + ong;]. in the next section, together with our numerical results.

|z;| = \/[(a +brj)cos6 + ong;]? + [(a+ brj)sind + ong,]?

Yj

= \/(a + brj)? + o2 (”%3;’ + n%) +2(a + brj)o(ngjcos @ + ny;sinb)

(ot brj)\/l | 20(ng;cosb +ngsing) | o

2

2 2
a+ br; (a+br;)? (nRj * nlj)'
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C. Method 2: Complex Correlation Test and 8, and#, are two sufficient statistics
Recall the linear model 6, %HT}’, 6, %ST}’- (12)
¥ =S1+uHéz +on. ©) As usual, given a specified threshold, we decideH; if
The GLRT based on this model is well known in thés(y) > 73 and H, otherwise.
signal processing literature as a matched subspace detectd¥n interesting relationship exists between this test and the
[20] and, in fact, it coincides with the CC test proposed bGC test. Compare (8) with (10). Note thatif= 0 in (10) then
Lai and Glover [14]. The unknown parameters in this case ake and Lo coincide. It is precisely through the teroos 2¢
0 = [¢F ¢F o2 andO, = [¢T ¢F 1 o?%). The GLRT is that the effect of phase coupling comes into play. Furthermore,
given by if the true parameter < 1 under Hy, which is the case for
most fMRI detection problem&then we show in Appendix 3
| Pu Py’ thatts(y) asymptotically (asV, the length of the time-series,
||PSJ_HP§_Y||2 increases) has the same distributionta& ). For example,
L2 this means that for long repetitions of an experimental task
M ) (large N) the CC test and our new GLRT will have roughly
||P}%Ps¢y||2 the same performance in terms of detection power at a given
false-alarm rate.

ta(y) = (N = D[L2(y) = 1] = (VN - 1)

—(N-1)

where Unfortunately, a closed form for the pdf of such test sta-
||PSJ_y||2 yT Pty tistics ast3(y) is not as readily accessible. We can, however,
Ly(y) = = (8) show that the pdf ofs(y) is a function oy anda?/0? alone

- 2 2 2 T ., TplL )
Y™ = 1Py 1" = 1 Py Y Fsuy (see Appendix 2). This is a desirable feature since, in general, a
If t2(y) > 72 then we decideH;, otherwise chooseHy. test could depend on all the unknown parameterg, 9, o2).
This test is called the CC test, because it is equivalent to th€nce, this result shows that the test is only a function of two
test proposed in [14] which is based on the correlation betwek@y variables, instead of four.
the reference signal and real and imaginary components of thd he dependence of the test @ty o implies that, in general,
complex data. The pdf dh(y) is noncentralf oy _1)(SNR) this test does not have_the CFAR.prope.rty. Hencg,_selection
where, againSNR. = p2a2/02, and thus it has the CFAR Of a thresholdrs to achieve a desired’s is more difficult.
property (note that the CC test statistic has a standard centi@wever, the relationships between this test and the CC test
Fy o(x_1y distribution underH, (i = 0)). However, the CC suggest some possibilities for threshold selection. From (10),
test has one drawback. As we pointed out in the previotle upper bound ofL;(y) is easily seen to be coincident
section, the phase-coupling between the constant and BOWSh L2(y). Therefore, one method of threshold selection is
response components of the data dictates the nonlinear md@ethoose our threshold slightly smaller than that determined
(2), as opposed to the linear model used to derive the CC td&f. the F2 o1, distribution.
Therefore, we next propose a novel GLRT based on this moreA more accurate method is to determine the exact thresholds

accurate model. via Monte Carlo simulation. Some of the results of our
simulations are given in the next section. Here, we summarize
D. Method 3: A New GLRT for fMRI the conclusions. Exhaustive Monte Carlo simulation reveals

] I o that the GLRT test is also CFAR wherfo > 1, which is the
The unknowg paran;eters in model (2) &g = [¢" o°] case for most if not all fMRI experiments. More importantly
and ©, = [¢7 p o°] under Hy and Hi, respectively. ang more interestingly, to achieve the desiféd the proper
Recall that the phase coupling introduces aﬂonllngar CO_Up"ﬂﬂeshold of our GLRT detector is almost exactly one half
between the parameter anq¢ under Hy. This nonlinearity iyt of the corresponding threshold required foFg y_)-
makes the MLE's more difficult to compute but, remarkablyyisiriputed test statistic. This is difficult to prove theoretically,

a closed-form expression for the GLRT stafistic does eXigjyt it is confirmed by extensive Monte Carlo simulation. In
Using the GLRT principle and the nonlinear model (2), IMhathematical terms. we have

Appendix 1 we derive the following test statistic: )
n n
to(y) = [La(y) = 1J(N — 1) (©) Br= [ pmmtts)dts o

—o0 —

where L3(y) is defined in (10) at the bottom of this page withwhere f denotes the density of afi, (n_1)-distributed statis-
tic. Differentiating the above equation leads us to an exciting

(61,62) YT HﬁiTy
cosp = g g = P P (ll) 2The assumption = % <« 1 implies that the strength of the resporise
1611[1162]] | Payllll Pyl is much smaller than the baseline intensity
2
2| Psyll

Li(y) =

= (10)
2 2 4 4 2 2
1Payll” + 1Py —\/||PHY|| + 1Py ™ + 2|1 Py ||| Psy [|” cos 2¢
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TABLE |
Py withH Py = 0.01,N = 120
threshold | 4.70 | 3.43 | 6.85
ajo u CC | GLRT | MC
1 .3162 72 .80 44
3.162 1 72 .80 78
10 | .03162 72 .80 .80
TABLE I
Py witH Py = 0.025, N = 120
threshold | 3.75 | 2.538 | 5.15
alo © CC | GLRT | MC
1 .3162 .82 .88 .98
3.162 1 .82 .88 .87
10 03162 .82 .88 .88
TABLE I
Py withH Py = 0.05,N = 120
threshold | 3.03 | 1.96 | 3.92
alo I CC | GLRT | MC
1 .3162 .88 93 .69
3.162 1 .88 93 .92
10 | .03162 .88 .93 .93

result that the density of the test statisficunderH, is related
to the £ n_; density by the approximation

Pry|Hy (t3) ~ 2f(2t3)'

This implies that a very accurate threshold can be selectte
using standard”; (y_;)-distribution tables [1].

IV. MONTE CARLO ANALYSIS OF THE TESTS

A. Comparison of the Three Detectors

325

the determination of proper thresholds to achieve a desired
false-alarm rate with each detector. The CC testis y_1)
distributed underH,, and therefore the proper threshold is
very easily determined from standard tables [1].

Because the MC test and GLRT are not known to possess the
CFAR property, the proper threshold will, in general, depend
on a/c. For a given value ofi/o, the threshold needed to
achieve a desired false-alarm rate can be determined via Monte
Carlo analysis and trial and error over a range of thresholds.
This is precisely how the thresholds were determined for the
results given in Tables I-lll. Remarkably, however, the Monte
Carlo analysis revealed that both the MC test and the GLRT
were essentially CFAR so long ago > 1, which is almost
always true in fMRI. Moreover, the Monte Carlo analysis
supports the use of some very simple rules for threshold
selection.

First, in the case of the MC test, for very large values of
a/o the magnitude data is very well approximated as Gaussian.
Therefore, in such situations the MC test is (approximately)
Fy (v—1) distributed underH, and the proper threshold can
be determined again from standard tables [1]. Because, the
Monte Carlo simulations show that fa/o > 1 the MC test
is essentially CFAR, the proper threshold may be determined
from F| (v_1y distribution for all cases in whicla/o > 1.

The derivation of (4) also supports this, although not strictly.

Second, the similar performances of the GLRT and MC
test for largea/s suggested the possibility of a relationship
between the GLRT statistic and thi§ v_,) statistic. This
intuition led to the discovery that the proper threshold for
the GLRT can be determined from th& _,y as well.
Specifically, our analysis shows that the proper threshold for
the GLRT can be selected as one half of the threshold required
to achieve the desired false-alarm rate withfav_1)-
distributed statistic.

The results in the three tables show clearly that our GLRT
detector performs best for all three (low, medium, and high)
a/o cases. The CC detector does perform better than MC
detector at low:/o case. However, as the constant component
becomes more and more dominant over the noise, the GLRT
and MC test significantly outperform the CC test.
d:inally, note that the detection rate of the CC test is constant
of fixed SNR = p2(a/o)?. This is expected because the
CC test statistic is noncentrdt; o y_1)(SNR) under H;.
Remarkably, note that the dependence of the detection rate
of our GLRT detector also depends only on SNR. The same is
not true of the MC test, whose performance drops off severely
as a/o decreases.

In order to compare the performances of the three detectordVe also illustrate the results graphically in Fig. 2. Here
we have run exhaustive Monte Carlo experiments. Because plot the probability of detection as a function of relative
the GLRT does not generally have the CFAR property, it isponse strengthh = b/a. Fig. 2(a) shows the case with

necessary to study the performance for different values of

a/o = 1.0, which is fairly low so we expect the performance

However, as mentioned above, fefc > 1 the Monte Carlo of the MC detector to be poor, which is indeed the case.

analysis reveals that the GLRT is essentially CFAR.
In Tables I-lll, we compare the detection ratBs of the

Fig. 2(b) shows the case far/c = 3.162 and we see that
the performance of the MC detector begins to surpass that of

three tests under three different false-alarm rate specificatiotie CC detector, but is still inferior to that of our new GLRT.
The false-alarm rates were selected to be representativeF@f. 2(c) indicates the case fayc = 10, which is quite large,
those commonly used in fMRI. The most difficult elemenand so the MC detector and GLRT detector have almost the
of the Monte Carlo analysis, except in the CC test case,dame performance.
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Fig. 2. Three performance curves (detection probabifity versus response
strengthy = %) with N = 120, Py = .01 while x = b/a varies. Therefore,
the thresholds are chosen as in Table I. Solid line for GLRT; dask-dpline
for CC; and dashe@--) line for MC. (@)a/o = 1. The curve at the top is
for GLRT, the middle one for CC, the bottom one for MC. j)o = 3.162.
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signal about the constant baseline level was10%, i.e.,

i = 0.1. The noise variance in each time series was set so that
a/o = 3.162. For each time series, the phase is a constant.
But spatially, the phase has a random fluctuation (modeled
here as a Gaussian noise with zero-mean 0.1 variance) about
a constant phase of/3. The desired false-alarm rate in this
example was chosen to hB; = 0.01, and thus the three
thresholds for CC, GLRT, and MC detectors are 4.70, 3.43, and
6.85, respectively. The actual false-alarm and detection rates
observed in this simulation, given in the caption of Fig. 3,
are in excellent agreement with the tabulated Monte Carlo
results.

V. DIscUSSIONS AND CONCLUSIONS

This paper developed a novel GLRT for fMRI in the
complex data domain and compared it to the commonly used
MC test and the recently proposed CC test. We derived a
very simple closed-form expression for the GLRT statistic. In
fact, all three tests are roughly equal in terms of computational
complexity. Although the GLRT statistic does not obey a well-
known distribution, theoretical analysis established a basic
invariance principle for the statistic and it was shown that
the GLRT and the CC test are asymptotically equivalent (as
the length of the fMRI time series increases). Monte Carlo
analysis was used to demonstrate that the GLRT performs
better than the MC test or CC test overall. Furthermore, the
analysis revealed that desired false-alarm rates can be achieved
with the GLRT using thresholds determined by well-known
distribution tables.

There are several avenues for future work within the GLRT
framework. First, the noise structure in fMRI is very com-
plicated. For simplicity and the purpose of demonstrating
our method and ideas, we assume the noise is white Gauss-
ian. The whiteness assumption does not change the problem
essentially, since, given a known time-correlation structure,
we can always use the Choleksy factorization of the noise
covariance to whiten the data [19], producing a model with
the same form as that used throughout this paper. Hence,
many of our conclusions are easily extended to more realistic
noise models that incorporate random fluctuations due to
the respiration and cardiac cycle and patient motions [10],
[15], [4], for example. One difficulty that we face, however,
is that the noise correlation structure is usually unknaan
priori, and estimation of the noise covariance is a challenging
issue that we are investigating. Second, more realistic (and

The top one is for GLRT, the middle one for MC, and the bottom one for Cﬁecessar”y more complicated) signal models can be used in the

(c) a/o = 10. The GLRT and MC curves coalesce to one in the top Whil%

the CC detector remains at the bottom.

B. A Simulated fMRI Study
Fig. 3 shows one slice image of the brain (8464 voxels).

LRT framework. For example, multiparameter models of the
reference signat could account for uncertainties in the BOLD
response and nonconstant baseline drift. Multiparameter linear
regression models of the response could be used within the
GLRT framework to make the test more robust to such
uncertainties. However, we caution that more complicated

A 9 x 9-voxel region in the lower right corner of themodels may or may not improve the performance. It is also
brain (indicated in white) was selected to be active in thisossible to deal with unknown delays (different onset latencies

simulation. For the simulation, & = 120 length time series
was simulated for each voxel. The reference signakas

in different voxels) by correlating the voxels with shifted
versions of the responseand selecting the shift that produces

a square wave with period ten. The fluctuation of referentiee maximum correlation. This approach is another instance
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(d)

Fig. 3. Simulated fMRI experiment. (a) Brain image with simulated activation region highlighted. The MC test, CC test, and GLRT test are compared
in (b)-(d). A threshold was selected for each test to producBra= 0.01. (b) MC test results. Detection rat€; = 0.77. (c) CC test results.
P; = 0.70. (d) GLRT results.P; = 0.79.

of a GLRT procedure in which we are effectively computing APPENDIX |
the MLE of the delay and plugging it into the LRT. We are DERIVATION OF GLRT SrATISTIC
currently investigating such methods. As mentioned at the end of Section I, we can always

Finally, we close with a summary of our conclusiongrthogonalize our model so that, without loss of generality,
regarding complex data-domain fMRI. First, at relatively higive assumel”r = 0 andr’r = N, soS”H = H'S = 0,
baseline signal intensityz/o > 3), the simple MC test, which STS = H'H = NLx».
is very common in practice, performs quite well. Hence, in Let &, and&; denote the MLE’s of noise variance under
such regimes there is no compelling reason for testing basedwipothesest, and H;, respectively. Recall that the GLRT
the complex data. This is expected since the magnitude datatististic is given byw It is easy to show that this
approximately Gaussian at high signal intensity, in which casgstistic reduces to " 0x:G0):
the MC test is nearly optimal. In fact, in most typical fMRI
experiments:/o > 3 and the MC test is adequate. However, at
a lower baseline signal intensity the performance of the MC Recall that under Gaussian distribution the maximum likeli-
test drops off dramatically and, in such situations, compldod estimate is the same as least square estimate. Therefore,
data tests such as the new GLRT and CC test offer superg@iculation ofmin &3 is straightforward
performance. Low signe'll intensity does occur gs.the spatial min 62 = ||P§Y||2- (14)
and/or temporal resolution of the fMRI study is increased.

Most fMRI experiments work with limited resolution in order Determiningmin(47) is much more difficult due to the
to avoid the low signal intensity problem. However, hightonlinear coupling between the two unknowasand ¢. To
resolution low signal intensity fMRI may be useful in certairfircumvent this difficulty we first decomposeandy — S¢ —
research or clinical paradigms, and in such cases we advoc‘é]fg/) into three orthogonal components, ..,

the GLRT. y = Psuy + Psy + Pay

Ls(y) = min(53) /min (67). (13)
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and then However, from (18) to make sur@? is minimal, /i must
have the same sign #2 and so the unique solution for
= |ly - S¢ — pHo| 5 s an & 6, a
2
= || Psuay + (Psy — S¢) + (Puy — pHo)|| . —
2 5o—
— 1Py + 1Psy — S + [Py — o] ==y (3)
2 2 2
= |Psuayll” + (1862 — So|” + [HO, — uH|| Substitution off; into (18) yields the right solution foinin
= ||PSJ‘Hy||2 + N[61T61 + 650, + (14 p2)pT ¢ &2, Finally, from (13), (14), and (18) we get the closed-form
— 20y + b )T¢] expression forLs(y) as given by (10).
2T Instead of usingLs(y) directly, we use (9) as our test
where §; and 8, are given by (12). statistic. The main reason for this is to get a good comparison
Now min 67 is equivalent tanin J = (1+p2)¢p? ¢—2(f2+ between the three different detectors. It will become much
p61)% . clearer when we study the asymptotic propertytfy).
Setting partial derivatives of with respect toy and ¢ to
zero APPENDIX I
aJ INVARIANCE OF GLRT TEST STATISTICS

= 2T —20{ ¢ =0,

gg The most difficult part of using invariant theory is to find
36 = 2(1 4 )P — 2(6y + ) = 0. an appropriate set of transformations which fully exploits the
¢ structure of the signal to be detected. Since our problem is
We then get nonlinear, finding this set of transformation is not an easy
67 b matter. Actually finding and proof come simultaneously.
i 1T (15) The following theorem may be regarded as an extension of
s R the results in [20], which is not hard to prove, and therefore
b= M (16) Wwe simply state the result.
1+ a2 Theorem: Consider the model
So now v = pHe + S¢ + on (19)
min 62 = || Peggy||” + N (6761 + 6265) — N(1+ 32)$T ¢ . o .
! SH ! 2 " wheren is Gaussian distributed a&’(0,I). The model is
Furthermore, note that invariant to the group of transformations defined by
N(676, +6765) = ||Puy|® + || Psyll*, G ={9(y): 9(y) = cQsQuy} (20)
2
1Paryll” + I PsylI” + 1 Pay ) = lly® where
T
which gives {QS =UsQU§ + Ps N N SS
JUN — T, pl=H HH
min 67 = |ly||* - N(1+ 32°)é" ¢ Qu = UnQUy PH = WQW
N . . i tant() is any 2x 2 orthogonal matrixUg; and
= lyll® — -5 (676, + 21676, + 426Tg,]. ¢S ANy coNStAntIIs any £ g s
1 14 42 (02 62+ 2061 6: + i 1] Uy are defined in an obvious way.

The geometrical meaning of this transformation is consec-
utive rotations of the original signal within th& plane and
then within theH plane followed by scalings that introduces

Eliminating ¢ from (15) and (16) (or setting derivative of
the above equation with respect foto zero) shows thaf

must satisfy unknown variance.
020, + 206% 0, + 5260761 9’{92 + 670, (17 Under the above transformatiog(y) is explicitly expressed
1 + u ll : as
Using this equationmin 62 can be further simplified 9(y) = muHep, +S¢, + o1n (21)
mina? = [ly|? <9T91 n 61 92) (18) with the induced transformatio&' given by
b moo=p
This equation is important in our derivation of asymptotic P11 =cQo
expression ofL3(y) in Appendix I o1 =co.

From (17)}: satisfies quadratic equatipi+cp—1 = 0 with ] ]
It follows that (1, ||$||> /o) or, more simply(u, a2/o?) is

_ 036; — 9?91_ a set of maximal invariant parameters undé(see [6], [17],
01 62 and [19] for details on invariance principles). And it is easy
Sincep 12 = —1, there are two solutions of opposite S|gn£0 verify that¢s(y) is invariant to the transformation group
@G. Therefore, from standard invariance theory (again see [6],
A= i1y (2)2. [17], and [19]), the pdf oft5(y) is a function ofy. anda/o
2 2 alone (instead of all four model parametetd, ¥ ando).
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ASYMPTOTICS OFGLRT TEST STATISTICS

(4]

In the detection problem, our concern is the low SNR case. .
5] M. A. Berstein, D. M. Thomasson, and W. H. Perman, “Improved

In our situation, we assume that the true parametenderH;

is small, i.e.,. — 0. By the asymptotic property of maximum-

likelihood estimates, a®v — oo, i — pu. In order to get a

more accurate approximation gfwe use (16) combined with

i — p — 0(@sN — o) and get¢p — 6, so from (15)
(as N — o0)

[~ 22
i~ ra, (22)

(6]

(7]

(8]
El

which is the maximum likelihood estimate for the correspond-

ing linear model (3).
Substituting the above equation into (18) we have

miné? = |ly||* — N (676, + 676,)
= lyll* = I1Psyll* = |1 Payll*.

[10]

[11]

(23) 2

Noting that [13]
Psi = Ps PsuPs (24)

1 1 1 1 1 [14]
Ps — Psyy = P3 PuPs = Py = Pulys, (25)

Pg P = PtPs = Ps;;y =1—Ps — Pu (26)
we get from (13), (14), and (23) & — oo
Ls(y) = La(y)-

This implies thatt3(y) asymptotically has the same distri-

bution ast»(y), i.e., noncentralFs > y_1)(SNR), and thus
asymptotically has the CFAR property.
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