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Generalized Likelihood Ratio Detection
for fMRI Using Complex Data

Fangyuan Y. Nan and Robert D. Nowak*

Abstract—The majority of functional magnetic resonance imag-
ing (fMRI) studies obtain functional information using statistical
tests based on the magnitude image reconstructions. Recently, a
complex correlation (CC) test was proposed based on the complex
image data in order to take advantage of phase information
in the signal. However, the CC test ignores additional phase
information in the baseline component of the data. In this paper,
a new detector for fMRI based on a generalized likelihood ratio
test (GLRT) is proposed. The GLRT exploits the fact that the
fMRI response signal as well as the baseline component of the
data share a common phase. Theoretical analysis and Monte
Carlo simulation are used to explore the performance of the
new detector. At relatively low signal intensities, the GLRT
outperforms both the standard magnitude data test and the CC
test. At high signal intensities, the GLRT performs as well as the
standard magnitude data test and significantly better than the
CC test.

Index Terms—Functional magnetic resonance imaging (fMRI),
generalized likelihood ratio test (GLRT), hypothesis testing, sig-
nal detection.

I. INTRODUCTION

I N functional magnetic resonance imaging (fMRI) a series
of MR images of the brain are acquired over time to

detect neural activity. Neural activity has been linked to blood
oxygenation levels in blood vessels near active neurons. This
relationship is called the blood oxygenation level dependent
(BOLD) effect [24]. Subtle variations in the magnetic prop-
erties of oxygenated and deoxygenated blood induce changes
in the MR signal intensity which can be used to detect neural
activity. The BOLD effect can be used to obtain maps of active
and nonactive regions of the brain. In order to achieve a high
signal-to-noise ratio (SNR), the spatial and temporal imaging
resolution must be limited [12]. Unfortunately, low-resolution
imaging may lead to a loss in signal information originating in
microvasculature [22]. Hence, there is a fundamental tradeoff
between resolution and SNR in fMRI. It is therefore of great
interest to develop reliable detection methods for fMRI in the
presence of noise.

Most fMRI methods are based on detecting intensity
changes in a sequence of two or more MR images of a certain
volume of the brain. When comparing just two images, a rest
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state and active state image, a two-sampletest is routinely
used. In repetitive experiments involving a dynamic time
sequence of images, a correlation method is common in
which the correlation between each voxel time series and a
reference signal is used to decide whether or not activity is
present [2]. We will focus on the repetitive experiments in this
paper, however, similar results and conclusions can be drawn
in other contexts such as event-related experiments. Many
generalizations and extensions of this simple idea have been
proposed [8], [9], [14], [18], [21]–[23], and under various
assumptions and experimental setups the fMRI detection
problem is equivalent to well-known statistical tests including

tests, tests, and tests. Bayesian strategies have also
been recently proposed for fMRI [7], [13].

Almost all fMRI tests are based on the magnitude image
data. In standard practice, the raw MRI data is reconstructed
and the magnitude is taken to eliminate the (unknown) phase.
A common approach to fMRI detection is based on a test
statistic obtained by correlating the magnitude voxel time-
series data with a known reference signal which is assumed to
be representative of the BOLD response. We call this detector
the magnitude correlation (MC) test. Recently, however, Lai
and Glover proposed a complex correlation (CC) test based
on the complex image data (i.e., image data before taking the
magnitude of each voxel), in order to take advantage of phase
information in the data and improve the detectability of fMRI
responses [14].

Here, we show that the CC test statistic isdistributed
and has a constant false-alarm rate (CFAR) property. This
means that a specified false-alarm rate, i.e., the probability
of deciding a voxel is active when in fact it is not, can be
achieved irrespective of the SNR, which is generally unknown
a priori. Throughout the paper we denote the false-alarm rate
by . Despite the CFAR property, the CC test focuses only on
the response component of the data and ignores the constant
baseline component of the data. The constant component does
not contain information relevant to the response itself, but it
does contain important information about the phase. Although
the phase is a nuisance parameter in the testing problem, more
accurate knowledge of the phase can improve the detectability
of the fMRI response. In this paper, we propose a new test
based on the generalized likelihood ratio test (GLRT) principle
that allows us to incorporate the phase information contained
in the constant data component.

Theoretical and Monte Carlo studies are used to show that
the GLRT outperforms the CC test. Specifically, we show that
for a fixed false-alarm rate the GLRT’s detection rate is
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higher than that of the CC test. Furthermore, we show that
the GLRT also performs significantly better than the MC test
at low SNR. The performances of the GLRT and MC test are
roughly the same at high SNR, and in such situations both
perform better than the CC test.

In this paper we stress very simple voxelwise testing based
on a Gaussian white noise observation model. Voxelwise
testing ignores spatial relationships in fMRI data. Moreover,
the white noise model does not capture more complicated
disturbances present in fMRI data such as time-correlated
noises due to physiologic motions. However, since the focus of
this work is to assess the potential benefits of fMRI detection
using complex data, we employ a simple data model and
testing procedure to explore this basic issue, realizing our
assumptions are perhaps too simplistic in many practical cases.
However, it is possible to extend our results and conclusions to
more elaborate approaches based on more realistic data and/or
correlated noise models, potentially accounting for uncertain-
ties in the BOLD response and/or spatial relationships among
neighboring voxels. Such extensions are briefly discussed in
the conclusions.

The paper is organized as follows. In Section II, we review a
basic model for fMRI data and establish some vector notation
that will be used throughout the paper. In Section III, we
examine the standard MC and CC tests and study the statistical
properties of each. We also derive the new GLRT for fMRI.
The properties of the GLRT are discussed and mathematical
analysis is relegated to the Appendices. In Section IV, we
compare the performance of the MC test, CC test, and GLRT
in various SNR regimes. Although the GLRT statistic does
not have a standard distribution, we use exhaustive Monte
Carlo simulation to assess the performance of the detector.
Our results show that the GLRT does have a CFAR property
and we give a simple rule for choosing the threshold level to
achieve a desired . We also demonstrate the performance
of all methods in a simulated fMRI experiment. We close in
Section V with discussion and conclusions.

II. fMRI SIGNAL MODEL

The most common reconstruction technique in MRI is to
compute the inverse discrete Fourier transform (DFT) of the
raw data. Due to phase errors which are difficult to control,
the signal component of the measurements appears in both real
and imaginary channels [16], [5]. This suggests the following
simple model for an fMRI voxel time series. Letdenote an

vector containing the voxel time series data

(1)

The data vector consists of two complex signal compo-
nents. The first component is a constant baseline component
where denotes an vector of ones and
is the amplitude of the constant component. This vector
represents the average value of the time series. More generally,
a nonconstant multiparameter baseline model can be employed
(e.g., a linear of low-order polynomial model) to account for
slowly varying drifts in the baseline. To keep the presentation
simple, we will restrict our attention to the simple constant

model, but our results are easily extended to more general
cases. The second componentis the oscillatory1 response
signal. The vector is a reference function that models
the expected response characteristic and it is assumed to be
known throughout the paper. The amplitudecharacterizes
the strength of the response. In the absence of activity .

The baseline component and oscillatory signal component
share a common phase. Hence, we model this phase coupling
by multiplying both components by the complex number

where . In addition to the two
signal components, an additive complex Gaussian white noise
component models random fluctuations in the fMRI
time series. The term denotes a standard (zero mean unit
variance) complex Gaussian vector. The factorscales the
noise resulting in a variance of . In general, the parameters
of this model and are unknown and are different
for each voxel time series. We have compared this model to
actual fMRI time series and found that our assumptions are
fairly reasonable. In particular, the phase coupling between
the constant and response components has been verified by
our experiments. Fig. 1 shows the real part, imaginary part,
and phase of one time series from real fMRI experiment and
it is illustrative of the constant phase idea. One limitation of
our model, as mentioned earlier, is the white noise assumption.
The white noise model is generally an oversimplification of the
noises inherent in fMRI (e.g., physiologic motions), but it is
a tractable model for exploring the potential of complex data
detection schemes. Extensions of this work to more realistic
noise models are discussed in Section V.

A GLRT can be derived directly from this complex model
(1), but this form is not well suited for mathematical analysis.
Because complex numbers can be interpreted as pairs of real
numbers, we reexpress the complex model (1) as a -
dimensional real-valued model

(2)

where and

The subscripts and denote real and imaginary parts,
respectively. The phase-coupling in the complex model is
manifest in the real model as a nonlinear coupling between
the parameter and the parameter.

We point out here that this (nonlinear) model stands in
marked contrast to the classical linear regression model

(3)

where and are independent. In the next section we show
that the CC test proposed by Lai and Glover [14] can be
derived from the linear model in (3). It is our contention that
the nonlinear model is a more accurate representation of the

1We focus on repetitive experiments with (known) oscillatory response
signals to illustrate our ideas. However, it may be possible to extend the
analysis and results to other situations such as event-related experiments.
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Fig. 1. The real part, imaginary part, and phase of one time series from a real fMRI experiment, illustrating the constant phase idea in our model.

physical fMRI problem, and, indeed, the new GLRT based on
the nonlinear model outperforms the CC test.

Before moving on, let us establish some basic mathematical
conventions and notation that are used throughout the paper.
All vector norms are the standard (Euclidean) two norm.
Let denote an matrix, (e.g., or ). Let
denote the operator that projects a vector onto the subspace
spanned by the columns of . Specifically, in matrix form,

where the superscript denotes
matrix transposition. Similarly, Let denote the operator
projecting a vector onto the complementary subspace that is
orthogonal to the subspace spanned by the columns of. Note

where denotes the identity matrix. Two
other notations are and
[3], [20].

Finally, throughout the paper we will assume and
. The second condition can always be satisfied since

we can always normalize the reference signal without changing
the problem essentially. The first condition is generally not
immediately fulfilled, however it is easily achieved by orthog-
onalization. For example, if is not orthogonal to the baseline
constant signal , then we define an orthogonal response signal

. Hence, without loss of generality, we assumeis
orthogonal to .

III. M ETHODS FORFUNCTIONAL MRI DETECTION

In this section we review the basic MC and CC tests and
introduce the new GLRT test for fMRI detection. In fact, all

three tests may be interpreted as GLRT’s based on different
data models as we will show. These interpretations illuminate
the underlying (although sometimes overlooked) modeling
assumptions associated with each method. Before we look at
each method, let us briefly review the GLRT principle.

A. Generalized Likelihood Ratio Tests

The likelihood ratio test (LRT) [11] is an optimal method
for deciding which of two hypotheses (competing data models)
best describe a set of observed data. The data model corre-
sponding to each hypothesis is a probability density function
(pdf). Unfortunately, however, to implement the LRT, the
pdf’s under each hypothesis must be completely specified. This
is not the case in fMRI. In fMRI, we have two hypotheses;

, BOLD response absent , and , BOLD response
present . Under hypothesis , the vector and the
noise power are unknown. Under hypothesis and

are unknown. Due to the unknowns, in fMRI we have what
is called a composite hypothesis test.

In special cases, it is possible to derive uniformly most
powerful (UMP) tests for a composite hypothesis. However, in
the complicated problems with multiple nuisance parameters,
UMP tests are not easily derived or, more often, unavailable. In
complicated cases, such as the fMRI problem at hand, there are
two standard approaches to composite hypothesis testing. The
Bayesian approach prescribes prior pdf’s for the unknown pa-
rameters themselves and the likelihoods are integrated against
these pdf’s to eliminate the dependence of the LRT on the
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unknown parameters. The generalized likelihood ratio test
(GLRT) is another approach to composite hypothesis testing.
The GLRT is often preferable to Bayesian approaches due
to its ease of implementation and less restrictive assumptions
(specifically, the GLRT does not require the specification of
prior probability distributions for the unknown parameters)
[11], [19]. For these reasons, we focus on the GLRT in this
paper.

The idea of GLRT is motivated by the classical likelihood
ratio test. In a simple hypothesis testing problem, the pdf
for each hypothesis is completely known. Let

denote the pdf’s corresponding to the two hypotheses.
Recall that denotes the data. The argument denotes a
known parameter that specifies the precise form of the pdf.
For example, may represent the mean and covariance of a
multivariate Gaussian density. The LRT decides if

where is a user specified threshold which can be chosen to
achieve a desired . The likelihood ratio (LR), is a
function of the data and it is called the test statistic.

The GLRT is also based on the LR, but in the composite case
the parameters are unknown. The key idea in the GLRT is to
replace the unknown parameters by their maximum likelihood
estimates (MLE’s). In general, the GLRT decides if

where is the MLE of assuming is true and is the
MLE of assuming is true. The MLE of a parameter is
simply the value that makes the observed data most likely (i.e.,
the value of the parameter that maximizes the corresponding
pdf evaluated at ). The GLRT has no optimality property in
general, but it asymptotically approaches the UMP test among
all parameter-invariant tests [6]. For more details on maximum
likelihood estimation and the GLRT, see [11].

B. Method 1: Magnitude Correlation Test

Under the assumption of a Gaussian white noise model
for the complex data, the magnitude of fMRI data is Rician
distributed [16]. However, for large values of the ratio
(ratio of baseline signal intensity to noise standard deviation)
the Rician density can be well approximated as Gaussian. To
see this, note that , the th observation in the time series
can be written as

The magnitude of is given in the equation at the bottom
of this page. Note that is nothing but
another Gaussian random variable. We denote it as. Also
note that and are independent for . is
a random variable. Under the assumptions that and

is very small, the third term under the square root
sign below is much smaller than the second one and therefore
can be neglected. Then using the expansion

we arrive at

Hence, a very common approach to fMRI detection is to use
the following Gaussian approximation:

(4)

where here is (real) Gaussian
distributed as and with under and
under . Hence, in this case and .
Bear in mind that this approximation does not accurately
model the data in cases in which is relatively small, as
we shall see later in some examples.

The GLRT for this problem is based on the following test
statistic [19], [20]:

(5)

where

If then we decide , otherwise we choose .
We call this test the MC test because the test statistic
is proportional to the correlation between the magnitude data

and the reference signal.
The test statistic under the assumption that is

truly Gaussian is distributed as [20] where
. That is is the noncentrality parameter

of distribution. Unfortunately, the Gaussian approximation
(4) is inaccurate when . In fact, when is small,
we don’t know the distribution of MC detector nor whether
or not it has CFAR property. So determination of a proper
threshold (to obtain a desired ) is theoretically very difficult.
Moreover, since the Gaussian approximation is no longer
reasonable in this case, one expects the performance of the
MC test to suffer. This is indeed the case as we shall see in
the next section. How to solve this problem will be explained
in the next section, together with our numerical results.
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C. Method 2: Complex Correlation Test

Recall the linear model

(6)

The GLRT based on this model is well known in the
signal processing literature as a matched subspace detector
[20] and, in fact, it coincides with the CC test proposed by
Lai and Glover [14]. The unknown parameters in this case are

and . The GLRT is
given by

(7)

where

(8)

If then we decide , otherwise choose .
This test is called the CC test, because it is equivalent to the
test proposed in [14] which is based on the correlation between
the reference signal and real and imaginary components of the
complex data. The pdf of is noncentral
where, again, , and thus it has the CFAR
property (note that the CC test statistic has a standard central

distribution under ). However, the CC
test has one drawback. As we pointed out in the previous
section, the phase-coupling between the constant and BOLD
response components of the data dictates the nonlinear model
(2), as opposed to the linear model used to derive the CC test.
Therefore, we next propose a novel GLRT based on this more
accurate model.

D. Method 3: A New GLRT for fMRI

The unknown parameters in model (2) are
and under and , respectively.
Recall that the phase coupling introduces a nonlinear coupling
between the parameter and under . This nonlinearity
makes the MLE’s more difficult to compute but, remarkably,
a closed-form expression for the GLRT statistic does exist.
Using the GLRT principle and the nonlinear model (2), in
Appendix 1 we derive the following test statistic:

(9)

where is defined in (10) at the bottom of this page with

(11)

and and are two sufficient statistics

(12)

As usual, given a specified threshold, we decide if
and otherwise.

An interesting relationship exists between this test and the
CC test. Compare (8) with (10). Note that if in (10) then

and coincide. It is precisely through the term
that the effect of phase coupling comes into play. Furthermore,
if the true parameter under , which is the case for
most fMRI detection problems,2 then we show in Appendix 3
that asymptotically (as , the length of the time-series,
increases) has the same distribution as . For example,
this means that for long repetitions of an experimental task
(large ) the CC test and our new GLRT will have roughly
the same performance in terms of detection power at a given
false-alarm rate.

Unfortunately, a closed form for the pdf of such test sta-
tistics as is not as readily accessible. We can, however,
show that the pdf of is a function of and alone
(see Appendix 2). This is a desirable feature since, in general, a
test could depend on all the unknown parameters .
Hence, this result shows that the test is only a function of two
key variables, instead of four.

The dependence of the test on implies that, in general,
this test does not have the CFAR property. Hence, selection
of a threshold to achieve a desired is more difficult.
However, the relationships between this test and the CC test
suggest some possibilities for threshold selection. From (10),
the upper bound of is easily seen to be coincident
with . Therefore, one method of threshold selection is
to choose our threshold slightly smaller than that determined
for the distribution.

A more accurate method is to determine the exact thresholds
via Monte Carlo simulation. Some of the results of our
simulations are given in the next section. Here, we summarize
the conclusions. Exhaustive Monte Carlo simulation reveals
that the GLRT test is also CFAR when , which is the
case for most if not all fMRI experiments. More importantly
and more interestingly, to achieve the desired, the proper
threshold of our GLRT detector is almost exactly one half
that of the corresponding threshold required for a -
distributed test statistic. This is difficult to prove theoretically,
but it is confirmed by extensive Monte Carlo simulation. In
mathematical terms, we have

where denotes the density of an -distributed statis-
tic. Differentiating the above equation leads us to an exciting

2The assumption� � b

a
� 1 implies that the strength of the responseb

is much smaller than the baseline intensitya.

(10)
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TABLE I
Pd WITH Pf = 0:01; N = 120

TABLE II
Pd WITH Pf = 0:025;N = 120

TABLE III
Pd WITH Pf = 0:05;N = 120

result that the density of the test statisticunder is related
to the density by the approximation

This implies that a very accurate threshold can be selected
using standard -distribution tables [1].

IV. M ONTE CARLO ANALYSIS OF THE TESTS

A. Comparison of the Three Detectors

In order to compare the performances of the three detectors
we have run exhaustive Monte Carlo experiments. Because
the GLRT does not generally have the CFAR property, it is
necessary to study the performance for different values of.
However, as mentioned above, for the Monte Carlo
analysis reveals that the GLRT is essentially CFAR.

In Tables I–III, we compare the detection rates of the
three tests under three different false-alarm rate specifications.
The false-alarm rates were selected to be representative of
those commonly used in fMRI. The most difficult element
of the Monte Carlo analysis, except in the CC test case, is

the determination of proper thresholds to achieve a desired
false-alarm rate with each detector. The CC test is
distributed under , and therefore the proper threshold is
very easily determined from standard tables [1].

Because the MC test and GLRT are not known to possess the
CFAR property, the proper threshold will, in general, depend
on . For a given value of , the threshold needed to
achieve a desired false-alarm rate can be determined via Monte
Carlo analysis and trial and error over a range of thresholds.
This is precisely how the thresholds were determined for the
results given in Tables I–III. Remarkably, however, the Monte
Carlo analysis revealed that both the MC test and the GLRT
were essentially CFAR so long as , which is almost
always true in fMRI. Moreover, the Monte Carlo analysis
supports the use of some very simple rules for threshold
selection.

First, in the case of the MC test, for very large values of
the magnitude data is very well approximated as Gaussian.

Therefore, in such situations the MC test is (approximately)
distributed under and the proper threshold can

be determined again from standard tables [1]. Because, the
Monte Carlo simulations show that for the MC test
is essentially CFAR, the proper threshold may be determined
from distribution for all cases in which .
The derivation of (4) also supports this, although not strictly.

Second, the similar performances of the GLRT and MC
test for large suggested the possibility of a relationship
between the GLRT statistic and the statistic. This
intuition led to the discovery that the proper threshold for
the GLRT can be determined from the as well.
Specifically, our analysis shows that the proper threshold for
the GLRT can be selected as one half of the threshold required
to achieve the desired false-alarm rate with a -
distributed statistic.

The results in the three tables show clearly that our GLRT
detector performs best for all three (low, medium, and high)

cases. The CC detector does perform better than MC
detector at low case. However, as the constant component
becomes more and more dominant over the noise, the GLRT
and MC test significantly outperform the CC test.

Finally, note that the detection rate of the CC test is constant
for fixed . This is expected because the
CC test statistic is noncentral under .
Remarkably, note that the dependence of the detection rate
of our GLRT detector also depends only on SNR. The same is
not true of the MC test, whose performance drops off severely
as decreases.

We also illustrate the results graphically in Fig. 2. Here
we plot the probability of detection as a function of relative
response strength . Fig. 2(a) shows the case with

, which is fairly low so we expect the performance
of the MC detector to be poor, which is indeed the case.
Fig. 2(b) shows the case for and we see that
the performance of the MC detector begins to surpass that of
the CC detector, but is still inferior to that of our new GLRT.
Fig. 2(c) indicates the case for , which is quite large,
and so the MC detector and GLRT detector have almost the
same performance.



326 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 4, APRIL 1999

(a)

(b)

(c)

Fig. 2. Three performance curves (detection probabilityPD versus response
strength� = b

a
) with N = 120; Pf = :01 while � = b=a varies. Therefore,

the thresholds are chosen as in Table I. Solid line for GLRT; dash-dot(–:) line
for CC; and dashed(– –) line for MC. (a)a=� = 1. The curve at the top is
for GLRT, the middle one for CC, the bottom one for MC. (b)a=� = 3:162.
The top one is for GLRT, the middle one for MC, and the bottom one for CC
(c) a=� = 10. The GLRT and MC curves coalesce to one in the top while
the CC detector remains at the bottom.

B. A Simulated fMRI Study

Fig. 3 shows one slice image of the brain (6464 voxels).
A 9 9–voxel region in the lower right corner of the
brain (indicated in white) was selected to be active in this
simulation. For the simulation, a length time series
was simulated for each voxel. The reference signalwas
a square wave with period ten. The fluctuation of reference

signal about the constant baseline level was10%, i.e.,
. The noise variance in each time series was set so that

. For each time series, the phase is a constant.
But spatially, the phase has a random fluctuation (modeled
here as a Gaussian noise with zero-mean 0.1 variance) about
a constant phase of . The desired false-alarm rate in this
example was chosen to be , and thus the three
thresholds for CC, GLRT, and MC detectors are 4.70, 3.43, and
6.85, respectively. The actual false-alarm and detection rates
observed in this simulation, given in the caption of Fig. 3,
are in excellent agreement with the tabulated Monte Carlo
results.

V. DISCUSSIONS ANDCONCLUSIONS

This paper developed a novel GLRT for fMRI in the
complex data domain and compared it to the commonly used
MC test and the recently proposed CC test. We derived a
very simple closed-form expression for the GLRT statistic. In
fact, all three tests are roughly equal in terms of computational
complexity. Although the GLRT statistic does not obey a well-
known distribution, theoretical analysis established a basic
invariance principle for the statistic and it was shown that
the GLRT and the CC test are asymptotically equivalent (as
the length of the fMRI time series increases). Monte Carlo
analysis was used to demonstrate that the GLRT performs
better than the MC test or CC test overall. Furthermore, the
analysis revealed that desired false-alarm rates can be achieved
with the GLRT using thresholds determined by well-known
distribution tables.

There are several avenues for future work within the GLRT
framework. First, the noise structure in fMRI is very com-
plicated. For simplicity and the purpose of demonstrating
our method and ideas, we assume the noise is white Gauss-
ian. The whiteness assumption does not change the problem
essentially, since, given a known time-correlation structure,
we can always use the Choleksy factorization of the noise
covariance to whiten the data [19], producing a model with
the same form as that used throughout this paper. Hence,
many of our conclusions are easily extended to more realistic
noise models that incorporate random fluctuations due to
the respiration and cardiac cycle and patient motions [10],
[15], [4], for example. One difficulty that we face, however,
is that the noise correlation structure is usually unknowna
priori , and estimation of the noise covariance is a challenging
issue that we are investigating. Second, more realistic (and
necessarily more complicated) signal models can be used in the
GLRT framework. For example, multiparameter models of the
reference signal could account for uncertainties in the BOLD
response and nonconstant baseline drift. Multiparameter linear
regression models of the response could be used within the
GLRT framework to make the test more robust to such
uncertainties. However, we caution that more complicated
models may or may not improve the performance. It is also
possible to deal with unknown delays (different onset latencies
in different voxels) by correlating the voxels with shifted
versions of the responseand selecting the shift that produces
the maximum correlation. This approach is another instance
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(a) (b)

(c) (d)

Fig. 3. Simulated fMRI experiment. (a) Brain image with simulated activation region highlighted. The MC test, CC test, and GLRT test are compared
in (b)–(d). A threshold was selected for each test to produce aPf = 0:01. (b) MC test results. Detection ratePd = 0:77. (c) CC test results.
Pd = 0:70. (d) GLRT results.Pd = 0:79.

of a GLRT procedure in which we are effectively computing
the MLE of the delay and plugging it into the LRT. We are
currently investigating such methods.

Finally, we close with a summary of our conclusions
regarding complex data-domain fMRI. First, at relatively high
baseline signal intensity , the simple MC test, which
is very common in practice, performs quite well. Hence, in
such regimes there is no compelling reason for testing based on
the complex data. This is expected since the magnitude data is
approximately Gaussian at high signal intensity, in which case
the MC test is nearly optimal. In fact, in most typical fMRI
experiments and the MC test is adequate. However, at
a lower baseline signal intensity the performance of the MC
test drops off dramatically and, in such situations, complex
data tests such as the new GLRT and CC test offer superior
performance. Low signal intensity does occur as the spatial
and/or temporal resolution of the fMRI study is increased.
Most fMRI experiments work with limited resolution in order
to avoid the low signal intensity problem. However, high-
resolution low signal intensity fMRI may be useful in certain
research or clinical paradigms, and in such cases we advocate
the GLRT.

APPENDIX I

DERIVATION OF GLRT STATISTIC

As mentioned at the end of Section II, we can always
orthogonalize our model so that, without loss of generality,
we assume and , so

.
Let and denote the MLE’s of noise variance under

hypotheses and , respectively. Recall that the GLRT

statistic is given by It is easy to show that this

statistic reduces to

(13)

Recall that under Gaussian distribution the maximum likeli-
hood estimate is the same as least square estimate. Therefore,
calculation of is straightforward

(14)

Determining is much more difficult due to the
nonlinear coupling between the two unknownsand . To
circumvent this difficulty we first decomposeand

into three orthogonal components, i.e.,
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and then

where and are given by (12).
Now is equivalent to

.
Setting partial derivatives of with respect to and to

zero

We then get

(15)

(16)

So now

Furthermore, note that

which gives

Eliminating from (15) and (16) (or setting derivative of
the above equation with respect toto zero) shows that
must satisfy

(17)

Using this equation, can be further simplified

(18)

This equation is important in our derivation of asymptotic
expression of in Appendix III.

From (17) satisfies quadratic equation with

Since , there are two solutions of opposite signs

However, from (18) to make sure is minimal, must
have the same sign as and so the unique solution for

is

Substitution of into (18) yields the right solution for
. Finally, from (13), (14), and (18) we get the closed-form

expression for as given by (10).
Instead of using directly, we use (9) as our test

statistic. The main reason for this is to get a good comparison
between the three different detectors. It will become much
clearer when we study the asymptotic property of .

APPENDIX II

INVARIANCE OF GLRT TEST STATISTICS

The most difficult part of using invariant theory is to find
an appropriate set of transformations which fully exploits the
structure of the signal to be detected. Since our problem is
nonlinear, finding this set of transformation is not an easy
matter. Actually finding and proof come simultaneously.

The following theorem may be regarded as an extension of
the results in [20], which is not hard to prove, and therefore
we simply state the result.

Theorem: Consider the model

(19)

where is Gaussian distributed as . The model is
invariant to the group of transformations defined by

(20)

where

is any constant; is any 2 2 orthogonal matrix; ; and
are defined in an obvious way.

The geometrical meaning of this transformation is consec-
utive rotations of the original signal within the plane and
then within the plane followed by scalings that introduces
unknown variance.

Under the above transformation, is explicitly expressed
as

(21)

with the induced transformation given by

It follows that or, more simply, is
a set of maximal invariant parameters under(see [6], [17],
and [19] for details on invariance principles). And it is easy
to verify that is invariant to the transformation group

. Therefore, from standard invariance theory (again see [6],
[17], and [19]), the pdf of is a function of and
alone (instead of all four model parameters and ).
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APPENDIX III
ASYMPTOTICS OFGLRT TEST STATISTICS

In the detection problem, our concern is the low SNR case.
In our situation, we assume that the true parameterunder
is small, i.e., . By the asymptotic property of maximum-
likelihood estimates, as . In order to get a
more accurate approximation ofwe use (16) combined with

(as ) and get , so from (15)
(as )

(22)

which is the maximum likelihood estimate for the correspond-
ing linear model (3).

Substituting the above equation into (18) we have

(23)

Noting that

(24)

(25)

(26)

we get from (13), (14), and (23) as

This implies that asymptotically has the same distri-
bution as , i.e., noncentral , and thus
asymptotically has the CFAR property.
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