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The principal part of this paper is devoted to the study of the dis-
tribution and density functions of the ratio of two normal random
variables. It gives several representations of the distribution function
in terms of the vivariate normal distribution and Nicholson’s V func-
tion, both of which have been extensively studied, and for which tables
and computational procedures are readily available. One of these
representations leads to an easy derivation of the density function in
terms of the Cauchy density and the normal density and integral. A
number of graphs of the possible shapes of the density are given, to-
gether with an indication of when the density is unimodal or bimodal.

The last part of the paper discusses the distribution of the ratio
(wr4 « + « +un)/ @01+ + - « 4vn) where the w’s and v’s are independent,
uniform variables. The exact distribution for all » and m is given, and
some approximations discussed.

1. INTRODUCTION

HE first part of this paper will discuss the distribution of the ratio of normal
Trandom variables; the second part, the distribution of the ratio of sums of
uniform random variables. There does not seem to be much in the literature
concerning the ratio of normal variables—there are some comments by Curtiss
in his paper, [2], on the ratios of arbitrary variates, and papers by Fieller [4],
and Geary [5], all of which are quite old. It might be thought that the subject
is 8o simple that it was considered long ago, then dropped, but this is not quite
the case. Unless the means are zero, where one easily gets the Cauchy dis-
tribution, the distribution of the ratio of normal variables does not respond
readily to the devices that work so well for other important quotients in
statistics, e.g., those of f, z, or F. Curtiss remarks that it is apparently im-
possible to evaluate the density in closed form, a rather vague statement. We
will derive the exact density of the ratio of two arbitrary normal variates by
what might be called modern methods—not in the sense of using powerful
new techniques, but merely by using properties of distributions that have been
extensively studied in the intervening years. The density may be expressed
as the product of a Cauchy density and a factor involving the normal density
and integral, which might be considered a closed expression (equation (5)
of Section 2). At any rate, there are now available a number of methods for
handling the functions associated with the distribution and density of the
ratio, and with the aid of a computer, we may study them in detail.

Aside from its frequent occurrence in problems involving the ratio of meas-
ured quantities with a random, presumably normal, error, the problem of the
ratio of normal variates is of importance in regression theory. In fitting a line
to points (z1, ¥1), - - +, (Ta, Yn), the 2’s assumed constant and the y’s inde-
pendent normal with E(y;) = a+Bx;, one gets & and § as estimates of « and 8
by least squares. It is natural to estimate the z-intercept of the regression
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line in the form —&/8, and thus the problem of the ratio of normal variates
arises.

The following example of this problem occurs in medicine: in order to es-
timate the life span of the circulating red blood cells of a subject, a number of
his red cells are labelled and then, by some means or other, the number of
labelled cells still in the circulation is sampled, say, every 5 days for 50 days.
This gives a sequence of points which are plotted and fitted with a straight
line; the point where the line intercepts the time axis is used as the estimate
of the red cell life span. It is important to know the distribution of this estimate
about its true value—the normal red cell life span is about 120 days and
shortened life spans are associated with various hematological disorders, most
of them severe.

We will discuss the distribution and density of the ratio of two normal ran-
dom variables in Section 2. In Section 4 we will discuss the distribution of ratios
of the form (ui4 - - -4+u,)/(®1+ - - -+ +v,) where the w’s and »’s are inde-
pendent uniform variables; a recent paper, Locker and Perry [8], on this dis-
tribution for n=m=2 led to its being considered here. We will find the exact
distribution for all #» and m, and examine the closeness of the normal approxi-
mation. On the way to finding the distribution of (u;+ - -+ +un)/(@1+ - - -
+v,) we will need the distribution of a linear combination of uniform variates;
some comments on this distribution and its history are in Section 3.

2. RATIOS OF NORMAL VARIABLES

We are concerned with the distribution of the ratio of two normal random
variables. The problem has been discussed in the past, [2, 4, 5]. We will bring
the problem up to date in this Section—give an explicit representation of the
distribution in terms of what are now familiar functions, and discuss in more
detail some of the properties of the distribution.

Let

a+tx
w =
b4y

where a, b are non-negative constants and z, y are independent standard nor-
mal random variables. It is easy to see that if w’=m,/y: is the ratio of two arbi-
trary normal random variables, correlated or not, then there are constants ¢;
and ¢, such that ¢;+cw’ has the same distribution as w. It thus suffices to
study the distribution of (1); translations and changes of scale will provide the
distributions of the general ratio z:/y:.

The set of points (z, y) for which

¢y

a+z
b+y
is a region bounded by straight lines, and the normal probability measures of

such regions have been extensively studied in the past few years. We should
thus be able to express the distribution of w in terms of functions associated
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with those measures, particularly the bivariate normal distribution funection
L(h, k, p) =P[£>h777>k]

where £ and 5 are standard normal with covariance p, and the V function of
Nicholson [11]:

h qz/h
v, 9 =fo f o(2)6(W)dydz,

where ¢ is the standard normal density. We have

Plw<t]=Pla+z<t®d+y),b+y>0]+Plat+z>tb+1y),b+y <0]
=Pl-z+ty>a—bly> —b]+Plz—ty> —a-+bt,y > b]

a— bt t —a -+ bt ¢
= L <ﬁ’ -_ b’ -—__:) + L< b, >
V14 2 V1482 V14t V14t
Then using the elementary properties of the L and V functions (see, for ex-
ample, the NBS table [10], p. vii),

h &
L(~h, =k, ) = L(h, k, ) + f 6@)dz + f 6(2)dz
0 0

L(=h, =k, p) + Lk, k )—-2V(h k—”h>+2v(k h—”k)
3 ) P, y Ny p) = 7\/1_’)2 ’\/l—pg

1 sin—1p

2

’

we have several representations of

F) =P[a+x<t:|:
b+y

a — bt t —a + bt t
F(t)=L( —_:—b,——_—'-—>+L( ez b, ___..__>, (2)
Vi vite ViFe CJife
F(t) = f(bt—a)/\’l+t2 ¢(x)dx+fb¢(€v)dx+2L( ljf_:_a, b, __t_>, (3)
0 0 V14 V14t
1 1 bt—a b4 at
= — 4 — tan™! 2 — ——— ) — 2 .
PO = 5+t V(\/l = tz) Vb, a) @

Representation (4) appears best for numerical purposes, unless b is large,
say b>3, since we have good methods for providing values of V and 1/
tan=, [9], [10], and [13]. This last reference, by D. B. Owen, also gives tables
and formulas for the function

T(h,\) = 2m)~ttan—t X — V(h, \h),

which for some purposes is more convenient than the ¥ function.
When b is large, the second and third terms of (3) may be replaced by .5 and
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0, so that

a+ 2z Gt—a) M1+ (bt—a) [V 1+e*
P [i)—r < t:l =~ — 4+ f o(x)dx = f o(x)dx

provides very good numerical approximations to F(t), plus the additional in-
formation that

(bw — a)/v1+ w?

is approximately normally distributed.

There is no need to go through complicated arguments involving the L and
V functions in order to derive this approximation, however; it follows directly
from the assumption that b4y >0. In many applications one is more sure that
the denominator of the ratio is positive than one is of the normality of z and
y, so that the exact distribution of the ratio of normal variates may not ap-
proximate the practical ratio as well as the approximation given by

(bt-a)/‘/;_t?
P[a+m<t]§P[a+w<bt+ytJ=f o(x)dz.

b4y —

Now we turn to the density of (a+z)/(b+y). Let
h=bt-—-a, ‘= b+at’ =_q_=£>_+_at.
V142 V14t h b—at

Using primes to indicate differentiation with respect to ¢, so that A’ =¢q/(1+£)
N = —(a?+b%)/(bt—a)?, we differentiate (4) to get

1 ‘ »
f@=F=RT:5+mm@j}@@+m\£mmawm.

Integrating the last term and simplifying, we get this form for f(¢), the density
function of the ratio

a+z
bty
Py b+ at
= d = .
0 = T [ [T, -2

Figure 1 shows f(t), the density of (a+z)/(b+v), for various values of a and
b. The curves in Figure 1 were drawn by a computer; it also drew the identi-
fication for each density in the form

a+tx
b+y’

where a is a multiple of 1 and b a multiple of 1. The values of a and b were
chosen so as to give a rough indication of the possible shapes of the densities
given by formula (5). As you can see, some unusual shapes are encountered.
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Fia. 1. Graphs of the density of (a+z)/(b+y), where a>0, b>0 and z, y are inde-
pendent, standard normal random variables. The formula for the density is in equation
(5). Values a=0/3,1/3, - - -, 6/3 and b=0/8, 1/8, - - -, 8/8 were chosen so as to rep-
resent the possible shapes of the density function.

The positive a, b quadrant may be divided into two regions according to
whether the density of (a+z)/(b+y) is unimodal or bimodal, as in Figure 2.
The curve that determines the two regions is asymptotic to a=22.257. Thus
when a>2.257, the density of (a+z)/(b+y) is bimodal, even though it may
not appear so. For example, the density of (108+x)/(10°4-y), z and y inde-
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Fia. 2. The density of (a+=z)/(b+y) is unimodal or bimodal according to the region
of the positive quadrant in which the point (a, b) falls.

pendent standard normal, would appear to be a single spike at ¢=1, but in
fact it has another mode somewhere in the vicinity of t= —102,

We conclude this Section with a summary.

Summary of the Properties of the Ratio w= (a+z)/(b+y), where x and y are
Independent Standard Normal and a>0, b>0.

atz
b+y

w = ;> where a>0,b>0,

1. If w' =2,/y.1 is the ratio of any two jointly normal variables, then there are
constants ¢; and ¢ so that ¢1-+4c.w’ has the same distribution as w.

2. The distribution of w, say

a+tz
F@t) =P ———<t],
® [b-l-y
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may be expressed in terms of the bivariate normal distribution, or Nicholson’s
V function in several ways—formulas (2), (3), and (4) above.

3. When b is large, say b> 3, then
(bw — a)/v1 + w?

is approximately normally distributed, and

(bt—) WIHEE
Plw < ¢] =P[a+x5t]%’f ¢(u)du.
b+y

-0

4. The density of

atz

b+y
is given by formula (5). This density is plotted for various a and b is Figure 1.
5. The density of

a-+x
b4y

is unimodal or bimodal according to the region of Figure 2 in which (a, ) lies.
When a>2.257, the density is bimodal, although one of the modes may be in-
significant.

3. THE DISTRIBUTION OF CiUi+ + * + +Colln

Let us, - - - , U, be independent random variables, each uniformly distributed
over the interval (0, 1). In the next Section we will need the distribution of a
linear contribution of the u’s,

ciuy + Couz + - ¢+ + Calla (6)
with the ¢’s positive. The general linear form in the u’s can readily be reduced
to (6), for example

3u; — 2us + Sus
has the same distribution as
3u; — 2(1 — u2) + Sus = 3uy + 2us + dus — 2,

since 1—wu, has the same distribution as u..

There have been a number of discussions of the distribution of (6) in the
literature—the problem (for equal ¢’s) dates back to Laplace [7], who solved
it as a limiting form of the discrete case,! and, again with equal ¢’s, the result
is in standard textbooks, e.g., Uspensky [17], who inverted the characteristic

1 The discrete case of the problem, which may be viewed as the problem of finding the sum on n “dice,” each
one having a certain number of faces, has an even more curious history. In 1710, Montmort solved the problem
for equal dice, as did DeMoivre in 1711, Simpson in 1740, LaGrange around 1770, and LaPlace in 1774. Mont-
mort attempted, but did not solve, the problem of unequal dice. See Todhunter’s History [16], Articles 148, 149, 364,
888, 915, 987.
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function, and Cramér [1], proof by successive convolution. For unequal c’s
the result was given by Olds [12], and the distribution appeared as a problem
on volumes, [3], with subsequent remarks on its proof—particularly a devel-
opment of Schoenberg [15], using recursive relations for spline curves. More
recently, Roach [14], offered a geometric argument,.

Thus the problem is now well known, and it is not particularly difficult,
although notational difficulties, plus the fact that the problem may be viewed
as one of probability, geometry, or spline functions, have led to a variety of
proofs.

Roughly, the distribution of ¢iu1+ - - - 4c,u, may be described as follows:
Let S be the set of all 2" numbers which can be formed as a sum of different ¢’s:

S={chl;"',Cn;cl+c2,"',cl+”’+Cn}-

Then .
Pleyus + + - -+ catta < @] = ———— >, + (a — 97,

n!0102 ** * Cp 3€8,3<a

the 4+ or — being according to whether there are an even or odd number of
¢’s used to form s. For example,

1
Pu1 + 3us + 8us < 7] = ) [72— (7 —2)2— (7T —3)3+ (7 — 5)3]
and
1
P[2u1 + 3us + 8us < 12] = 3148) [128 — (12 — 2)3 — (12 — 3)* — (12 — 8)®
+ (12 = 5)* 4+ (12 — 10)2 + (12 — 11)3]. )

Note also that the distribution of 2u;-+3us+8u; is symmetric (any linear
combination of independent symmetric random variables is symmetric), and
that, rather than compute expression (7), one might consider

P[2u; + 3us + 8us < 12] = P[2(1 — u1) + 3(1 — uz) + 8(1 — us) < 12]
1
= P|2 3 Sus > 1l=1—-——.
[2us + 3wz + 8us > 1] 31(48)
We may formally describe the distribution of ciui+ - + - +cau, as follows:

Theorem 1. Let u1, Uz, Us, * * - , U, be tndependent random variables, each uni-
formly distributed over the interval (0, 1), and let ¢, cs, - - -, ¢ be positive con-
stants. Let

Fa(a) = Problcius + -+ + caun < a]
and let
0 ifz <0,

gn(x) = "

_— if 0 <z
n!clcz c**+Cq
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Then, for 0<a<ci+ - -+ +ca,
Fo(@) = ga(a) — 2 gala — ¢ + 20 gala — ¢ — ¢5)
% <J
— 2 gla—ci—c—a)+ -,

1i<j<k

The theorem may be easily proved by induction, using the elementary re-
sults:

cntl

F.la — z)dx

Fopi(a) =

Cnt1 Y o
and
1

Cn+1

cn+l
f gﬂ(b - x)dx = gn+1(b) - gn+1(b - C”+1).
0

When the ¢’s are all equal to 1, the result takes the following form:

Plu, + "'+un<a]=l[a"—(T)(a—l)”-l-(;)(a—m"---],

n!

where the terms are taken as long as a, a—1, a—2, - - -, are positive. More
formally, for 0 <a<n, and with the greatest integer notation,

[a]

1
Plus+ -+ - + u. < a] = > (=1i(a — )

=0

Uy + st + Un
4. THE DISTRIBUTION OF -
: 2 R
Let uy, g, ¢+ -, Un V1, * -+, Um be independent random variables, each
uniform over (0, 1). We want the distribution of
U1 + vt + Un (8)
U1 + st + Um

The distribution of (8) is of interest in studying round-off error propagation in
numerical analysis, see references [6], [18]. The particular case m=n=2 was
worked out in detail in reference [8]. We will find the distribution of (8) for
all n and m, by applying the results of the previous Section, and will, in addi-
tion, discuss approximations to the distribution.

Since 1—v; is distributed as v;, we have

P[u1+"'+un<a]=P[ Uyt o U <a]
2 R =)+ -+ 0 —m)
=Plus+ - - - +ta + av1 + ava + - - - + av, < ma)

and hence a direct application of Theorem 1 gives (after a little thought about
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how the terms combine):

[u1+~~+un ]
Pl ——————<a
vit ot Um

! o meQfel L (n\ [m . .
Trmw s & (—1)‘+I<z‘><j) [ — a — i]»+m.
For example,

platitu ]
o1+ - -+ s 12!(.9)5

(;) [(f;) (@.5)" — G) (3.6)" + <Z> @n" - <Z> (1.8)1 + (Z) (.9)12]
(oo ()aom+(Jan+ (o]
EJasn- (oo (o]
D[0o- (o]

W)@ |

The variate (ui+ - -+ +u.)/(1+ - - - +v,) is approximately a ratio of
independent normal variables, and the discussion of Section 2 should apply.
We may derive a good normal approximation directly, however, writing

1 T

P[u<a]=P[u1+'~+un+am+"'+a”’"<ma]'
1)1+"’+v‘m

Since the sum on the right is approximately normal Wlth mean .5[n+ma] and
variance (a>m-+n)/12, we have

[u1+ R ] [\/-?;(am—n):l
P —_—<a §¢ —_—— |.
it U Varm 4+ n

Figure 3 gives some indication of the merits of this approximation. The
function plotted is

U1 + e U, V;(zm-n) Vaimtn
=P —<z| - f tydt
eror (x) [vl + ct e + tm w:| -0 ¢()

for m=n=3, 4, 5, 6, 8, 10. The shapes of these error curves are similar, being
stretched and flattened as n and m get large; their shapes resemble those of the
normal derivatives, suggesting that the first few terms of a Gram-Charlier
expansion would give even better approximations.

In case it is necessary to get the tail of the distribution with great precision,
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ERROR RESULTING FROM APPROXIMATING

005 | m=n=3 U+ - U V3 [xm—n)
p Y n ] Vo IXm=nj
004 [ [V|+~ * *Vm <x]oe q)(Vx"’m—n )

Fia. 3.

it is not too difficult to calculate the exact probabilities: for 0 <a < (1/m),
P[ul—l- C ot Ua <a:|
U1 + R + Um
il (e ()
= ———— | |t — 'm — n+m m — ntm __ . .. ,
(n + m)! 1 2

and for b>n,

P[u1+~~'+un>b]
N

el (amoe ]

Some supplementary references: The referees have pointed out two more
useful references on the ratio of normal variates: A paper by Creasy, [1s],
which deals with the ratio for a fiducial purpose and gives a formula close to
equation (5) of this article, and a survey section on probability theory by
Eisenhart and Zelen, [2s], pages 1-151, where the normal approximation to
the distribution of the ratio of normal variates is erroneously said to be exact.
(Equation 12.157 of that reference. The error apparently arises from the im-
proper relation P[Y/X<Z]|=P[Y<ZX].)
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