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Combining Complex Signal Change in Functional MRI

Jongho Lee,"™ Morteza Shahram,? and John M. Pauly?®

With the development of functional magnetic resonance
imaging (fMRI) techniques, data analysis methods based
on complex MR data have been proposed. However, the
methods have not been popular for fMRI community, in
part because the phase activation in conventional GRE
fMRI has been suggested to originate from the large veins
(1). Recently, novel fMRI methods such as transition-band
SSFP fMRI and an alternating balanced SSFP method for
neuronal current measurement (2) have been proposed. In
these methods, the functional contrasts exist in the com-
plex domain, providing significant and localized complex
signal change. Hence, the usefulness of the complex-data
analysis methods has become increasingly important for
these applications by allowing them to reliably obtain
complex activation.

As mentioned in his letter, Dr. Rowe has proposed a
complex-data analysis method based on the generalized
likelihood ratio test (3). Despite the usefulness of the
method, the computational complexity of the method,
which requires multiple iterations to estimate the param-
eters, hampers the routine use of the method. This is
particularly true for high-resolution studies that we tar-
geted in our study. To overcome this inefficiency, we have
proposed a new method based on T? statistics combined
with generalized linear model (4).

Dr. Rowe’s letter expressed concerns about the relation-
ship of our model to his model and some mathematical
errors. Here we present our responses to his points:

Point 1

We agree with his comment on Appendix B. Although the
test statistics in Appendix B are correctly derived, it
started in Cartesian coordinates, whereas Dr. Rowe’s
method is in polar coordinates. Despite our oversight in
Appendix B, the rest of the article remains correct.

Points 2 and 3

In his points 2 and 3, Dr. Rowe argued that our model is
correct only when one constant and one bipolar regressor
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are used. He reached this conclusion based on his “simple
inspection” that he can equate his model to our model. By
doing so, he showed that our model results in an error for
the noiseless observations that he used in his model (point
3).

He considered a case in which L. = 2, n = 3, and the
design matrix (X) has first column [1, 1, 1]’ and second
column = [0, 0.5, 1]’. With the same setup, let us assume
the observation made was yz; = [4, 5, 6]’ and yr = [8, 7, 6]".
One can easily see that this is a noiseless observation in
Cartesian coordinates because a contrast and a linear re-
gressor are assumed (“x” marks in Fig. 1).

Upon inserting Bz = [4 2]” and B, = [8 2]’ into our model,

one can see that
It
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Hence, our model correctly produces a noiseless estima-
tion.

Using the same observations, let us apply them to Dr.
Rowe’s model.

(Npeintaoy) = (rsimnr) = (5)
x;Bcos(uyy) _ (By + 0.5B;)cos(y; + 0.5v,) _ 5
<Xéﬁsin(u£v)) <(81 +0.5B,)sin(y, + 0~5VZ)> <7>

The solution for the first equation is B, = 8.94427 and v,
= 1.10715 (rad). From the second equation, one can obtain
v: = —0.68389 and B, = —0.31320. Following Dr. Rowe’s
step in his point 3, this solution should work for the last
equation when we plug in the numbers

By + By)cos(y;, + v,)

a <(B1 + Bo)sin(y; + 72))
5.89071 6
= <5.79081> i <6>

Hence, his model does not estimate the parameters cor-
rectly.

This result leads to exactly the opposite conclusion from
Dr. Rowe’s letter. The discrepancy can be understood by
looking at the two examples in a two-dimensional plane
(Fig. 1).

Because our model is in Cartesian coordinates, the re-
gressors exist in Cartesian coordinates. Hence, when the

observation is in Cartesian coordinates, it produces a cor-
rect estimation. This is also true for Dr. Rowe’s model
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FIG. 1. The observation points with the “x” marks are the example

given above, whereas the “+” marks are the example from point 3
in Dr. Rowe’s letter.
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when the observation is in polar coordinates. The two
models are different because their regressors exist in dif-
ferent coordinates. As a result, the two models cannot be
equated as Dr. Rowe did in his point 2 and point 3. This
misled him to conclude our model is limited in the num-
ber of regressors and the shape of the regressors.

One implication of this result is that our model fits better
when the observation exists in Cartesian coordinates,
whereas Dr. Rowe’s model fits better for polar coordinates.
For functional contrast, true coordinates are not known
(for example, Cartesian coordinates are also used to repre-
sent the functional contrast in SSFP fMRI (5) and GRE
fMRI (6)). Nonetheless, if the contrast is relatively small,
both Cartesian and polar coordinate models can estimate
the observation closely because the first-order approxima-
tion of one coordinate will accurately represent the other
coordinate. This is illustrated in Fig. 2. When the phase
contrast is 0.05 rad (= 2.8°), the time course of the hemo-
dynamic response in phase (blue line) is closely approxi-
mated by the Cartesian regressors leaving a small amount
of residual errors (red and green lines). The estimated
error, calculated by the mean absolute values of the real
and imaginary axes residuals divided by the mean abso-
lute values of the phase, is only 0.6%. The estimation error
is still only 3.3%, even for a relatively large phase contrast
of 0.3 radian (= 17.2°). Considering the variability of the
hemodynamic response function (7) and the noise of fMRI
measurement, these error levels are negligibly small.
Therefore, for the applications that the complex-data anal-
ysis has been used in fMRI so far and for other methods
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that have a relatively small contrast, both Dr. Rowe’s and
our models would properly represent the contrast.

Point 4

The degrees of freedom and the scaling factor (the value in
front of the F-distribution) in Eq. 5 are correctly written in
our article. A detailed derivation of theses parameters can
be found in (8). Dr. Rowe’s conclusion in his point 4
originates from the assumption in his article that the re-
sidual errors are independent. In our article, this was not
assumed in the theory section. Only in Appendix B (page
916), where we mentioned “[alssuming the case in which
noise in the real and imaginary axes is independent, as
assumed in Ref. 9 [which is Dr. Rowe’s article].” Hence,
the degrees of freedom should be m, n—-m, as is written in
Eq. 5 of our article. In general, the residual errors could be
correlated because of physiologic noise, because of hard-
ware imperfection, and when phased-array coils are used.
When the independence of the residual errors is assumed,
the correct scaling factor is 2(n—1)/(2n—4), which is still
different from what Dr. Rowe has suggested in his com-
ment.

In conclusion, we thank Prof. Rowe for his interest in
our article. With this letter, we believe most of his con-
cerns have been addressed. The models differ in the coor-
dinate systems used, Dr. Rowe using polar coordinates,
whereas our method is in Cartesian coordinates. Despite
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the different coordinate systems used, our method serves
to detect the complex activation and is not limited to the
number of regressors or the shape of the regressors. In
practical fMRI applications in which the signal changes
are small, both our method and Dr. Rowe’s method should
successfully detect complex functional contrast.
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