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In transition-band steady-state free precession (SSFP) func-
tional MRI (fMRI), functional contrast originates from a bulk
frequency shift induced by a deoxygenated hemoglobin con-
centration change in the activated brain regions. This frequency
shift causes a magnitude and/or phase-signal change depend-
ing on the off-resonance distribution of a voxel in the balanced-
SSFP (bSSFP) profile. However, in early low-resolution studies,
only the magnitude signal activations were shown. In this paper
the task-correlated phase-signal change is presented in a high-
resolution (1 � 1 � 1 mm3) study. To include this phase activa-
tion in a functional analysis, a new complex domain data anal-
ysis method is proposed. The results show statistically signifi-
cant phase-signal changes in a large number of voxels
comparable to that of the magnitude-activated voxels. The
complex-data analysis method successfully includes these
phase activations in the activation map and thus provides wider
coverage compared to magnitude-data analysis results. Magn
Reson Med 57:905–917, 2007. © 2007 Wiley-Liss, Inc.
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Since its first inception in the early 1990s, blood oxygen
level-dependent (BOLD) functional MRI (fMRI) has had a
tremendous impact on human brain research. Most studies
performed a functional data analysis using the magnitude
data of the time-series images while ignoring phase-signal
changes. Recently a few high-resolution studies explored
the phase information and revealed that the task-corre-
lated phase-signal change can provide additional informa-
tion regarding brain activation (1,2). Investigators found
that a large draining vein induced phase-signal changes in
addition to magnitude-signal changes by creating a rela-
tively uniform frequency shift within a voxel. This infor-
mation was utilized to determine the oxygen saturation
change in veins (1) and to suppress BOLD signals from
large vessels (2). However, in transition-band SSFP, or
blood oxygenation sensitive steady state (BOSS) fMRI, a
recently developed functional imaging method that pro-
vides greater signal-to-noise ratio (SNR) efficiency with
less imaging distortion (3–6), the origin of the phase-signal
change differs from that in conventional gradient-recalled
echo (GRE) fMRI (5). Moreover, this task-correlated phase-

signal change was always expected, since a sharp phase
transition near the on-resonance frequency (also at every
multiple of 1/TR) is considered to be a primary source of
the functional contrast in transition-band SSFP fMRI.
However, early low-resolution studies measured func-
tional activations from the magnitude signals (5). This has
raised questions regarding the existence of the phase acti-
vation and the contribution of the SSFP phase profile to
the functional contrast. In this article we present the re-
sults of a 3D high-resolution (1 mm3) functional study to
show the presence and characteristics of task-correlated
phase-signal changes in transition-band SSFP fMRI. Sim-
ulation results are also included to further elucidate the
sensitivity and characteristics of the phase-signal changes.

If functional contrast exists in both magnitude and
phase signals, and if both signals provide spatially local-
ized information, an analysis based only on magnitude
cannot fully exploit the data. Some voxels that contain
phase activation without magnitude activation will not be
detected, and some voxels that contain both activations
will show less activation in the magnitude-only analysis.
Therefore, to acquire more reliable results, a complex do-
main data analysis method that encompasses both magni-
tude- and phase-signal activations is necessary. Recently
several complex-data analysis methods (7–15), most of
which are based on a generalized likelihood ratio test
(GLRT) (13), have been proposed. Here we propose a new
method that combines a Hotelling’s T2-test (which can be
derived from GLRT) (16) with a generalized linear model
(GLM) (17) to calculate the statistical significance of the
activation from complex data. This method is computa-
tionally efficient compared to the previously proposed
methods, and generates full activation maps that include
both magnitude and phase activations.

THEORY

Functional Contrast of Transition-Band SSFP fMRI

Unlike the contrast mechanism of T2* dephasing in con-
ventional GRE fMRI, transition-band SSFP fMRI is based
on a bulk frequency shift induced by a fractional oxygen
saturation change of hemoglobin (4,5). This frequency
shift is a function of vessel orientations, the fractional
oxygen saturation of hemoglobin, and the magnetic field
strength. If a cylindrical vessel tilted by � degree with
respect to the main field is assumed, the intra- (�fiv) and
extravascular (�fev) frequency shifts are given by (18,19):

�fiv � �Hct���1 � Y�B0�cos2� � 1/3� [1]

�fev � �Hct���1 � Y�B0�R/�r��2sin2�cos�2 � r�, [2]

where � is the gyromagnetic ratio (2.678 � 108 rad T–1 s–1),
Hct is a fractional hematocrit in blood (0.4), �� is the
susceptibility difference between fully oxygenated and
fully deoxygenated red blood cells (0.27 ppm from Ref.
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20), Y is the fractional oxygen saturation of hemoglobin, R
is the radius of the vessel, and r is a vector from the center
axis of the vessel on an orthogonal plane of the vessel.

The magnitude and phase signals of a voxel are deter-
mined by the intra- and extravascular frequency shifts, the
fractional volume of the vessels, and the off-resonance
frequency distribution. If a voxel contains n veins whose
volumes are small (and the veins are distant from each
other), and the off-resonance frequency distribution of the
voxel is assumed to be uniform, then the magnetization of
the voxel (M) becomes

M � �1 � ��P�foff� � �
i	0

n ��
�i

P�foff � �fi�d�i�, [3]

where � is the total volume of all veins (including ex-
travascular spaces), foff is the off-resonance frequency of
the voxel, �i is the volume of the ith vein (including the
extravascular space), �fi is the fractional frequency shift
from the off-resonance frequency induced by the ith vein in
the d�i space, and P is the magnetization profile of bal-
anced SSFP (bSSFP; Fig. 1a and b).

If a vessel is located near the resonance frequency, the
sharp phase transition will create a large phase-signal
change in accordance with the bulk frequency shift. As a

result, a task-correlated phase-signal change is expected.
Based on the orientation of the vessel, the intravascular
frequency shift can cause either a positive (|�| 
 0.96 or
2.19 
 |�| 
 3.14 radian) or a negative (0.96 
 |�| 
 2.19
radian) phase change, resulting in two different phase
correlations. The extravascular frequency shift can also
contribute to the net phase accrual due to the nonlinear
phase profile. However, if a voxel is large and only a
fractional volume of the vessels shows oxygen concentra-
tion changes, and the vessels are randomly oriented, then
the task-correlated phase-signal change will be decreased
due to partial-volume effects and incoherent phase accru-
als. As a result, in low-resolution studies the phase-signal
change is difficult to observe, even in the phase transition
band.

Outside of the phase transition band, the bulk frequency
shift (�f) modulates the magnitude signal from the magni-
tude profile with little or no phase-signal change. Both a
positive and a negative magnitude change can be detected
based on the off-resonance frequency and vessel orienta-
tion. For instance, if the off-resonance frequency shift is
positive and a vessel is parallel to the field, the voxel will
show a positive correlation with the given stimulus,
whereas a vein tilted by a �/2 radian will show a negative
correlation.

Hotelling’s T2-Test

In conventional fMRI analysis, where there is only one
variate (magnitude data), a Student’s t-test can be used to
determine whether the null hypothesis is rejected (i.e., the
voxel shows activation) or is not rejected (i.e., the voxel
shows no activation) for a given threshold. However, in the
complex data analysis, the number of variates becomes
two (i.e., real and imaginary or magnitude and phase);
hence, one must generalize the Student’s t-test to a biva-
riate test to evaluate the null hypothesis in the complex
domain. This generalization can be achieved using a Ho-
telling’s T2-test (16) that compares the sample mean vector
with the expected mean vector, and performs the null
hypothesis test on a multivariate domain as described
below.

Similarly to the Student’s t-test statistic t � �x�
� ��/�̂/�n�, (where n is the number of samples, x� is the
sample mean, � is the hypothetical population mean, and
̂ is the sample standard deviation (SD)), the Hotelling’s
T2-test is defined as

T2 	 �x� � ��T�Ŝ/n��1�x� � ��, [4]

where n is the number of samples, x� is the sample mean
vector, � is the hypothetical population mean vector, and
Ŝ is the sample covariance matrix (an unbiased estimator).
When the sample has two variates (for example, real and
imaginary), x� and � become 2 � 1 vectors, whereas Ŝ
becomes a 2 � 2 matrix.

If all of the variates (in this case, both the real and
imaginary parts of the data) are distributed by the Gaussian
distribution, the T2 statistic will follow an F-distribution
with m and n-m degrees of freedom (where m is the num-
ber of variates in the sample (i.e., m 	 2 in the complex
data) and n is the number of samples). This T2 statistic can

FIG. 1. Small-flip-angle bSSFP (a) magnitude and (b) phase profiles
at three different TEs (TE 	 0.1TR, 0.5TR, and 0.9TR). The fre-
quency sensitivity of these profiles provides the functional contrasts
of transition-band SSFP fMRI. c: 3D interleaved stack-of-spirals
sequence for the functional scan.
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be derived from a likelihood ratio test (a full derivation can
be found in Ref. 16). For a given significance level �, the
null hypothesis is rejected when

T2 � ��n � 1�m
n � m �Fm,n�m���. [5]

A P-value can be obtained from the cumulative distri-
bution function (CDF) of Fm,n-m evaluated at T2�n
� m�/��n � 1�m�.

p � 1 � CDF of Fm,n�m�T2
n � m

�n � 1�m�. [6]

Complex Data Analysis Method

To incorporate the hemodynamic response function into
this T2-test, a GLM (17) is utilized to estimate the mean
vectors of the activation and baseline states, as well as the
covariance matrix. The complex time-series data are de-
composed into real and imaginary axes. To find the mean
vector of each state, one structures the design matrix (X) of
the GLM by a constant vector (1 	 [1 1 . . .. 1]T, a real n �
1 vector) and a reference waveform vector (h, a real n � 1
vector, the convolution of a stimulus pattern and a hemo-
dynamic response function). Equation [7] shows this mod-
eling:

yr � X�r � εr � �l h���r1 �r2�
T � �r [7]

yi � X�i � εi � �l h���i1 �i2�
T � �i,

where y � yr � iyi (a complex n � 1 vector) is the
time-series data of one voxel, �r and �i (a real 2 � 1 vector
each) are the parameters of GLM, and �r and �i are residual
errors (a real n � 1 vector each). One can easily incorporate
other terms, such as a linear drift, by adding more vectors
and parameters into the model (see Appendix B). The
least-square estimates of �̂r and �̂i are (XTX)�1XTyr and
(XTX)�1XTyi, respectively. The activation level or the
mean difference between the two states (x� � �) becomes
��̂r2 �̂i2�

T, which are the parameters of the reference wave-
form vector in real and imaginary axes. Setting the con-
trast (v) to the reference waveform vector (i.e.,
v 	 [0 1]T), we calculate the covariance matrix of the
contrast from the residual errors (�̂r and �̂i) and the design
matrix as follows:

Ŝ/n � COV(�̂r,�̂i)vT(XTX)�1v. [8]

This closely resembles the variance of a contrast in a 1D
GLM test whose value is ̂2vT(XTX)�1v (17). With these
values calculated from the GLM method, the T2 value can
be obtained as follows:

T2 	vT[ �̂r �̂i ]�[COV(�̂r,�̂i)vT(XTX)�1v]�1 � � �̂r �̂i ]Tv. .

[9]

The P-value is found from Eq. [6] with m 	 2.

MATERIALS AND METHODS

Simulated Data Analysis Using the Complex Data Analysis
Method

Four different data sets of the complex data (no contrast,
contrast in magnitude, contrast in both magnitude and
phase, and contrast in phase) were generated to validate
the proposed complex data analysis method. Each com-
plex data set was generated by Eq. [10] with the proper
SNR and contrast-to-noise ratio (CNR) values:

y � X(�r � i�i) � nr � ini, [10]

where y (a complex 50 � 1 vector) is a voxel time-series
with 50 points, X is the same design matrix as in Eq. [7],
the reference waveform vector (h) of X is a boxcar block
design with a duration of 10 samples, nr and ni are
real 50 � 1 vectors distributed by N(0,1), and �r

� ��r1 �r2� and �i � ��i1 �i2� are the parameters in the
real and imaginary axes, respectively. Since the noise is
normalized, the parameters �r1 and �i1 represent the SNRs
in the real and imaginary axes, whereas �r2 and �i2 repre-
sent the CNRs in the real and imaginary axes. The absolute
values of the complex data were used to generate the
magnitude data. We analyzed the magnitude data using
the GLM method with the same design matrix (X) to com-
pare the results. A total of 100,000 voxels were simulated
in each data set. The SNRs were set to 10 (i.e., �r1 � �i1

� 10). The first data set was Gaussian noise data with
�r2 � �i2 � 0. This test was intended to show that the
null hypothesis is not rejected when no activation exists.
The second data set (�r2 � �i2, both simulated at increas-
ing values from 0 to 1.4) was generated to simulate the case
in which the contrast exists only in magnitude. In the third
data set the same contrast existed both in magnitude and
phase (�r2 	 0 whereas �i2 increased from 0 to 1.4�2). For
the last data set, �r2 was changed from 0 to 1.4, while �i2

was kept as the opposite sign of �r2 to simulate the activa-
tion approximately in phase with the same amount of the
complex contrast as in the previous two data sets.

Experimental Data Acquisition

All experiments were performed on a 1.5 T GE EXCITE
system (40 mT/m and 150 mT/m/ms) with a 3-inch re-
ceive-only surface coil, except for a high-resolution refer-
ence scan that was acquired using an eight-channel head
coil (MRI Devices Corp., USA). Five subjects, who pro-
vided written consent (approved by Stanford University),
were immobilized by pads and instructed to avoid any
voluntary motions. A high-resolution reference scan
(spoiled gradient-echo (SPGR), FOV 	 22 cm, resolution 	
1 � 1 � 1 mm3, TR 	 11.7 ms, TE 	 5.1 ms, flip angle 	
25°, number of excitations (NEX) 	 3) that covered the
entire brain was acquired using the head coil on a separate
day. In the main experiments using the surface coil, an
axial slab (2-cm thickness) of the lower occipital lobe was
targeted after the brain was localized with a 3D localizer
sequence. An intermediate-stage anatomical scan (SPGR,
FOV 	 16 cm, resolution 	 1 � 1 � 1 mm3, TR 	 12 ms,
TE 	 4.2 ms, flip angle 	 25°, NEX 	 6) that helped to
realign the high-resolution reference scan to the functional
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data was performed at the same resolution and FOV as in
the functional scans. To identify the locations of large
vessels, a 3D spiral trajectory high-resolution venogram
(GRE, FOV 	 16 cm, resolution 	 0.5 � 0.5 � 1 mm3, TR 	
70 ms, TE 	 40 ms, flip angle 	 25°, NEX 	 12) was
obtained by using a flow-compensated venogram (21) se-
quence. Linear shimming was targeted at the occipital lobe
of the brain by a custom targeted shim program before the
functional scans. For the functional studies, a 3D stack-of-
spirals sequence (bSSFP, FOV 	 16 cm, resolution 	 1 �
1 � 1 mm3, TR 	 15 ms, TE 	 1.5 ms, flip angle 	 5°,
number of interleaves 	 10, 18 slices for subjects 1–3 and
16 slices for the others) was utilized to cover a 3D volume
every 3 s (Fig. 1c). Three different center frequencies
(�fcenter 	 0 Hz, –3 Hz, and 3 Hz) were scanned consecu-
tively to cover the wider off-resonance frequencies. The
stimulus was a 10-Hz contrast-reversing annulus grating
flashing (15 s on and 15 s off, starting with a 15-s resting
period). The subjects were instructed to gaze at cross-hairs
located at the center of the visual stimulus and to breathe
naturally. To ensure a steady state, the first 3D volume of
the functional scan was discarded. Each functional scan
lasted for 2 min 18 s.

Experimental Data Analysis

All functional data were inspected for subject motion. The
third scan (�fcenter 	 3 Hz) of subject 4 and the second and
third scans (�fcenter 	 –3 Hz and 3 Hz) of subject 5 showed
significant movements (�1 mm) and were therefore dis-
carded from further analysis. A small shift (one voxel)
between the functional scans was found in subject 3,
which was fixed by aligning the data to the first functional
scan. The intermediate-stage anatomical images were also
aligned to the first functional scan. The signal attenuation
in this intermediate-stage anatomical image, induced by
the surface coil sensitivity, was removed with the use of a
custom program. The high-resolution reference scan was
then aligned to the intermediate-stage anatomical data us-
ing SPM5 (22). The alignment was further refined manu-
ally. The gray matter (GM) regions were identified from the
reference scan. The venogram result was aligned to the
high-resolution reference scan. We identified the locations
of large veins from both the magnitude and phase
venogram results by carefully tracking the vessel geome-
tries from all of the slices. To display the results, the
reference scan and z-score maps were enlarged to match
the resolution with the venogram.

The magnitude and phase data were generated from the
complex functional data. The phase data were unwrapped
in the time-series for each voxel and 2� was added to make
positive-signed data. After that, both data sets were pro-
cessed individually to create “magnitude-only” and
“phase-only” z-statistics maps using FEAT FSL (23). For
these null-hypothesis tests, the noise should be assumed
to be Gaussian. This assumption becomes valid in both
magnitude and phase when the SNR is high (8). With the
exception of high-pass filtering (cutoff frequency 	
0.022 Hz), no other prestatistical process was performed.
Unthresholded z-statistics maps were generated from
FEAT based on each voxel. Since the negative correlations
were meaningful, the thresholds were set on both the

positive and negative sides of the z-score distribution with
a two-tailed P-value of 0.01. After thresholding, isolated
activations in the positive and negative z-statistics maps
were removed separately. Finally, the absolute values of
the z-statistics maps were used to generate the activation
maps. These activation maps were further masked by the
mask generated in the magnitude-only data (10% thresh-
olding, FEAT) with the skull area removed. The single-
frequency acquisition analysis was performed on the data
whose center frequency shift (�fcenter) was equal to 0 Hz. In
the multifrequency acquisition analysis that combined the
three different center frequency results using the maxi-
mum z-score projection method (5), the threshold was
increased to P 
 0.005.

For the complex data analysis, the functional data were
decomposed into real and imaginary time-series. Slow sig-
nal drift was then removed by the same filter that was used
previously. In each voxel the T2-value was calculated from
Eq. [9] as described in the Theory section. The reference
waveform vector for the design matrix was the convolution
of the stimulus pattern and a delayed-Gamma function
that was generated by FEAT (the same waveform vector as
that in the magnitude and phase analyses). The P-value
was calculated in each voxel from the F-distribution (Eq.
[6]), and the activation maps were generated by threshold-
ing with a one-tailed P-value of 0.01 for the single-fre-
quency acquisition analysis. After thresholding, we con-
verted the P-values into z-scores by finding the equal prob-
ability in the one-tailed Gaussian distribution N(0,1) for
the color-coded activation maps. Isolated activations were
removed from the activation maps and the results were
masked using the same mask used in the magnitude and
phase activation maps. After calculating the activation
maps for each run, we combined the three different center
frequency scans using the maximum z-score projection.
The same threshold (P 
 0.005) that was used in the
magnitude and phase multifrequency acquisition analysis
was utilized to threshold the activation maps before the
projection.

RESULTS

The simulation results are shown in Fig. 2. When there is
no activation, the complex-data analysis method results in
the N(0,1) distribution as shown in the normalized z-score
histogram (Fig. 2a). In Figs. 2b–d, the power of the mag-
nitude and complex data analysis methods is shown. The
y-axis shows the percentage of the voxels that are classified
as activations by the same threshold (P 
 0.01) used in the
experimental analysis. When the contrast is only in mag-
nitude (Fig. 2b), the magnitude-data analysis method per-
forms slightly better than the complex-data analysis
method. However, the magnitude-data analysis method
fails when the contrast is only in phase (Fig. 2d). When the
contrast exists in both magnitude and phase (the same
amount in both directions), the complex-data analysis
method performs better than the magnitude-data analysis
method. A more detailed analytic analysis of the perfor-
mance of the two methods is given in the Discussion
section. For the same contrast level in the complex do-
main, the complex-data analysis method shows the same
power for the different contrast directions.
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The experimental results reported in the following para-
graphs refer to subject 1 (the results from all five subjects
are summarized in Table 1). Figure 3a and b reveal the
activation maps from the single-frequency acquisition.
The red-to-yellow colors show the magnitude activation,
and the blue-to-light-blue colors show the phase activa-
tion. The voxels that contain both magnitude and phase
activations are color-coded in green. Generally, activated
voxels follow the sulcal areas and match the GM regions in
the brain. Using the same threshold (P 
 0.01), both mag-
nitude and phase activation maps show a large number of
significant activations. In the entire 3D volume, the mag-
nitude activation maps contain 1758 activated voxels with
a mean z-score of 3.75, and the phase activation maps
contain 1700 voxels with a mean z-score of 3.71. As can be
seen from the figures, a significant number of voxels (2576
voxels out of 3017 voxels that reveal either magnitude or
phase activation) show the magnitude-only or phase-only
activation, which proves that neither of them fully exploits
the acquired data. The magnitude and phase time-series of
the maximum z-scores (magnitude-only, phase-only, and
both) from the third slice are shown in Fig. 3c–h. The
time-series illustrate clear correlations between the stim-
ulus (red bars) and the magnitude and/or phase data. Av-
eraged over all slices, the activated voxels in the magni-
tude-data analysis show, on average, a 9.5% signal level
change (a maximum 44.7% signal level change with z 	
9.20). In the phase-data analysis the mean activation signal
change is 0.107 radian (maximum 0.483 radian with z 	
8.26).

Figure 4 shows three activation maps from a single slice
that was scanned at three different center frequencies
(�fcenter 	 –3, 0, and 3 Hz). Depending on the center fre-

quency, the locations of the activated voxels change and
the commonly activated voxels show different levels of
functional contrast. In some voxels the functional contrast
shifts from the magnitude time-series to the phase time-
series (or to both time-series) and vice versa. These results
demonstrate that the contrast changes as a function of
off-resonance frequency of the voxel (foff), and the phase
activation can be detected depending on the off-resonance
frequency of the voxel.

The maximum z-score projected phase activation maps
(P 
 0.005) from the three scans reveal high z-score voxels
near the veins (highlighted in yellow) that can be identi-
fied from the venogram (blue circles in Fig. 5). However,
the GM regions that are not identified as veins also show
statistically significant phase activations (circled in green).
This result indicates that the sensitivity of phase activa-
tion measurement is greater than that of the venogram at
the given resolution (0.5 � 0.5 � 1 mm3). The mean z-score
of the maximum projected phase activation maps is 4.03,
and the average signal change is 0.132 radian. A total of
2306 voxels are detected in the phase activation maps.
These numbers are comparable to those of the maximum
z-score projected magnitude activation maps (P 
 0.005),
which show a mean z-score of 4.01 and 2521 activated
voxels.

In Fig. 6 the activation maps of the same slices from the
magnitude, phase, and complex data (single-frequency)
analyses are shown. The activation maps (P 
 0.01) from
the complex data analysis cover areas (circled in blue) that
are missing in the magnitude data analysis results. In most
of these areas the significant activations are found on the
phase activation maps, proving that the complex data anal-
ysis method includes the activated voxels from both mag-

FIG. 2. Simulation results. a: Histogram of z-scores when there is no contrast (solid: simulation result; dashed: N(0,1)). Performance
comparisons between the complex data analysis (solid) and the magnitude data analysis (dashed): (b) when the contrast is in magnitude,
(c) when the contrast is in both magnitude and phase, and (d) when the contrast is in phase are shown.

Table 1
Summary of Results From All Subjects

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Number of activated voxels: magnitude 1758 1317 773 2178 1429
Number of activated voxels: phase 1700 1107 592 1999 2128
Number of activated voxels: magnitude and phase 441 367 76 661 436
Number of activated voxels: complex 2989 2156 1291 3207 3099
Mean magnitude change (%) 9.5 10.4 8.3 8.5 9.5
Maximum magnitude change (%) 44.7 62.4 46.6 60.3 39.1
Mean phase change (radians) 0.107 0.131 0.100 0.095 0.108
Maximum phase change (radians) 0.483 0.781 0.711 0.692 0.545
SNR 12.3 11.7 12.1 13.4 12.1
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nitude- and phase-signal changes. The complex activation
maps contain 1.7 times more activated voxels (2989 voxels
with a mean z-score of 3.60) than the magnitude activation
maps (1758 voxels), as well as 1.8 times more activated
voxels compared to the phase voxels (1700 voxels). This
result demonstrates that in transition-band SSFP fMRI, the
magnitude data analysis does not provide the full func-
tional contrast contained in the data, whereas the complex
data analysis provides better activation maps that include
both magnitude and phase signal activations.

The maximum z-score projected activation maps from
the complex-data analysis are shown in Fig. 7 (six slices
out of 18 slices). The resulting activation maps provide
wider spatial coverage compared to the single-frequency
acquisition results (3783 voxels compared to 2989 voxels
in the single-frequency analysis even after the threshold
was increased).

DISCUSSION

Task-Correlated Phase-Signal Change

In this study we observed the expected task-correlated
phase-signal change in a transition-band SSFP fMRI exper-
iment using a 3D high-resolution (1 � 1 � 1 mm3) acqui-
sition. A significant difference compared to previous low-
resolution studies is that large task-correlated signal

changes were observed in both magnitude and phase. The
magnitude results were similar in range to those reported
in Ref. 6; however, the large phase-signal change and the
large number of voxels that showed significant phase-
signal changes were observed for the first time, to our
knowledge, in the transition-band SSFP fMRI experiment.

To further validate these signal change levels, we per-
formed a simulation using Eqs. [1]–[3]. The field strength
was assumed to be 1.5T and the parameters for the SSFP
profile were TR 	 15 ms, TE 	 7.5 ms, flip angle 	 5°, T1 	
780 ms, and T2 	 80 ms (similar to GM). Two different
voxels, each modeled by simple vessel geometries de-
scribed below, were used. The first voxel was assumed to
have one large cylindrical vein that was tilted by �/6 to the
main field and occupied 50% of the voxel volume. The
fractional oxygen saturation of hemoglobin (Y) was
changed from 0.61 to 0.73 between the activation state and
baseline state. The vessel showed a 2.2-Hz frequency shift,
and the maximum signal changes were approximately
50% in magnitude and 0.60 radian in phase (the intravas-
cular part). The resulting activation profiles are shown in
Fig. 8a. The second voxel was a spherical voxel (1 mm3)
consisting of small cylindrical veins (4 �m radius) that
were uniformly distributed according to the density P(�) 	
0.5sin�, –� 
 � � �, (24) and occupied 2% of the voxel
volume (400 veins) with Y changing from 0.77 to 0.85 (Y

FIG. 4. Results from the different center frequencies (�fcenter 	 –3, 0, and 3 Hz). In each center frequency a voxel shows different levels of
functional contrast. Moreover, the functional contrast shifts from the magnitude to the phase and vice versa (or exists in both). See Fig. 3
for the color-coding scheme.

FIG. 3. Magnitude and phase-data analysis results. a and b: Activation maps from a single-frequency acquisition study (�fcenter 	 0, P 

0.01). Red-to-yellow colors show the magnitude activations, and blue-to-light-blue colors show the phase activations. A voxel with both
activations is color-coded in green. c and d: The time-series of a voxel with magnitude-only activation (x-axis, y-axis, slice) 	 (86,64,3). e
and f: Phase-only activation (x-axis, y-axis, slice) 	 (83,61,3). g and h: Both magnitude and phase activations (x-axis, y-axis, slice) 	
(67,69,3). The red bars in the plots show the stimulated periods. The magnitude scale is represented as an arbitrary unit (A.U.).
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values from Ref. 25). This voxel (capillary voxel) showed a
�2% magnitude change near the resonance frequency and
a �0.013 radian phase change near the curves of the phase
transition band (Fig. 8b). These simulation results agreed
approximately with the experimental results in the sense
that the maximum signal change levels in the experiments
were similar to the simulation results of the single large
vein case, whereas the mean signal change levels were
relatively close to (and higher than) the results of the small
veins, which mimic a voxel with capillary geometry (see
Table 1 for the experimental results).

Another interesting aspect of the simulation results is
that the magnitude and phase revealed different activation
levels at different off-resonance frequencies. The single
large vein case showed the maximum magnitude peak at
–0.1 Hz with a smoother contrast change in the positive
off-resonance side, while the phase contrast peaked at
–0.9 Hz with a smoother change on the negative side. In
the capillary geometry case, the magnitude showed a peak
signal change close to the 0 Hz off-resonance frequency
when the phase showed almost no contrast. Meanwhile,
the phase showed biphasic maximum signal changes near
�2.2 Hz. These discrepancies in the magnitude- and
phase-signal activations were also clearly observed in the
activation maps (Fig. 3), where only a fractional portion of
voxels showed both magnitude and phase activations
while others showed either magnitude or phase activation.
To identify the magnitude and phase activation level de-
pendency on the off-resonance frequency, a more careful
analysis based on a high-resolution field map and more
realistic voxel properties must be performed. Moreover,
one should be cautious in interpreting the results since the

magnitude and phase contrast profiles largely depend on
the voxel properties, which can vary from one voxel to
another.

Figure 9 illustrates the simulation results of the TE de-
pendency of the magnitude and phase activations. Two
different voxels were simulated: one (1 mm3) with a cylin-
drical vein (radius 	 60 �m, Y changing from 0.61 to 0.73,
parallel to the main field), and one with the capillary
geometry described in the previous simulation. Other pa-
rameters were also the same. The maximum magnitude
and phase activation levels were plotted over TE 	 0 to
TR. As TE increased, the magnitude activation results
showed an increase of the activation level, whereas the
phase activation showed a slight decrease. These changes
originated from the nonlinearity of the SSFP magnetiza-
tion profile at different TEs, as shown in Fig. 1a and b. The
most important observation here is that high functional
contrast exists even at TE 	 0 in SSFP fMRI. Moreover, the
contrast level is relatively uniform throughout the readout
period because magnetization profiles change little over
different TEs. This is especially true in the phase profile
near the resonance frequency where most of the phase
functional contrast is generated (Fig. 1b). These results
were expected and are considered to be a major benefit of
SSFP fMRI, since it does not require a long TE to acquire
contrasts (5).

More simulation results to elucidate the nature of the
phase-signal change are shown in Fig. 10. First, the intra-
and extravascular phase activation levels at different ves-
sel orientations are plotted over a range of off-resonance
frequencies (Fig. 10a and b). A vein (radius 	 60 �m, Y
changing from 0.61 to 0.73) was simulated for eight differ-

FIG. 6. Magnitude (a and d), phase (b and
e), and complex (c and f) activation maps
from the same slices. The complex data
analysis results cover areas (circled in blue)
that are missing in the magnitude activation
maps. In these areas significant activations
can be found in the phase activation maps.

FIG. 5. Phase activation maps and venogram re-
sults. a and c: Phase activation maps from the
maximum z-score projection. b and d: Magnitude
images from the high-resolution venogram. The
vein locations (highlighted in yellow) are identified
from both magnitude and phase images by track-
ing veins from all slices. The blue circles are the
areas where the phase activation is primarily from
the vein locations, while the green circles represent
the GM regions that are not identified as veins in
the venogram.
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ent angles (0 � � � �, where � is an angle of the vein with
respect to a B0 field). All of the sequence parameters were
the same as before (TE 	 TR/2). The intravascular phase
signal decreased as the angle increased from 0 to 0.96 (rad)
and became negative from 0.96 to �/2 (rad). In the ex-
travascular case, the phase signal increased (both posi-
tively and negatively depending on the off-resonance fre-
quency) as the angle increased from 0 to �/2. From �/2 to
�, both intra- and extravascular phase activations reversed
the patterns from 0 to �/2 (see Fig. 10a and b). These whole
patterns repeated themselves as the angle increased from �
to 2�. In Fig. 10c, the maximum activation level and full
width at half maximum (FWHM) off-resonance coverage of
the intravascular phase signal are shown over a range of
field strengths. The simulation parameters were the same
as in the vessel orientation simulation, except that the vein
was parallel to the main field, and the field strength was
increased from 0.5T to 7T. One observation from these
results is that the intravascular phase-signal change begins
to saturate as the field increases. This is because the phase
transition provides a � phase shift over a narrow frequency
band. Once the frequency shift (�f) becomes larger than
this band, the phase change becomes saturated. Therefore,
the increased frequency shift (�f) at higher field strengths
(�4T) does not contribute proportionally to the phase-
signal change. Only the off-resonance coverage increases
approximately linearly over the field strengths. However,
since the intravascular frequency shift is a function of a
vessel orientation (Eq. [1]), the saturation of the phase
activation will start at a higher field strength in other
vessel orientations. Moreover, the contributions from the
extravascular frequency shift will also have different sat-
uration patterns. In the capillary case, the oxygen concen-
tration change (Y) is smaller than that of the vein, resulting
in smaller intravascular frequency shifts that in turn re-
duce the saturation effect.

One criterion for including the phase-signal change in
the activation map is that it must show functionally local-
ized signals. In a study by Menon (2), the source of the
phase-signal change was assumed to originate primarily
from the large veins. As a result, the phase-signal change
was not included, but rather was utilized to suppress the
large vein signals. In his experiment the data were col-
lected at 4T, where (theoretically) the bulk frequency shift
is 2.7 times greater than it is at 1.5T. However, the phase
changes in Ref. 2 (0.085 radian in visible veins and 0.028
radian in other activated voxels) appear to be smaller
compared to our results (a maximum 0.482 radian phase
change with 0.107 radian, on average, in the single-fre-
quency analysis), presumably because the phase change is
much greater in transition-band SSFP fMRI due to the
sharp phase transition band, and also because we em-
ployed a smaller voxel size.

As also mentioned in Ref. 2, the minimum detectable
phase change depends on the SNR. In our experiment the
SNR measured in the nonactivated voxels (|z| 
 0.67)
was 12.3 within the mask (roughly covering the brainstem
to the back of the brain) with a single-pixel, temporal-
phase SD of 0.114. Hence, the minimum detectable phase
change in our experimental setting (P 
 0.01 and n 	 45)
was 0.041 radian. This minimum threshold agrees with the
histogram result of the signal changes from the phase
activation voxels whose minimum detected signal level
was 0.031 radian (Fig. 11). These results are still greater
than the simulation result (a 0.013 radian change in the
capillary geometry), but are not substantially different.
Hence, it is plausible that the phase activation would
provide a certain degree of localized information. More-
over, it has been suggested that at 1.5T most of the mag-
nitude signal changes originate from larger veins than
capillaries (26). These results, together with the aforemen-
tioned venogram results and the fact that the number of

FIG. 8. Simulation results of the magnitude
(solid line) and phase (dashed line) contrasts
depending on the off-resonance frequency.
a: A voxel with a large vein (radius 	
0.4 mm) case. b: A voxel with 400 small
veins (radius 	 4 �m) distributed by 0.5
sin(�).

FIG. 7. Maximum z-score projected results
in the complex data analysis. A total of six
slices (slices 2, 5, 8, 11, 14, and 17 from
bottom left to top right) from 18 slices are
shown. A higher threshold (P 
 0.005) is
applied to reduce the false positives that are
increased as a result of the maximum pro-
jection method.
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phase-activated voxels was comparable to the number of
magnitude-activated voxels (which can be interpreted to
mean that the sensitivity of the phase activation is similar
to the sensitivity of the magnitude), indicate that for the
proposed method it may be beneficial to include the
phase-signal change in the activation maps.

There are several ways to improve the minimum detec-
tion threshold. First, one can increase the total acquisition
time to increase the statistical power. Since our experi-
ment was relatively short (2 min 15 s), increasing the total
scan time by a factor of 4 (9 min) is still a reasonable
approach. Another method is to use a higher-field-strength
system. The bulk frequency shift of vessels increases lin-
early with the field strength, resulting in increased phase-
signal changes. In addition to this increased contrast, the
SNR also increases linearly, resulting in a quadratic in-
crease of the detectability. A third method is using a real-
time, respiration-compensation technique. Lee et al. (27)
demonstrated a significant increase in the z-score by re-
ducing the respiration-induced the SSFP profile shift. This
respiration compensation is especially effective for in-
creasing the contrast and reducing the noise interference
because the respiration-induced B0 field modulates the
SSFP transition profile, causing a large signal interference
and time-varying functional contrasts in transition-band
SSFP fMRI. By combining these methods, one can obtain
much more localized activation information from the
phase signal, which makes the proposed complex data
analysis method more beneficial for transition-band SSFP
fMRI.

Since both phase and magnitude signal changes are
greater in large veins, both the complex- and magnitude-
data analyses will show greater signal changes in the
veins. However, the signal changes from large veins are

usually of no interest because they impede the localization
ability of high-resolution studies. Therefore, it is desirable
to remove these large signal changes from the activation
maps. This can be done with the use of diffusion-weighted
suppression techniques that remove intravascular signals
using bipolar diffusion gradients (26,28,29), a time-series
based analysis that identifies the large veins based on the
time-series of a voxel (30), or a venogram approach (31).
Once the large vein signals are removed, the complex-data
analysis method will provide greater benefits by including
more localized brain activations in the analysis.

Complex Data Analysis Method

When written in polar coordinates, the magnitude and
phase contrasts are orthogonal to each other; therefore, a
univariate test designed for testing changes in magnitude,
by definition, will be insensitive to changes in phase. A
change that occurs in magnitude and phase simulta-
neously can only be captured fully by a complex bivariate
test. On the other hand, if the effect truly exists only in the
magnitude, the magnitude-only test will have more power.
This is because in order to prevent false positives in the
direction of the phase, the complex test allocates a null
probability mass in that direction, which is wasted if the
change occurs only in the magnitude. As a result, the
magnitude-only test yields a relatively lower threshold
(and therefore higher power) for the same significance
level. This explains the simulation described in the Re-
sults section, in which the complex-data analysis outper-
formed the magnitude data analysis except when the con-
trast existed strictly in magnitude. A mathematical analy-
sis of the performance of the two methods is presented in
Appendix A. The performance of the analysis methods

FIG. 9. Simulation results of the maximum
(a) magnitude and (b) phase activations at
different TEs. The solid lines show the re-
sults from a voxel with a single vein (60 �m),
and the dashed lines show a voxel with the
capillary geometry described in the text. Un-
like conventional fMRI, large functional con-
trasts (both in magnitude and phase) exist
even at early TEs.

FIG. 10. Simulation results of the phase activations at different vessel orientations and field strengths: (a) intravascular and (b) extravascular
phase-signal changes over 0 to � radian, and (c) maximum intravascular phase change (circle) and its FWHM off-resonance frequency
coverage (rectangle) at different field strengths.
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was measured by the required SNR to detect a certain
contrast level at a given probability of detection (PD) and
probability of false alarm (PFA). Figure 12a and b show the
patterns of the required SNR (in log scale) for PFA 	 0.01
and PD 	 0.99 in the magnitude and complex data analysis
methods, using Eqs. [A1] and [A2]. The dark red straight
band in Fig. 12a shows that it requires very high (or infi-
nite) SNR to detect the contrast in the phase direction by
the magnitude data analysis method, as expected from the
simulation (Fig. 2d). The required SNR pattern for the
complex data analysis method is angularly symmetric,
representing the same performance for the same amount of
contrast in the complex domain. Figure 12c shows the
required SNR difference (in log scale) between the com-
plex and magnitude data analyses (Eq. [A3]). The required
SNR for the magnitude data analysis is higher than that of
the complex data analysis for most of the contrasts except
for the dark blue areas (29% of the total plane) between the
dashed white lines, where the contrasts are primarily
aligned in the magnitude direction. This result indicates
the superiority of the complex data analysis for most of the
contrasts, which was also observed in the simulation and
experimental results (Figs. 2 and 6). Even in the dark blue
areas, the maximum required SNR difference is only 0.69
dB, indicating a very small difference in the performance
of the two methods.

The proposed complex data analysis can be intuitively
understood as follows: If the noise is assumed to be dis-
tributed as a 2D Gaussian with N(0,2I), where I is a 2 � 2
identity matrix, Ŝ�1 (in Eq. [4]) becomes I/2. In this case
the T2 value becomes proportional to �x� � ��T�x� � ��,
which can be seen as the distance between the sample

mean vector and the population mean vector in a complex
plane. In other words, if one uses a simple boxcar model,
ignoring the transients of the hemodynamic response func-
tion, the signal level difference (or contrast) in fMRI data
can be defined as the distance between the mean vector of
the activation state and the mean vector of the baseline in
the complex plane.

In Appendix B a theoretical proof is given to demon-
strate that our complex data analysis method is equivalent
to the GLRT method (9) when the design matrices are the
same for the magnitude and phase. One of the advantages
of our method is that it is computationally efficient. Since
it is based on the T2-test with the GLM method, the com-
putational time for a sample data took only 2.4 times
longer compared to the magnitude data analysis. On the
other hand, the GLRT method requires iterations in each
voxel to search for the optimum parameter values, which
can potentially lead to a non-negligible increase in com-
putational time for fMRI data.

Future Work

In addition to the bulk frequency shift, the BOLD effect
includes a T2 change that originates from the protons dif-
fused by red blood cells (intravascular) and the microgra-
dients between the vessel and the surrounding tissue (ex-
travascular). In SSFP-based fMRI, this T2 change can mod-
ulate the magnetization profile of bSSFP. A voxel with
large veins can experience a T2 on the order of a 10%
change primarily from the intravascular effect, whereas
the T2 change in the GM is negligible due to the small
volume of blood at 1.5T (25,32). At higher field strengths,
however, the increased extravascular effect can make the
T2 change significant in the GM. Therefore, it is important
to consider the profile modulation from the T2 change as a
source of the functional contrast at higher field strengths.

Another possible application of the proposed complex
data analysis is conventional GRE-based fMRI in high-field
experiments. At high field strengths (� 7T), where T2*
shortening is significant in large veins (29), the phase-
signal change from the GM will show a higher signal
correlation compared to that obtained at a lower field
strength. In this case the proposed complex-data analysis
method will be beneficial for detecting signal changes from
both the magnitude and phase.

CONCLUSIONS

In this paper we have presented the results of an isotropic
1-mm resolution 3D (160 � 160 � 18 mm3) transition-band

FIG. 11. Histogram of the phase-signal change from the phase-
activated voxels. The dashed line (0.04 radian) shows the minimum
detectable phase-signal change from the mean SD in the experi-
ment.

FIG. 12. Performance comparison between
the magnitude data analysis and complex
data analysis. The required SNR patterns (in
log scale) for the (a) magnitude data analysis
and (b) complex data analysis on the real
and imaginary contrast planes. c: The re-
quired SNR difference between the magni-
tude and complex data analysis methods in
log scale.
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SSFP fMRI experiment. These high-resolution results pro-
vide both magnitude and phase data, depending on the
off-resonance frequency and vessel properties of a voxel.
To include both functional contrasts, a new complex data
analysis method based on the T2-test is proposed. This
method includes both magnitude and phase activations to
compensate for the missing phase activations in the mag-
nitude data analysis method. The method will provide
more benefits at higher field strengths after large-vessel
signals are removed. It can also be adopted in conventional
fMRI analysis to include the task-correlated phase-signal
change in high-resolution or high-field experiments.

ACKNOWLEDGMENTS

We thank Dr. Meeyoung Park for useful discussions about
statistical analysis methods, and Dr. Serge Dumoulin for
assistance with image registration.

APPENDIX A

In this section we analyze the performance of the mag-
nitude and complex data analysis methods in terms of
the required SNR. To facilitate the presentation, the de-
sign matrix and the contrast are defined as X 	 [c h]
and v 	 [0 1]T, where c 	 � 1 1 · · · 1 �T/�n, and the
reference waveform vector (h) follows

�
k	1

n

hk � 0 and �
k	1

n

hk
2 � 1.

With these scaling factors, the XTX becomes I (instead of
nI when the sum of squares is n) and simplifies the deri-
vations thereafter. The �̂1 and �̂2 are also scaled by a factor
of �n, which removes the n terms in the magnitude and
complex test statistics.

In the magnitude data analysis, the test statistic can be
simplified as

t1 �
�vT�̂�2

var�vT�̂�
�

�̂2
2

̂2vT(XTX)�1v
�

�̂2
2

̂2,

where ̂2 � �y � X�̂�T�y � X�̂�/df, �̂2 	 ��̂r2 � �̂i2�/2 (the
length of the magnitude contrast when the contrast is �̂r2 in
real and �̂i2 in imaginary), df is the degrees of freedom, and
all the other variables are defined as in the Theory section.
The test statistic t1 is distributed as a noncentral F-distri-
bution with 1 and n–1 degrees of freedom, and the non-
centrality parameter is

�1 �
�2

2

2.

If vT� � �2 � 0, the distribution becomes central.
In the complex data analysis, the test statistic is given by

t2 � �̂2
TŜ�1�̂2.

To simplify the analysis, a case in which Ŝ 	 ̂2I is
considered. The test statistic can then be written as

t2 �
�̂2

T�̂2

̂2 .

The normalized test statistic with a
n � 2

2�n � 1�
normaliza-

tion factor is distributed as a noncentral F with 2 and n–2
degrees of freedom with a noncentrality parameter:

�2 �
�2

T�2

2 .

The performance of the magnitude and complex data
analysis methods can be analyzed based on the required
SNR to detect certain levels of contrasts at a given proba-
bility of detection (PD) and probability of false alarm (PFA).
As mentioned above, the noncentrality parameters of both
tests are a function of the noise variance and contrasts. On
the other hand, this noncentrality parameter is determined
by the prespecified PD, PFA, and the distributions (33).
Therefore, the required SNR can be defined using this
noncentrality parameter as shown below.

In the magnitude data analysis case, the required SNR
becomes

SNRreq_magnitude �
c�1


�

c�1

��2
2

�1

�
c�1

�1
�1

��r2 � �i2�
2

2

, [A1]

where c � 1/�n.
In the complex data analysis case, it becomes

SNRreq_complex �
c�1


�

c�1

��2
T�2

�2

�
c�1

��r2
2 � �i2

2

�2

. [A2]

The performance difference is defined as

20 log(SNRreq_complex) � 20 log(SNRreq_magnitude)

� 10 log� �2

�r2
2 � �i2

2 � � 10 log� 2�1

��r2 � �i2�
2�. [A3]

Figure 10c shows this performance difference on the
contrast plane. To illustrate the required SNR patterns in
each analysis method, c�1�	���r1

2 � �i1
2�/n� was set to 1

with �r2 and �i2 changing from –1 to 1 (Fig. 10a and b).

APPENDIX B

Here a mathematical proof is given to show the equiva-
lence of the GLRT method (comparing Ha vs. Hd in Ref. 9)
to the proposed complex data analysis method when the
design matrices are the same for the magnitude and phase.

First, Eq. [7] is generalized to include arbitrary numbers
of parameters:
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yr 	 X�r � �r

	 [ x1 x2 · · · xL ]� �r1 �r2 · · · �rL �T��r

yi 	 X�i � �i

	 [ x1 x2 · · · xL ]� �i1 �i2 · · · �iL �T��i ,

where x1, x2, . . ., xL are real n � 1 vectors representing
such waveforms as a constant, a linear drift, and reference
waveforms. The least-square estimates of the parameters
and the contrast (v) can be written as

�̂ 	 [ �̂r �̂i ] � � �̂r1 �̂r2 · · · �̂rL

�̂i1 �̂i2 · · · �̂iL
�T

and

v � � v1 v2 · · · vL �T.

Then the test statistic for the proposed complex data anal-
ysis becomes

t2 � vT�̂(Ŝ/n)�1�̂Tv,

where

�̂ � [(XTX)�1XTyr (XTX)�1XTyi] and

Ŝ/n � COV(�̂r,�̂i)vT(XTX)�1v.

Assuming the case in which noise in the real and imag-
inary axes is independent, as assumed in Ref. 9, then
COV(�̂r,�̂i) � ̂2I and ̂2 can be defined as the mean of the
real and imaginary variances:

2̂2 � var(�̂r) � var(�̂i) 	

� 1
n � L

(yr � X�̂r)T(yr � X�̂r)�
� � 1

n � L
(yi � X�̂i)T(yi � X�̂i)�

Then the T2-test statistic becomes

t2 �
1
̂2v

T�̂[vT(XTX)�1v]�1�̂Tv. [A4]

In the GLRT case we are interested in distinguishing
whether there is any activation in the magnitude and/or
phase (i.e., Ha vs. Hd in Ref. 9). The test statistic is defined
as the ratio of the probability density function (PDF) of the
null and alternative hypotheses.

First, under the alternative hypothesis (Ha), the esti-
mated log PDF of the signal is given by:

LLa � logP(y�Ha) � �nlog2�Ha

2

�
1

2Ha

2 ��yr � X�r�
T�yr � X�r� � �yi � X�i�

T�yi � X�i��

One can find the maximum likelihood estimates of the
parameters by equating

�LLa
��r

� 0,
�LLa
��i

� 0, and
�LLa
�Ha

2 � 0.

These equations lead to

�̂r 	 (XTX)�1XTyr

�̂i 	 (XTX)�1XTyi,

̂Ha

2

�
1

2n
�(yr � X�̂r)T(yr � X�̂r) � (yi � X�̂i)T(yi � X�̂i)].

The same results can be derived in the magnitude and
phase domain that was used as the convention in Ref. 9.

Therefore, LLa can be simplified as

LLa � logP̂�y�Ha� � � nlog2�̂Ha

2 � n

Under the null hypothesis (Hd), we have

LLd � logP�y�Hd� � � nlog2�Hd
2

�
1

2Hd

2 ��yr � X�r)T(yr � X�r) � (yr � X�i)T(yi � X�i)]

When we enforce the constraint vT�r 	 0 and vT�i 	 0,
the constrained maximum likelihood estimates of the pa-
rameter vectors are given by (9,34):

�̃r 	 �̂r � (XTX)�1v[vT(XTX)�1v]�1vT�̂r,

�̃i 	 �̂i � (XTX)�1v[vT(XTX)�1v]�1vT�̂i.

When
�LLa
�Hd

2 � 0, we have

̃Hd

2 �
1

2n
�(yr � X�̃r)T(yr � X�̃r)

� (yi � X�̃i)T(yi � X�̃i)],

which leads to

LLd � logP̃�y�Hd� � � nlog2�̃Hd

2 � n.

As a result, the likelihood ratio is given by

LR �
P̂�y�Ha�

P̃�y�Hd�
� 	̃Hd

2

̂Ha

2 
n

.

This test statistic can be written as

t3 � �LR�1/n � 1 �
̃Hd

2 � ̂Ha

2

̂Ha

2 �
1

̂Ha

2 �(yr � X�̃r)T(yr � X�̃r)

� (yr � X�̂r)T(yr � X�̂r)� (yi � X�̃i)T(yi � X�̃i)

� (yi � X�̂i)T(yi � X�̂i)]
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After a few steps we can write

(yr � X�̃r)T(yr � X�̃r) � (yr � X�̂r)T(yr � X�̂r)

� vT�̂r[vT(XTX)�1v]�1�̂r
Tv,

(yi � X�̃i)T(yi � X�̃i) � (yi � X�̂i)T(yi � X�̂i)

� vT�̂i[vT(XTX)�1v]�1�̂i
Tv.

Therefore the test statistic can be finally integrated as
one expression as

t3 �
1

̂Ha

2 vT�̂�vT(XTX)�1v��1�̂Tv, [A5]

This is equivalent to Eq. [A4] and shows that the two
methods possess the same test statistics.

REFERENCES

1. Hoogenraad FG, Reichenbach JR, Haacke EM, Lai S, Kuppusamy K,
Sprenger M. In vivo measurement of changes in venous blood-oxygen-
ation with high resolution functional MRI at 0.95 Tesla by measuring
changes in susceptibility and velocity. Magn Reson Med 1998;39:97–
107.

2. Menon RS. Postacquisition suppression of large-vessel BOLD signals in
high-resolution fMRI. Magn Reson Med 2002;47:1–9.

3. Cho ZH, Ro YM, Chung SC, Chung JY. A direct susceptibility measure-
ment in fMRI using SSFP interferometry (SSFPI) technique. In: Pro-
ceedings of the 3rd Annual Meeting of SMR, Nice, France, 1995. p 806.

4. Scheffler K, Seifritz E, Bilecen D, Venkatesan R, Hennig J, Deimling M,
Haacke EM. Detection of BOLD changes by means of a frequencysen-
sitive trueFISP technique: preliminary results. NMR Biomed 2001;14:
490–496.

5. Miller KL, Hargreaves BA, Lee J, Ress D, deCharms RC, Pauly JM.
Functional brain imaging using a blood oxygenation sensitive steady
state. Magn Reson Med 2003;50:675–683.

6. Miller KL, Smith SM, Jezzard P, Pauly JM. High-resolution FMRI at
1.5T using balanced SSFP. Magn Reson Med 2006;55:161–170

7. Lai S, Glover GH. Detection of BOLD fMRI signals using complex data.
In: Proceedings of the 5th Annual Meeting of ISMRM, Vancouver,
Canada, 1997 (Abstract 1671).

8. Rowe DB, Logan BR. A complex way to compute fMRI activation.
Neuroimage 2004;23:1078–1092.

9. Rowe DB. Modeling both the magnitude and phase of complex-valued
fMRI data. Neuroimage 2005;25:1310–1324.

10. Sijbers J, den Dekker AJ. Generalized likelihood ratio tests for complex
fMRI data: a simulation study. IEEE Trans Med Imaging 2005;24:604–611.

11. Rowe DB, Logan BR. Complex fMRI analysis with unrestricted phase is
equivalent to a magnitude-only model. Neuroimage 2005;24:603–606.

12. Rowe DB. Parameter estimation in the magnitude-only and complex-
valued fMRI data models. Neuroimage 2005;25:1124–1132.

13. Nan FY, Nowak RD. Generalized likelihood ratio detection for fMRI
using complex data. IEEE Trans Med Imaging 1999;18:320–329.

14. Rowe DB, Nencka AS. Complex activation suppresses venous BOLD in
GE-EPI fMRI data. In: Proceedings of the 14th Annual Meeting of
ISMRM, Seattle, WA, USA, 2006 (Abstract 2834).

15. Nencka AS, Rowe DB. Theoretical results demonstrate fundamental
differences in venous BOLD reducing activation methods. In: Proceed-
ings of the 14th Annual Meeting of ISMRM, Seattle, WA, USA, 2006
(Abstract 3269).

16. Srivastava MS. Methods of multivariate statistics. New York: John
Wiley & Sons; 2002. p 89–151.

17. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak
RS, Turner R. Analysis of fMRI time-series revisited. Neuroimage 1995;
2:45–53.

18. Chu SC, Xu Y, Balschi JA, Springer Jr CS. Bulk magnetic susceptibility
shifts in NMR studies of compartmentalized samples: use of paramag-
netic reagents. Magn Reson Med 1990;13:239–262.

19. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due
to intravascular magnetic susceptibility perturbations. Magn Reson
Med 1995;34:555–566.

20. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ. Water proton
MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T,
T, T*, and non-Lorentzian signal behavior. Magn Reson Med 2001;45:
533–542.

21. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM.
Small vessels in the human brain: MR venography with deoxyhemo-
globin as an intrinsic contrast agent. Radiology 1997;204:272–277.

22. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. Human
brain function. London: Academic Press; 1997.

23. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,
Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,
Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM,
Matthews PM. Advances in functional and structural MR image anal-
ysis and implementation as FSL [Review]. Neuroimage 2004;23(Suppl
1):S208–S219.

24. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in mag-
netically inhomogeneous tissues: the static dephasing regime. Magn
Reson Med 1994;32:749–763.

25. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC.
Comparison of the dependence of blood R2 and R2* on oxygen satu-
ration at 1.5 and 4.7 Tesla. Magn Reson Med 2003;49:47–60.

26. Song AW, Wong EC, Tan SG, Hyde JS. Diffusion weighted fMRI at 1.5
T. Magn Reson Med 1996;35:155–158.

27. Lee J, Santos JM, Conolly SM, Miller KL, Hargreaves BA, Pauly JM.
Respiration-induced B0 field fluctuation compensation in balanced
SSFP: real-time approach for transition-band SSFP fMRI. Magn Reson
Med 2006;55:1197–1201.

28. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR,
Weisskoff RM. The intravascular contribution to fMRI signal change:
Monte Carlo modeling and diffusion-weighted studies in vivo. Magn
Reson Med 1995;34:4–10.

29. Lee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spin-echo
fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal
changes. Magn Reson Med 1999;42:919–928.

30. Hulvershorn J, Bloy L, Gualtieri EE, Leigh JS, Elliott MA. Spatial
sensitivity and temporal response of spin echo and gradient echo bold
contrast at 3 T using peak hemodynamic activation time. Neuroimage
2005;24:216–223.

31. Barth M, Norris DG. High resolution 3D fMRI of human visual cortex
with elimination of large venous vessels. In: Proceedings of the 14th
Annual Meeting of ISMRM, Seattle, WA, USA, 2006 (Abstract 893).

32. Oja JM, Gillen J, Kauppinen RA, Kraut M, van Zijl PC. Venous blood
effects in spin-echo fMRI of human brain. Magn Reson Med 1999;42:
617–626.

33. Shahram M, Milanfar P. Statistical and information—theoretic analysis
of resolution in imaging. IEEE Trans Info Theory 2006;52:3411–3437.

34. Kay SM. Fundamentals of statistical signal processing: estimation the-
ory. Saddle River, New Jersey: Prentice-Hall; 1993. p 251–252.

Complex Analysis in SSFP fMRI 917


