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Parametric models are proposed for the joint distribution of bivariate
random variables when one variable is directional and one is scalar.
These distributions are developed on the basis of the maximum
entropy principle and by the specification of the marginal distribu-
tions. The properties of these distributions and the statistical analysis
of regression models based on these distributions are explored. One
model is extended to several variables in a form that justifies the use
of least squares for estimation of parameters, conditional on the
observed angles.
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1. INTRODUCTION

Researchers are sometimes confronted with bivariate
data, one component of which is an angle and the other
a real number. For instance, the wind direction and the
level of a pollutant may occur in environmental studies,
such as Ohta, Marita, and Mizoguchi (1976) and De
Wiest and Della Fiorentina (1975). There is an extensive
literature on directional data, including the monograph
by Mardia (1972), but there have been only limited
attempts to handle such angular-linear data. We attempt
to fill this void by presenting some new models for
angular-linear distributions based on the principle of
maximum entropy in Section 2, and on the property of
having specified marginal distributions and on wrapping
one of a pair of random variables in Section 3. We have
tried to develop models that are useful for statistical
inference and, conveniently, the entropy arguments lead
to nice exponential families. Some of these are angular-
linear generalizations of the von Mises distribution, which
is the most useful distribution for statistical inference of
angular data. We denote by VM (u, «) the von Mises
distribution with density ‘

f(6) = [2mLo(x) ]  exp {k cos (0 — w)} ,

where 0 < 0 < 2m, « >0, 0 < u < 27, and (k) is the
modified Bessel function of the first kind and order zero.

Our primary interest is in regression models, which we
emphasize in Sections 4 and 5. Some potentially im-
portant new models for multiple regression are studied
in the latter section, and a numerical example is pre-
sented. A somewhat different approach designed for ob-
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taining measures of dependence for angular-linear distri-
butions appears in Johnson and Wehrly (1977).

2. MAXIMUM ENTROPY DISTRIBUTIONS

In this section, we use information theory concepts to
find new angular-linear distributions which maximize
the entropy subject to constraints on-certain moments.
Four such families of distributions with interesting
properties are discussed. The first family is presented in
the following theorem.

Theorem 1: The density funection of (@, X) given by

6, 2) = (A — «)¥2m)!
exp {—Ax + kxcos (6 —u)} , (2.1)

where 0 < 0 < 2r, 2 >0,0 <k <\ and 0 < p < 2m,
is the maximum entropy distribution subject to E(X),
E(X cos ®), and E(X sin ) taking specified values
which are consistent with expectation with respect to
the distribution (2.1).

Proof: First we show that (2.1) is a density. Obviously,
f(6, ) > 0. Also,

/ i / " 16, z)dwds
0 0

_ ()‘_22:_'i2)_* f“;/wexp {—(\ —kcos (60 — p)x}dxdd
™ o ‘o

)\2_ 2\ 27
= S——K)/ [N — «kcos (8 — u)]'do
21!' 0
1 27 1_p2 d
T 2xJy 14 p>— 2pcos (6 — p)

where p = k[A + (\2 — «2)#¥]"1. The last equality holds
since f(8) = (2m)~1(1 — p?) (1 + p* — 2p cos (6 — u))'is
the density of the wrapped Cauchy distribution, which
is defined by letting ® = Z (mod 27), where Z has the
Cauchy distribution with density f(z) = a[w(a? + 2]
and a = —In p.

Next, we define a1, a2, as by

E(X) =a1, E(Xcos®) =a;, E(Xsin®) =as, (2.2)

=1,

where the expectations are taken with respect to the
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distribution (2.1). Then by standard arguments (see, e.g.,
Mardia 1975, p. 352), the density (2.1) maximizes the
entropy over all angular-linear distributions for which
(2.2) holds.

Remark: The density function (2.1) has marginal
density functions ‘

(A2 — k)t | 1
f1(8) =
2 N —xcos (0 — u)
1 1 —p?
=— P (2.3)
271 + p2 — 2pcos (60 — w)
and

fo(@) = W — ) Ho(ka)e™ (2.4)

where p = k[A + (A2 — «2)!]1 and I,(-) is the modified
Bessel function of the first kind and order zero.

The conditional distribution functions obtained from
(2.1) are

91(0]z) = [27l4(xkx) ] exp {kx cos (8 — u)}
and
g2(x]0) = [N — kcos (8 — w)]
exp {—[\ — «xcos (8 — p)Jz} .

(2.5)

(2.6)

The density (2.1) has several interesting properties. The
marginal distribution (2.3) of @ is the wrapped Cauchy
distribution defined above, while the marginal distri-
bution (2.4) of X does not follow a familiar distribution.
The conditional density (2.5) of ® given z is a von Mises
density VM (u, xz). The conditional density of (2.6)
of X given 6 is an exponential density with mean
(N — kcos (8 — u))L

Another characterization using the second moment of
the linear variable produces a different joint distribution.
The proof is similar to that of Theorem 1 and is therefore
omitted.

Theorem 2: Let (O, X) have the joint density

x? e kx

f(8,x) = c-exp {— — 4+ — 4+ —cos (0 —pu){, (2.7)
202 ¢? o2

where ¢ > 0 is a constant of integration, — o < x < o,
0<0<2r, —0o<AN<w,k>0,and0 < u < 27. Then
f(8, z) is the maximum entropy angular-linear dis-
tribution subject to E(X), E(X?), E(X cos ®), and
E(X sin ©) taking specified values consistent with ex-
pectation with respect to the distribution (2.7).

Remark: The marginal distributions are not of familiar
form, but the conditional distributions have densities

91(0[x) = (2wlo(kx/0?)) ™ exp {(kx/d?) cos (0 — u)} (2.8)
and

g92(z[0) = (2mo?)
-exp {—(1/26)[x — (A +«cos (8 — w) P} . (2.9)
The density (2.8) is a von Mises density VM (i, xz/c?).
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The density (2.9) is normal with mean X + «(cos (8 — u))
and variance o2

A major limitation of the two previous densities is that
if X and © are independent, then ® is forced to be
uniformly distributed on the circle. The following density
has von Mises and exponential marginal distributions
when X and © are independent, but otherwise the
marginal and conditional distributions are not as tract-
able as those for the density (2.1).

Theorem 3: Let (8, X) have the joint density

f0,x) = cexp { —Ax + kx cos(§ — u1)
+ veos (0 — o)} , (2.10)

where 0 <60 <2m, 0 <22 <o, ¢c= (N2 — «2)}2r)?
ALo() + 2 X p-1p71,(v) cos [p(u1 — ) I} N >« > 0,
0 < uy, e <2m p=«[A+ A — D], and I,(-) is
the modified Bessel function of the first kind and order p.
The joint density (2.10) is a maximum entropy density
subject to E(X), E(cos ®), E(sin ®), E(X cos ®), and
E(X sin ©) taking specified values consistent with ex-
pectation with respect to the distribution (2.10).

Remark: The distribution (2.10) has conditional den-
sity functions

g1(0|z) = [2xlo(x*) T exp {k*cos (8 — u*)} (2.11)
and
g2(x]0) = [N — kcos (8 — u1)]
cexp {—[N —kcos (0 — ur) Jx} , (2.12)

where «* and u* are the solutions to

k*cosu* = kxcosu; + veosus ,

k*sin u* = kxsin u; + v sin us .

The conditional densities (2.11) and (2.12) are von Mises
and exponential densities, respectively. For this bi-
variate distribution, the independence of ® and X is
equivalent to the parameter « being equal to zero. If
k = 0, then ® and X are independent von Mises and
exponential random variables, respectively. By applying
a similar argument, we could also obtain a maximum
entropy distribution which has von Mises and normal
conditional distributions.

Mardia and Sutton (1976) construct an angular-linear
distribution by conditioning a trivariate normal distri-
bution. This distribution has the property that the
distributions of X and ©® are normal and von Mises,
respectively, when X and © are independent. The
dependence is somewhat different from the corresponding
model suggested above using entropy arguments.

The previous arguments. for obtaining maximum en-
tropy distributions can be extended to obtain distri-
butions for several angular and linear variables, which
will be useful in providing a model for. trigonometric
regression. Let @’ = (0,, ..., 0,), X' = (X4, ..., X,),
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and
cos 0, cos n®,; sin 0, sin n®,
H(®) = : : : : .
cos O, cosn®, sin0B, sin n®,,

Theorem 4: Let ® and X have the joiﬂt density function

f(0,%) = c-exp { —3x'Z7x

4+ M="x + a(8)’=7'x} , (2.13)

where ¢ is a constant of integration, a(8)’ = (a.(0), ...,

a,(9)),

a:(8) = 2 X ai cos [k(6; — wijn)]
j=1 k=1
= 2 2 [aijcos (k8;) + Bujesin (k6;)] ,
j=1 k=1

i=1...,q, (214

x & Ry, 6 € [0, 27)?, and Z! is positive definite. Then
f(8, x) maximizes the entropy of multivariate angular-
linear distributions subject to E[X X'], E(X), and
E[X®H(O®)], where & is the Kronecker product,
taking specified values consistent with expectation with
respect to the distribution (2.13).

Remark: The conditional distribution of X given ® = 6
is g-dimensional multivariate normal with mean A + a(0)
and covariance matrix =.

The distribution (2.13) is a member of an exponential
family with sufficient statistic {X;, X.X; X.cos mOy,
X;sinm®;; 1 <7< j<gq 1<k<p 1<m<n},
and parameters which take all valuesin a [q + 3q(¢ + 1)
+ 2pgn]-dimensional rectangle. Hence we can apply the
usual theory for complete exponential families (cf.

‘Lehmann 1959) to find optimal tests for a particular
(natural) parameter in the joint distribution.

3. OTHER ANGULAR-LINEAR DISTRIBUTIONS

We now present a method of obtaining angular-linear
distributions with specified marginal distributions.

Theorem 5: Let f1(6) be a density on the circle and
f2(x) be a density on the line with cumulative distribution
functions (cdf’s) F1(6) and F.(x), respectively, where F,
is with respect to a fixed, arbitrary origin. Let g(-) be a
density on the circle. Then

f(6, z) = 2mg[2x(F1(6) — F2(2))1f1(6) f2(2) ,

where 0 < 0 < 2r, —0o < z <, is a density for an
angular-linear distribution having the specified marginal
densities f1(6) and f2(x).

Proof: Make the change of variable U = 2xF,(®) and
integrate with respect to U to find the marginal density
of X. Similarly, let V = 2xF,(X) to find the marginal

_density of ©.

(3.1)

Ezxample 1: Circular Uniform and Normal Marginal
Distributions. Set fi1(8) = 2m)~!, 0<60 < 2r, fa(x)
= ¢(z), where ¢(x) is the standard normal density, and
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g(&) = 2nlo(k))'exp {«x cos (¢ — u)}. Then by Theorem
5, the density

f6, ) = (2rlo(x))

-exp {kcos (0 — 27®(x) — p)le(x) , (3.2)

where ®(x) is the standard normal cdf, has the circular
uniform distribution and the normal distribution as
marginal distributions.

Example 2: von Mises and Normal Marginal Distri-
butions. Set f1(6) = (27lo(ky)) ™ exp {k1cos (8 — u1)},
0 <0< 2r and let fa(x) and g(¢) be as defined in
Example 1. Then by Theorem 5, the density

[0, 2) = (To(x))™*
-exp {x cos [27(F1(6) — ®(2)) — u]} /1(O)(x) , (3.3)

where F1(6) =J3° f1(£)d¢, has the von Mises distribution
and the normal distribution as marginal distributions.

The following theorem shows that the families of
distributions given in the above examples can also be
characterized as maximum entropy distributions. The
proof follows immediately from a standard argument
(see, e.g., Mardia 1975, p. 352).

Theorem 6:

(a) The distribution with density (3.2) maximizes the
entropy of angular-linear distributions subject to

EX)=0, EX») =1,
- Efcos[0 — 2r®(X)]} = A(x) cosu ,
E{sin [0 — 27®(X)]} = A(x) sinp ,

where A (k) = I.1(x)/Io(x).
(b) The distribution with density (3.3) maximizes the
entropy of angular-linear distributions subject to

EX)=0, EX¥ =1,
E(cos ®) = A(ky) cosu1 , E(sin ®) = A (k1) sin py,
E{cos[2n(F1(©®) — &(X))]} = A(k) cosu ,
E{sin [27(F1(®) — ®(X))]} = A(x) sinp .

We conclude this section by noting that another
method of forming angular-linear distributions from
bivariate linear distributions is to wrap one of the
linear variables around the circle; that is, if (Y1, Y,) has
a Dbivariate distribution, define © = Y; (mod 27),
X = Y, Then (0, X) has an angular-linear distribution.
Statistical inference for the singly wrapped normal
distribution is discussed in Johnson and Wehrly (1977).

4. THE REGRESSION OF AN ANGULAR VARIATE
ON A LINEAR VARIATE

Before illustrating the versatility of our models, we
point out some serious drawbacks of one regression model
introduced by Gould (1969). He introduced a regression
analysis procedure for angular variates which corre-
sponds to a multiple regression analysis for normally
distributed variates, but for simplicity we discuss the
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simple regression model and its shortcomings. For this
model, ©4, ..., 0, are independently distributed with
VM (no + Bz, «) distributions, z = 1, ..., n, respectively,
where xi, ..., . are known concomitant variables, and
wo, B, and « are unknown parameters. Gould finds the
maximum likelihood estimators of these parameters from
the log-likelihood,

—nln2r 4+« 2 cos (6; — po — Bz:) — nln To(k) ,

=1
using a straightforward iterative procedure, and de-
velops an approximate test for 8 = 0. For this model,
maximum likelihood estimation coincides with least
squares estimation.

The most serious drawback to Gould’s approach is
that the likelihood function has infinitely many equally
large peaks. If the z/s are equally spaced with & the
space between adjacent z’s, then the likelihood function
is periodic with period 2x/5. For several different samples,
we set the parameter uo equal to zero and plotted the
quantity Y 7—; cos (6; — Bx;) as a function of § using
several choices of the concomitant variables ;. The plots
revealed global maxima occurring every 2w/ with several
local maxima within each period, so that an iteration
procedure for obtaining a maximum likelihood estimator
could lead to any of the peaks.

As an alternative to the Gould approach, we introduce
two examples of new models for regression. The first has
the concomitant variables X;,7 = 1, ..., n, conditionally
centering the ®,'s. In the second, the X,’s serve as scale
parameters in the conditional distributions of ©; given X .

Example 3: Conditional Centering. Let (0;, X,),
1 =1, ..., n, have the distribution (3.1) specialized to
the case where O is uniform,

g(&) = [2xLo(x) I exp {x cos (¢ — u)}

is the von Mises density, and f.(x) = f(z) is a known,
completely specified density with edf F. The conditional
distribution of ® given X = x is

(2wIo(k))—"exp {« 2'5 cos (8; — 2#F(xi) —w} .

=1

f1(0]x) =

For this distribution the conditional maximum l_ikelihood
estimates of u and « are f = &, and ¢ = A~'(R), where

R cos & = (1/n) ¥ cos (6; — 27 F(x;))
and =t

Rsin & = (1/n) Zn: sin (6; — 27F (z;)) ,

A@) = L(&)/L,O) ,

and 7,(t) is the modified Bessel function of the first kind
and order p. As in Gould’s model, the X/s serve to
center the ©,s conditionally. However, this model is not
a multiplicative model in the parameters, so the centering
values for the ®’s do not progress many times around the

605

circle as X increases. Hence the associated problems in
parameter estimation are eliminated.

Example 4: Conditional von Mises Distribution. Both
conditional von Mises distributions (2.5) and (2.8) have
similar forms with the X.'s serving as scale parameters.
The conditional distribution of ®; becomes more con-
centrated as X; becomes larger. Limiting our consider-
ation to (2.5), the conditional density of @ given X = xis

= @m)~(IT To(cx)~ exp {x T wscos (0 — )} -

i=1 i=1

f(8]x)

The maximum likelihood estimates are g = 6* and &,
where %, 6%, and R* satisfy Y .7 z:4 (kx;) = R*, and

R*cos 6* = 3 x;cos0; , R*sinf* = Y x;sin 6;
=1 i=1
This solution is unique since D> ;—; z:4 (xx;) is a strictly
increasing function of «, taking all values on the interval

[0, >7=1 z;].

5. REGRESSION OF LINEAR VARIATES ON OTHER
LINEAR AND ANGULAR VARIATES

In this section we apply the distribution (2.13) as a
population model for trigonometric regression. By looking
at conditional distributions, we can use (2.13) as the
population model for the regression of linear variates
on other linear and angular variates.

Let (@, X) have the joint density (2.13). We view @
as a vector of concomitant variables. The conditional
distribution of X given ® = 0 is g-variate normal with
mean vector A + a(0) and covariance matrix T where
A E R, a() is defined by (2.14), and X is positive
definite. This provides the usual model for multivariate
trigonometric regression. Thus the full power of the
multivariate multiple regression model can be brought
to bear to estimate the N’s, o’s, and 8’s. The residuals
can be used to check the fit of the model. Results on
optimal design for trigonometric regression (cf. Fedorov
1972, p. 94 and Laycock 1975) also apply to this condi-
tional model.

An alternative to exact conditional inference would be
maximum likelihood estimation using the joint distri-
bution (2.13). The calculation of estimates would, in
general, be iterative and the conditional least squares
estimates should provide good starting values. However,
exact distribution theory for the estimators would un-
doubtedly be difficult, and any inferences could be based
on the limiting normal distribution for the maximum
likelihood estimators.

The density (2.13) also provides a means for predlctmg
X, from X, and ® by writing X = (X,/|X,’)’ and looking
at f(x1|x, 0). Results for the conditional distribution of
X, given x; and 0 follow from the usual results for the
conditioning of one multivariate normal vector on
another. If we partition Z, A, and a(0) correspondingly,
we find that the distribution of X; = (X4, ..., X,)’
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given X, and 0 is the r-dimensional normal distribution
with mean &1+ Z12Z2 1 [X2 — (M2 + a2(8))] and co-
variance matrix 2y — 21222071 Z01.

Note that each component X;, 7 = 1, ..., r, of X; has
a variance not depending on the conditioning variables
and a mean of the form

q
vo + Z Vixi
i=r+1
q p n
+ 2 Z Cyiin cos (k8;) + duesin (k6,)] . (5.1)

Consequently, this model leads to a natural method of
predicting a vector X from a vector 6 of directions. Here
we fit the best Fourier series of nth degree in the in-
dividual 0’s to the X’s. As shown, some X.s may also
be incorporated into the set of predictor variables.

Exzample 5: De Wiest and Della Fiorentina (1975)
proposed a new air quality index. This index, along with
the temperature, wind direction, and wind speed, was
measured on several days. Here we wish to predict the
air quality index as a function of the other variables.
The data are given in the table.

Air Quality Index, Temperature, and Wind Direction

X, X, 0
A%-measure Temperature Wind direction
of pollution (°C) (degrees)
0.70 9.5 90
0.75 6.5 . 158
0.96 5.5 135
0.32 3.5 45
0.32 7.2 45
0.79 5.9 ' 135
0.61 7.9 135
0.47 8.5 _ 45
1.06 7.7 90
0.42 7.2 45
0.26 20 270
0.37 5.0 225
0.14 ' 4.0 270
0.23 6.2 270
0.74 10.0 0
0.47 10.5 225

We apply the conditional normal distribution as the
conditional distribution of X; given z, and 6. A least
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squares regression is used to estimate the parameters for
the mean given in (5.1). The resulting regressmn equa-
tion is

= 0.306 + 0.028z, — 0.179 cos 8 + 0.216 sin 6 .

Standard variable selection techniques may then be used
to remove (conditionally) nonsignificant terms in the
regression. Initially wind speed was also included in the
regression, but it was removed because its contribution
was (conditionally) highly nonsignificant.

6. CONCLUSIONS

The main emphasis of this article has been the de-
velopment of new parametric models for angular-linear
distributions and the use of the conditional distributions
for regression. However, the joint distributions pre-
sented in Sections 2 and 3 also lend themselves to the
development of parametric tests for independence of
angular variates and linear variates. In particular, the
usual theory of likelihood ratio tests can be applied to
any of these distributions to find tests for independence.

[Received September 1976. Revised J anuary 1978.]

REFERENCES

De Wiest, F., and Della Fiorentina, H. (1975), ‘“‘Suggestions for a
Realistic Definition of an Air Quality Index Relative to Hydro-
carbonaceous Matter Associated with Airborne Particles,” Atmo-
spheric Environment, 951-954.

Fedorov, V.V. (1972), Theory of Optimal Experiments, New York:
Academic Press.

Gould, A. Lawrence (1969), “A Regression Technique for Angular
Variates,” Biometrics, 25, 683-700.

Johnson, Richard A., and Wehrly, Thomas (1977), “Measures and
Models for Angular Correlation and Angular-Linear Correlation,”
Journal of the Royal Statistical Society, Ser. B, 39, 222-229.

Laycock, P.J. (1975), “Optimal Design: Regression Models for
Directions,” Biometrika, 62, 305-311.

Lehmann, E.L. (1959), Testmg Statistical Hypotheses, New York:
John Wiley & Sons.

Mardia, K.V. (1972), Statistics of Directional Data, New York:
Academic Press.

(1975), “Statistics of Directional Data,” Journal of the Royal

Statistical Society, Ser. B, 37, 349-393 (with discussion).

, and Sutton, T.W. (1976), “A Model for Cylindrical Variables
with Apphcatlons,” Research Report No. 9, Department of Sta-
tistics, The University of Leeds, England.

Ohta, T., Marita, M., and Mlzoguchl, 1. (1976), “Local Distribution
of Chlorma,ted Hydrocarbons in the Ambient Air in Tokyo,”
Atmospheric Environment, 10, 557-560.




	Article Contents
	p. 602
	p. 603
	p. 604
	p. 605
	p. 606

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 73, No. 363 (Sep., 1978), pp. 463-692
	Applications
	The Effect of Air Pollution Upon Mortality: A Consideration of Distributed Lag Models [pp.  463 - 472]
	The Effect of Air Pollution Upon Mortality: A Consideration of Distributed Lag Models: Comment [p.  472]
	The Use of Monetary Incentives in National Assessment Household Surveys [pp.  473 - 478]
	Power Differences Between Pairwise Multiple Comparisons [pp.  479 - 485]
	Power Differences Between Pairwise Multiple Comparisons: Comment [pp.  485 - 487]
	Power Differences Between Pairwise Multiple Comparisons: Rejoinder [p.  487]
	A Monte Carlo Investigation of the Box-Cox Transformation in Small Samples [pp.  488 - 495]
	Percentile Regression: A Parametric Approach [pp.  496 - 498]
	Optimization of Earnings in Stochastic Industries, with Applications to Casinos [pp.  499 - 503]

	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments [pp.  504 - 520]
	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments: Comment [p.  520]
	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments: Comment [pp.  520 - 521]
	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments: Comment [p.  522]
	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments: Comment [pp.  523 - 524]
	Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments: Rejoinder [pp.  524 - 525]
	Theory and Methods
	Qualitative Controlled Feedback for Forming Group Judgments and Making Decisions [pp.  526 - 535]
	Modified t Tests and Confidence Intervals for Asymmetrical Populations [pp.  536 - 544]
	Efficacies of Measures of Association for Ordinal Contingency Tables [pp.  545 - 551]
	A Decision-Theoretic Approach to the Aggregation Problem at the Pre-Data-Collection Stage [pp.  552 - 558]
	An Application of an Urn Model to the Design of Sequential Controlled Clinical Trials [pp.  559 - 563]
	Generalized Linear and Quadratic Discriminant Functions Using Robust Estimates [pp.  564 - 568]
	Sample Size Determination in Bayesian Discriminant Analysis [pp.  569 - 572]
	Bayesian Analysis of the Linear Model Subject to Linear Inequality Constraints [pp.  573 - 579]
	Regression Selection Strategies and Revealed Priors [pp.  580 - 587]
	Dorfman-Type Group Testing for a Modified Binomial Model [pp.  588 - 592]
	Do Stronger Players Win More Knockout Tournaments? [pp.  593 - 596]
	The Bayes Sequential Procedure for Estimating the Arrival Rate of a Poisson Process [pp.  597 - 601]
	Some Angular-Linear Distributions and Related Regression Models [pp.  602 - 606]
	Some Two-Level Multiple-Response Factorial Plans [pp.  607 - 612]
	A New Procedure for Selecting a Subset Containing the Best Normal Population [pp.  613 - 617]
	Asymptotic Theory of Least Absolute Error Regression [pp.  618 - 622]
	Minimax Adaptive Generalized Ridge Regression Estimators [pp.  623 - 627]
	Weighted Rank Statistics for Simple Linear Regression [pp.  628 - 631]
	Exact Confidence Intervals for Linear Combinations of Variance Components in Nested Classifications [pp.  632 - 635]
	Estimating Strictly Increasing Regression Functions [pp.  636 - 639]
	A Bivariate Test for the Detection of a Systematic Change in Mean [pp.  640 - 645]
	An Extension of Colton's Model for Comparing Two Medical Treatments [pp.  646 - 649]
	Inferences for the Two-Parameter Exponential Distribution Under Type I Censored Sampling [pp.  650 - 655]
	Tables of the Studentized Augmented Range and Applications to Problems of Multiple Comparison [pp.  656 - 660]
	Estimating Means When a Group of Observations Is Classified by a Linear Discriminant Function [pp.  661 - 665]
	A Small-Sample Comparison of Rank Score Tests for Parallelism of Several Regression Lines [pp.  666 - 669]
	On Approximations for the Central and Noncentral Distribution of the Generalized Variance [pp.  670 - 675]

	[List of Book Reviews] [p.  676]
	Book Reviews
	untitled [pp.  677 - 678]
	untitled [pp.  678 - 679]
	untitled [p.  679]
	untitled [p.  679]
	untitled [pp.  679 - 680]
	untitled [pp.  680 - 681]
	untitled [p.  681]
	untitled [pp.  681 - 682]
	untitled [p.  682]
	untitled [pp.  682 - 683]
	untitled [p.  683]
	untitled [pp.  683 - 684]
	untitled [p.  684]
	untitled [pp.  684 - 685]
	untitled [p.  685]
	untitled [pp.  685 - 686]
	untitled [p.  686]
	untitled [p.  686]
	untitled [pp.  686 - 687]
	untitled [p.  687]
	untitled [pp.  687 - 688]
	untitled [p.  688]
	untitled [p.  688]

	Publications Received [pp.  689 - 690]
	Corrigenda: Selection of Trimming Proportions for Robust Adaptive Trimmed Means [p.  691]
	Back Matter [p.  692]



