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Complex-Valued Analysis of Arterial Spin
Labeling-Based Functional Magnetic Resonance Imaging

Signals

Luis Hernandez-Garcia,"™ Alberto L. Vazquez,?2 and Daniel B. Rowe?

Cerebral blood flow-dependent phase differences between
tagged and control arterial spin labeling images are reported. A
biophysical model is presented to explain the vascular origin of
this difference. Arterial spin labeling data indicated that the
phase difference is largest when the arterial component of the
signals is preserved but is greatly reduced as the arterial con-
tribution is suppressed by postinversion delays or flow-crush-
ing gradients. Arterial vasculature imaging by saturation data of
activation and hypercapnia conditions showed increases in
phase accompanying blood flow increases.

An arterial spin labeling functional magnetic resonance im-
aging study yielded significant activation by magnitude-only,
phase-only, and complex analyses when preserving the whole
arterial spin labeling signal. After suppression of the arterial
signal by postinversion delays, magnitude-only and complex
models yielded similar activation levels, but the phase-only
model detected nearly no activation. When flow crushers were
used for arterial suppression, magnitude-only activation was
slightly lower and fluctuations in phase were dramatically
higher than when postinversion delays were used.

Although the complex analysis performed did not improve
detection, a simulation study indicated that the complex-valued
activation model exhibits combined magnitude and phase de-
tection power and thus maximizes sensitivity under ideal con-
ditions. This suggests that, as arterial spin labeling imaging and
image correction methods develop, the complex-valued detec-
tion model may become helpful in signal detection. Magn Re-
son Med 62:1597-1608, 2009. © 2009 Wiley-Liss, Inc.
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Until recently, functional magnetic resonance imaging
(FMRI) data analysis was concerned only with the magni-
tude of the image time courses, although the data are
intrinsically complex valued. Indeed, most MR images are
reconstructed from complex-valued signals collected by
quadrature detectors and most reconstruction techniques
yield complex-valued images. Yet the phase information is
routinely discarded, retaining only the magnitude images
(1). Recently, complex-valued FMRI activation models
with combined magnitude and phase (MP) detection have
been developed by Rowe and Logan (1) and Rowe (2) for
blood oxygen level dependent (BOLD) contrast FMRI time
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series (1,2). Although our mechanism is not BOLD based,
we aim to take advantage of these models for arterial spin
labeling (ASL) FMRI. The complex-valued models are de-
signed to detect task-related phase changes (TRPCs) in
addition to task related magnitude changes. The complex
model’s ability to detect TRPCs increases the possible
circumstances under which activation is detected for
given signal-to-noise ratio (SNR) and contrast-to-noise ra-
tio (CNR). Changes in the signal’s phase were described by
Menon (3), who put forth a model explaining how the
physiologic changes that give rise to the BOLD effect man-
ifest themselves in the magnitude and the phase of the
signal, particularly in areas of larger venous vasculature.
This effect was utilized to reduce the contribution of the
further downstream venous vasculature to the magnitude
activation (4). ASL time series are typically used as indi-
cators of perfusion (a real-valued quantity), but ASL time
series can be designed to be BOLD weighted as well (5-7).

The SNR and CNR in ASL techniques are inherently low
(8-11), making ASL-based FMRI more challenging than
BOLD-based FMRI. For example, Perthen et al. (10) reports
SNR maps in the range of one to two for ASL and more
than 100 for BOLD data. Yang et al. (11) report t-scores of
approximately 5 for ASL data, whereas BOLD data pro-
duce t-scores greater than 10, reflecting the CNR differ-
ence. It is therefore imperative that statistical analyses of
ASL data be as efficient and sensitive as possible. Typical
ASL analysis (ordinary least squares analysis of the sub-
tracted magnitude data) results in reduced estimation ef-
ficiency (6) and “wastes” information by using only the
magnitude of the signals because potentially valuable
phase information is routinely discarded. Complex-valued
analysis techniques should also benefit regression analysis
of ASL data. Furthermore, the presence of the inversion-
labeled ASL data can also induce changes in the phase of
the labeled images, also called tagged images, relative to
the control images, as we discuss below in greater detail.

In this article, we examine the biophysical basis for
phase changes in the ASL signal (independent of the
BOLD effect-related phase changes) and develop an anal-
ysis approach for ASL time series that includes general-
ized least-squares analysis of the complex-valued, undif-
ferenced ASL data. This analysis scheme models the
changes in perfusion and BOLD contrast as complex-val-
ued (MP) quantities. The model and techniques in this
work are demonstrated on continuous ASL data but are
equally applicable to pulsed ASL. Complex-valued analy-
sis of ASL data could potentially increase the sensitivity
and specificity of functional studies and also help identify
vascular sources of noise.
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FIG. 1. Simple cartoon (not drawn to scale) illustrating the sources of magnetization and their phase gain during the acquisition segment
of an ASL experiment. Blue arrows indicate the magnetization caused by the tissue spins, and red arrows indicate the magnetization from
the arterial sources. The net magnetization vectors under control and labeled conditions are shown in black and green, respectively. Note

that the tissue magnetization vector is shortened as the tagged blood exchanges into the tissue.

Vector Model of ASL Signals

Pairs of images are acquired in a typical ASL experiment:
One is preceded by a tagging period, in which the inflow-
ing arterial spins are inverted (tagged), and a second con-
trol image without the inversion label (control). Fig. 1
depicts the magnetization vectors for the tissue and blood
pools under labeling and control conditions. Within the
voxel, a fraction of the spins are in the tissue and their
movement is governed by random diffusion. Indistin-
guishable from tissue is also the isotropic capillary perfu-
sion, although it occurs at a faster rate. A smaller fraction
of the spins is in the vasculature and its motion is gov-
erned by anisotropic, coherent flow (3,12).

In the control images, the coherently moving vascular
spins acquire some net phase, ¢, that does not get refo-
cused by the imaging pulse sequence. This net phase gain
is due to motion in the presence of the imaging magnetic
field gradients and has been studied extensively both as a
source of artifacts (13) and contrast to identify vasculature
(14). The net phase gain of the incoherently moving spins
(i.e., those of the tissue and capillaries), on the other hand,
is zero because of their isotropic motion.

In the tagged case, the arterial magnetization is inverted
by the labeling RF pulses and gradually relaxes back along
the z-axis toward its equilibrium state. If the arrival time is
short enough, the incoming arterial magnetization is still

in the negative longitudinal axis at the time the imaging
pulses of the imaging sequence are applied. The magneti-
zation vector is tipped onto the transverse plane by the
imaging RF pulses, but 180° from the tipped location of the
control case (for a visual example of this effect, please see
Fig. 3 of Hernandez-Garcia et al. (15)). The net phase gain
of the vascular spins is then ¢ + 180. If the arrival time is
sufficiently long for the labeled spins to have relaxed past
the null point (M, = 0) but not yet be fully relaxed, the net
phase from the coherent compartment is the same as in the
control case. The magnitude of the vascular magnetization
vector, however, is shorter than in the control case.

In both control and tagged cases, the tissue’s net magne-
tization vector does not acquire any net phase because the
movement of the spins due to perfusion and diffusion is
mostly isotropic. Hence, when there is a significant arterial
contribution in the ASL signal, the inversion label should
cause the net (vascular plus tissue) magnetization vector to
change in both MP. If there is not a significant arterial
contribution to the signal, only the magnitude of the signal
is expected to change.

The phase gained by the coherently flowing vascular
spins can vary widely between 0 and 360 degrees, depend-
ing on their velocity and the gradients used in the acqui-
sition sequence. However, to estimate the upper bound for
the size of this effect, let us assume the most noticeable
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scenario to be expected in physiologic conditions: a 90-
degree phase gain in arterial vasculature relative to tissue,
5% of a voxel’s volume to be occupied by arterioles and
15% to be occupied by large arteries, and perfect inversion
labels. This would produce a phase difference of 6.8 de-
grees between control and tagged images because of the
arterioles and 22 degrees if the signal from large arteries is
also included (not suppressed). It should be noted that the
observed effects reported below are much smaller than this
theoretic upper bound, but still observable.

It should be noted that in the Menon (3) model for the
BOLD effect, the phase differences are produced by local
resonance frequency shifts in venous areas because of
increases in the amount of oxygenated blood. The BOLD
phase differences are a function of the T,* weighting of the
imaging sequence and can be minimized by spin echo
imaging. Although Menon’s model focused on the venous
contribution to the MR signal and its phase changes asso-
ciated with neuronal activation, the vector model in this
article is mainly concerned with the arterial and arteriolar
contribution because no significant amount of the inver-
sion label reaches the veins, and BOLD effects are assumed
to be significantly diminished by spin-echo acquisition. A
complete model for T,*-weighted ASL data can be built by
including both arterial and venous contributions to the
phase separately.

In this article, we measure the phase contributions of the
vascular compartment to the MR signal in ASL data by
gradually suppressing their contribution to the perfusion
signal by using postinversion delays and diffusion gradi-
ent pairs. A significant postlabeling delay allows the la-
beled signal in blood to reach and exchange into tissue.
Diffusion gradient pairs are designed to introduce an in-
travoxel phase accrual in coherently moving spins along
the direction(s) of the gradient(s) that aims to cancel their
overall signal, whereas stationary spins accrue no net
phase. We also examine the phase content of arterial-only
images under rest activation and hypercapnia conditions.
We then examine the usefulness of complex-valued anal-
ysis for ASL-based FMRI with and without vascular sup-
pression.

METHODS

All scanning protocols were performed with a 3.0 T Signa
LX Excite scanner (General Electric, Waukesha, WI) in
accordance to the University of Michigan’s institutional
review board regulations.

Arterial Suppression Study

ASL images were collected from four human subjects. The
degree of arterial contribution to the signal was varied in
each experiment as follows. ASL imaging was done using
the pseudo-continuous arterial spin labeling (CASL) se-
quence (16,17) (spin-echo spiral acquisition with pulse
repetition time = 4000 ms, echo time = 15 ms., slice
thickness = 7 mm, field of view = 24 cm, one slice, 96 time
frames). The labeling pulses consisted of a train of Han-
ning window shaped pulses (pulse width = 500 ps, pulse
spacing = 290 ps, flip angle 22.5 degrees, net gradient
moment = 3 X 10—5 G/cm/s) applied for 3600 ms. The
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experiment was repeated using postinversion delays (18)
of 0, 1200 and 1800 ms without any flow crushers. The net
tagging time was reduced by the amount of the postinver-
sion delay, accordingly. Similarly, a second set of scans
was collected with no postinversion delay but in the pres-
ence of a pair of flow crushers (pulse width = 2 ms,
separation = 8.8 ms, amplitude = 0, 1, 2 and 4 G/cm). The
velocity encoding (VENC) values of this pair were Inf (i.e.,
no crushers), 6.6, and 3.3 cm/s along the Y gradient axis.

All images were reconstructed to yield MP images. Mo-
tion parameters were estimated from the magnitude im-
ages with MCFLIRT (Oxford University, UK, http://www.
fmrib.OX.ac.uk/fsl) to ensure that there was no movement
greater than half a voxel shift or 1 degree of rotation. The
complex-valued time courses were phase centered by sub-
tracting their angular mean (4) to prevent phase wraps.
The images were then pairwise subtracted and the mean
and variance of the MP subtractions were computed. ¢
Statistics were calculated on the MP differences. Maps of
the correlation between MP time courses were computed.
Statistical significance of the difference images as well as
the correlation images was assessed by the P values corre-
sponding to the measured statistics.

Arterial Vasculature Studies Under Activation and
Hypercapnia Conditions

An activation study was performed using the arterial vas-
culature imaging using saturation ASL technique (19). In
summary, the arterial vasculature imaging using saturation
technique images only the blood signal by completely
saturating the background tissue signal (gray matter, white
matter, and cerebrospinal fluid) while fresh and fully re-
laxed blood spins enter the imaging slice. Multiple inver-
sion pulses are then used to maintain the undesired tissue
signal nulled while imaging the blood signal after a pre-
determined time has elapsed (saturation-to-imaging time).
This method was determined to be biased to the arterial
volume signal. The imaging parameters of the spin-echo
spiral acquisition used were field of view = 20 cm, ma-
trix = 40 X 40 (reconstructed to 64 X 64), echo time =
40 ms, saturation-to-imaging time = 800 ms, pulse repeti-
tion time = 4000 ms. A visually cued finger-tapping task
was used with activation and rest blocks, each of 60 s in
duration. During this study, the subject wore a non-re-
breathable mask, and 100% air was administered to the
subject. A hyperoxic-hypercapnia experiment followed
the stimulation experiment. Prior to the start of the acqui-
sition, the administered gas was changed to 100% oxygen
and a few minutes were allowed to elapse. A total of 100
images were then acquired, using the same parameters as
in the stimulation experiment. The administered gas was
switched to 95% oxygen and 5% carbon dioxide 50 s into
the acquisition. This gas mixture was supplied for 150 s
and then switched back to 100% oxygen. After this exper-
iment finished, the gas mixture was switched back to
100% air.

ASL FMRI Activation Study

ASL images were collected from another human subject by
using the same pseudo-CASL sequence described for the
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FIG. 2. Arterial contamination removed by (a) two different PID and (b) two different flow-crusher amplitudes. The top row of images shows
the mean magnitude subtraction of the time course, the middle row shows the mean phase difference, and the bottom row shows the
correlation between magnitude and phase of the unsubtracted data. In (a) the PIDs from left to right were 0, 1200, and 1800 ms. In (b) the
VENCs from left to right were Inf (i.e., no crushers), 6.6, and 3.3 cm/s along the Y gradient axis.

resting state experiments while they experienced a visual
stimulation paradigm (8-Hz flashing checkerboard: six cy-
cles of 50 s rest — 50 s active). Five slices were prescribed,
encompassing the visual cortex, and 150 periods were
collected. The experiment was performed two additional
times with two different methods of arterial signal sup-
pression: a pair of flow-crusher gradients (VENC = 3.3 cm/
s), and a postinversion delay of 1200 ms. In this article, we
refer to the data collected without arterial suppression or
postinversion delays as “whole,” those collected with flow
crushers as “crush”, and those collected with postinver-
sion delays as “PID.”

Activation maps were calculated by testing three general
linear models for the activation experiments. The first is a
linear regression model (linear x with linear y) applied to
the magnitude-only (MO) data (20,21) after discarding the
phase portion of the data. This model has been shown to
be equivalent to a complex-valued model with an unre-
stricted phase (4). The second is an angular regression
model (linear x with angular y) applied to the phase-only
(PO) data (22) after discarding the magnitude portion of
the data. This model is equivalent to the usual general
least squares model for the phase time series when the
SNR ratio is high and no phase transitions are present. The
third is a complex-valued nonlinear regression model that
fully utilizes the MP data (2,23). The details of the models
and their underlying distributions are described in the
Appendix.

The design matrix utilized for these unsubtracted anal-
yses was composed of a baseline, the BOLD response, an
ASL baseline regressor, and an ASL activation regressor, as
previously described (9). Together, they make up the col-
umns of the design matrix X while g and vy are regression
coefficients in the MP. A contrast C = (0,0,-1,1) was uti-
lized to test hypotheses. For the MO model, parameter
estimates and a likelihood ratio—based test statistic are
derived from the high SNR normal approximation to Eq.

[A3], considering Hy: CB = 0 versus Hy: CB+#0 (4). For the
PO model, parameter estimates and a likelihood ratio—
based test statistic are derived from the high SNR normal
approximation to Eq. [A4], considering Hy: Cy = 0 versus
H;: Cy#0 (19). For the complex-valued model, parameter
estimates and a likelihood ratio—based test statistic are
derived from Eq. [A2], considering Hy: CB = 0, Cy = 0
versus Hy: CB+#0, Cy#0 (5,6). These hypothesis statements
use the traditional abbreviated notation in which CB = 0
and Cy = 0 are also included in the parameter space for the
alternative hypotheses. All hypothesis pairs are to detect a
difference between tag and control images.

Simulation Study

To examine the detection properties of these three models
under ideal conditions, a simulation study was performed.
For this simulation, relevant coefficient values were taken
to approximate the values from the real data. The SNR =
Bo/c was selected to be 130 and the error standard devia-
tion (SD) to be o = 1. In our experience, these values
represent typical complex FMRI data well. The CNR =
CB/o is varied from 0 to 0.75 from left to right in 100 equal
steps and TRPC = Cy is varied from 0 to 21.5 degrees from
top to bottom in 100 equal steps. The same design matrix
was used as for the real activation study and n = 150. The
coefficient values were B = (SNR - ¢,5,0, CNR - ¢)’ in
arbitrary units, y = (30,0.25,0, TRPC)’ in degrees. A total of
1500 simulated data sets were generated to make power
surfaces.

RESULTS
Arterial Suppression Study
The effects of removing arterial signals from resting ASL

images in a representative subject are illustrated in Fig. 2.
Fig. 2a shows the results of using postinversion delays for
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FIG. 3. Magnitude and phase time courses for the arterial vasculature imaging using saturation data extracted from (a) the motor cortex
during an activation paradigm (a reference activation function overlaid to indicate activation periods) and (b) a gray matter mask during the
CO, inhalation experiment (the black bar indicates the timing of the inhalation). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

arterial suppression, whereas Fig. 2b shows the results
obtained using flow crushers. The resting-state experi-
ments indicated a small phase difference between control
and tagged images when no crushers or postinversion de-
lays were employed. The mean value across the brain of
the absolute phase difference was 0.3 degrees, with an SD
of 0.4 degrees, but it ranged up to 7 degrees in some
regions. Maps of the statistical significance of the differ-
ences, expressed as —log,(p) were calculated (data not
shown). This difference was much more prominent in
voxels dominated by arterial signals, verified by the ana-
tomic images obtained for this study. The first row shows
the magnitude difference, whereas the second one shows
the phase difference. The bottom row shows the correla-
tion of the unsubtracted MP time courses across the slice.
Both methods reduced the arterial contribution to the ASL
signal, as evidenced by the reduction in magnitude of the
subtraction images (top row). All subjects showed signifi-
cant differences in MP, and correlations between MP when
the arterial signal was preserved. Those effects were re-
duced by the removal or arterial contribution in all cases.

As expected, introducing arterial suppression tech-
niques reduced the mean gray matter ASL signal (magni-
tude subtraction of control and tagged images). On aver-
age, the inclusion of crushers (VENC of 6.6 and 3.3 cm/s)
in the acquisition sequence reduced the magnitude of the
ASL subtraction signal by 44.9% and 46.8%, indicating
the removal of the signals arising from the major arteries in
the field of view. The inclusion of postinversion delays of
1200 and 1800 ms resulted in a magnitude reduction of up
to 44.8% and 67.8% respectively.

The difference in phase between control and tagged
images was dramatically reduced in both cases as well
(middle row). However, as the flow crusher gradient
strength was increased, a spatial gradient in the phase
difference image could be observed along the direction of
the crusher gradient. We attribute this to eddy currents
and imperfect gradient stability.

The temporal variance of the pairwise (control minus
tag) phase differences (averaged over the tissue) increased
dramatically when flow crushers were included (600%
and 3100% relative to no crushers). The changes were
much smaller when postinversion delays were used to
suppress the arterial signal (14%, —16%).

Since both the signal’s MP in the arteries are modulated
by the same labeling function (i.e., the control-tag scheme),
there is a significant degree of correlation between them.
The correlation between MP was significantly reduced by
the use of postinversion delays and flow-crusher gradients
(bottom row), supporting an arterial origin for the correla-
tion. The reduction in correlation was much stronger in
the case with diffusion crushers, which increase the phase
noise and remove the arterial signal altogether. In the case
in which crusher gradients were used, we attribute the
reduction in correlation to the drop in SNR at the arteries.
In the case of postinversion delays, however, the arterial
signal is not destroyed in the unsubtracted time courses.
However, the modulation of the arterial signal by the la-
beling function is no longer present because the labeled
blood has been cleared from the arteries during the post-
inversion delay, and thus the correlation is also reduced.

Arterial Vasculature Studies Under Activation and
Hypercapnia Conditions

As discussed elsewhere (19), the arterial vasculature im-
aging using saturation magnitude data revealed increases
in arterial blood flow and volume in the motor cortex
during visually cued finger-tapping stimulation. Such
magnitude increases were also observed globally during
the hypercapnia challenge. In the present analysis, phase
increases were also observed along with magnitude
changes. Time courses extracted from active regions in the
motor activation paradigm can be seen in Fig. 3a. The
average phase time course during the CO, challenge can be
seen in Fig. 3b. Both indicate phase changes closely cor-
responding to increases in blood flow. These results of
arterial vasculature imaging using saturation lend evi-
dence to support that the phase changes of ASL signals
stem from arterial signal contributions.

ASL Activation Study

Only one of the five slices was utilized for analysis. Pro-
cessing prior to statistical analysis entailed quadratic de-
trending of the MP time series then the first four frequen-
cies ideally filtered. The MO, PO, and MP activations were
converted to the —log;o(p-value) scale and thresholded at



1602

Hernadez-Garcia et al.

42.5

0.5

0

FIG. 4. Activation maps for the three models and three experiments. a-i: (a) MO crush,. (b) MO PID, (c) MO whole, (d) PO crush, (e) PO PID,
(f) PO whole, (g) MP crush, (h) MP PID, () MP whole. All maps are thresholded at P = 0.05 or —log1o(p) = 1.301.

P = 0.05 (21). Activations were superimposed on each
scan’s magnitude of the complex-valued average of con-
trols minus tags. A region of interest (outlined by the
magenta box) within the visual cortex is defined for refer-
ence with additional results. The specific location of the
box was chosen to include an area that was highly active
for the MO analysis in all three data cases. MO activation
in the visual cortex was observed using all three sets of
data and presented in Figs. 4a-c. Statistically significant
activation was detected by the PO model in the visual
cortex when the arterial signals were preserved (whole
data) in Fig. 4d but not in the crush and PID cases in Figs.
4d and 3e = 4,3. This is indicative that activation-induced
perfusion changes are accompanied by changes in the
phase difference between tagged and control images.
These phase changes in turn are indicative of arterial vol-
ume and/or velocity changes during activation. MP acti-
vation is clear in the whole case (Fig. 4i) and similar in
the PID case (Fig. 4h) but much reduced in the crush
case (Fig. 4g). Although the whole and PID cases may

have benefited from analysis using a complex model, the
crush data did not. We attribute this to the increase in
phase noise introduced by the crusher gradients (as seen
in Fig. 5j and Table 1).

The contrasts of parameter estimates in the MO and PO
models were computed along with the model variance to
investigate the details underlying the activation maps.
These are displayed in Fig. 5, and the same ROI within the
visual cortex (outlined by the black box) is examined. The
MP coefficient estimates and their contrasts are nearly
identical to those for the MO and PO models and are not
shown in Fig. 5. In Fig. 5¢, the MO model, whole data (i.e.,
acquired without arterial suppression) produced larger
contrast between active versus rest coefficients in the ROI
than the flow-crushed data in Fig. 5a and both of these
cases yielded a larger contrast than the PID data in Fig. 5b.
MO model variance in Fig. 5d-f was similar for the three
data types but slightly lower for the crushed data in Fig.
5d. Thus, the pattern of MO activation of whole data in
Fig. 4c was larger than flow-crushed in Fig. 4a and PID
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FIG. 5. Maps of the parameter and variance estimates for the magnitude-only and phase-only models. a-I: (a) MO crush C, (b) MO PID
CB, (c) MO whole CB, (d) MO crush o (2), (¢) MO PID o (2), (f) MO whole o (2), (g) PO crush Dy, (h) PO PID Dy, (i) PO whole Dy, (j) PO o
(2) crush, (k) PO o (2), PID, () PO o (2) whole. The color-bar maximum values are 35 AU for (a)-(c), 1250 AU (2) for (d)-(g), 0.5 degree for

(h)-(j), and 0.05 degree (2) for (k)-(m).

data in Fig. 4a because of differences in the tag versus
control contrast coefficients, with little difference in resid-
ual model variance in Figs. 5d-f.

In the case of flow-crushed data, the PO model produced
a parameter estimate map (Fig. 5g) in which pairs of large,
positive clusters could be clearly seen qualitatively at the
same location as the active region detected by the MO
model (see Fig. 4a, 4b = 4,4, and 4c). In the PID and whole

data in Figs. 5h and 5j = 5,5, the contrast was negative and
smaller than in the flow-crushed data. The residual vari-
ance of the PO model was much larger for the crush data
(Fig. 5j) than for the PID or whole data (Fig. 5k and 5h =
5,5, as previously described). Although a few pixels in the
region were statistically detectable by the PO model in the
case of PID data, the use of crusher gradients did not yield
statistically significant activation by the PO model.
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Table 1

Statistics Extracted from the Square ROI in the Visual Cortex*

Crush PID Whole
MO PO MP MO PO MP MO PO MP

Bo 2470 — 2469 3050 — 3050 3122 — 3122
B+ —-17.17 — -17.18 8.589 — 8.619 —9.731 — -9.701
Bo 19.84 — 19.80 24.24 — 24.26 41.43 — 41.44
Ba 36.24 — 36.28 38.47 — 38.48 72.51 — 72.51
CpB 16.40 — 16.48 14.23 — 14.22 31.15 — 31.08
Yo — 158.0 158.1 — 127.0 127.0 — 114.4 114.4
Y1 — —0.9969 —1.0078 — —0.3070 -0.3101 — —0.1785 -0.1797
Yo — —0.1749 -0.1772 — —0.1078 —0.1082 — —0.2155 —0.2158
Y3 — —0.0388 —0.0402 — —0.2070 —0.2074 — —0.5015 -0.5013
Dy — 0.1361 0.1371 — —0.0992 —0.0992 — —0.2860 —0.2854
a? 436.0 3.2483 3234 531.4 0.2542 593.1 532.7 0.2442 593.9
~log1o(p) 5.919 2131 9017 4.276 .8956 3.671 Inf 6.263 Inf

*Magnitude coefficient values are in AU, magnitude variance values in AU squared, phase coefficient values in degrees, and phase

variances in degrees squared.

Some phase difference between rest and activation was
detected in the PID data, but it was more prominent in the
whole data. The MP coefficient estimates and their con-
trast were nearly identical to those for the MO and PO
models. However, the MP residual variance was much
larger for the flow-crushed data than for the PID or whole
data because of the large phase variation. This is quanti-
tatively examined with average statistics for the three ac-
tivation models in the 3 X 3 ROl indicated by the black box
in Fig. 5 and displayed in Table 1.

From Table 1, it can be seen that when no significant
phase contrast is present, as in the crush data, the MO
model performs better than the MP model that detects MP
contrast (although the coefficient estimates are similar). In
the PID and whole data the MO model performs slightly
better than the MP model (although the coefficient esti-
mates are similar). This is due to unmodeled temporal
phase variations in the data (most likely of physiologic
origin), which increase the residual variance and decrease
detection power. Approaches to reduce the phase noise are
the subject of future research and are in the Discussion
section.

Simulation Study

Fig. 6 displays surfaces for P = 0.05 thresholded detection
power for the MO, PO, and MP models. In these simula-
tions, the MO model exhibits equivalent CNR detection
power regardless of TRPC as seen in Fig. 6a. The PO model
exhibits equivalent TRPC contrast detection power regard-
less of CNR, as seen in Fig. 6b. The MP model exhibits
combined CNR and TRPC detection power, as seen in Fig.
6c. When CNR is present and no TRPC is present, the MP
model exhibits slightly lower detection power than the
MO model, whereas when TRPC is present and no CNR is
present, the MP model exhibits slightly lower detection
power than the PO model. Hence, the MP model detects
MO and/or PO contrast.

DISCUSSION

FMRI data are intrinsically complex valued, although the
phase data are routinely discarded. Our simulations sug-

gest that it is possible to improve detection under ideal
conditions with the MP model over the MO model by
including the phase. The potential improvement with the
MP model is due to its ability to detect changes in either
the magnitude or the phase of the signal. However, as seen
in Fig. 6, when there is only a task-related magnitude
change (phase change), a model that is specifically de-
signed to detect only magnitude changes (phase changes)
is slightly better than one that is designed to also detect
TRPCs (magnitude changes) because of the increase in the
dimensionality of the contrast space from adding dimen-
sions that contribute zero signal.

Furthermore, our data indicate that there is a phase
difference between control and tagged images in ASL ex-
periments and that this phase difference is related to flow
because the phase difference increases with activation and
also hypercapnia, a known paradigm that causes systemic
increases in blood flow. The ASL data also indicate that
the phase difference comes from arterial sources rather
than capillary or tissue sources and that removing the
arterial contributions reduces the phase differences dra-
matically. Under ideal conditions, these analyses could
render ASL FMRI a more competitive alternative to BOLD
FMRI by either increasing the detection power of typical
ASL FMRI experiments or, more important, selecting ac-
quisition parameters that will increase the ASL signal (by
minimizing the use of postinversion delays or flow-crush-
ing gradients and/or selecting shorter pulse repetition
times) and adjusting for larger vascular contributions on
the postacquisition data analysis. The current data pre-
sented demonstrate a detectable activation signal in the
phase of ASL signals. The complex activation model that
we are using follows the classic thermal white noise model
and does not account for physiologic nonwhite noise in
the phase. One approach to reduce its contribution is to
include nuisance regressors in the phase design matrix (5).
It can be difficult to provide valid regressors for phase, and
even when properly modeled, dynamic image warping
artifacts still remain, currently making this a less attractive
solution (22). However, it has been shown that this phase
noise can be significantly decreased to near ideal condi-
tions with the use of a dynamic field mapping method and
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FIG. 6. Power surfaces for P = 0.05 thresholded, (a) MO power, (b) PO power, (c) MP power. CNR varies from 0 to 0.75 from left to right
in 100 equal steps. TRPC varies from 0 to 0.375 in degrees from top to bottom in 100 equal steps.

that phase-sensitive FMRI analysis methods can be reli-
ably used (22). The dynamic field mapping method (22)
was developed for cartesian k-space trajectories and needs
to be extended to spiral k-space trajectories, as used for our
data.

These results must be viewed in the context of the vas-
cular anatomy and hemodynamics of the brain. Duong and
Kim (24) reported arterial cerebral blood volume of 29% in
rats, including the capillary fraction. Cortical surface ar-
teries have been reported to contribute to the cerebral
blood volume approximately 15% in cats (25) and 21% in
human subjects (26), and their velocity ranges from 10 to
60 cm/s. Penetrating arterioles from the cortical surface
into the deeper layer of the cortex have a smaller diameter
and run mainly parallel to one another (27); hence, the
blood within them flows in a coherent manner. These
penetrating arterioles are particularly dense in layers 1
through 4 of the cortex.

In ASL experiments, the venous contributions are neg-
ligible because the inversion label relaxes well before
reaching the venous compartment. The arterial contri-
bution is routinely treated as contamination of the per-

fusion signal and consequently suppressed by using
postinversion delays or flow-crushing gradients (failure
to do so results in overestimation of perfusion in quan-
titative maps). Hence, the observed ASL signal arises
from the labeled water within the arterioles and capil-
laries, as well as those water spins that have exchanged
into the tissue.

The use of postinversion delays allows the bulk of the
labeled blood to leave the arterial compartment, but a
fraction always remains in the arterioles because of the
arterial dispersion (18). Flow crushers can also be used to
reduce the arterial contribution from the ASL signal, but
because arteriolar velocities have been reported to be in
the range of 1 cm/s (28), the arteriolar signal is unlikely to
be suppressed by them. Instead, flow crushers increase the
phase gained in the ASL signal at the arteriolar level. In
short, the flow crushers and postinversion delays remove
the ASL signal from the larger arteries, but the signal from
the smaller penetrating arterioles is preserved. These arte-
riolar contributions to the arterial cerebral blood volume
are small, approximately 3-5% of the cerebral blood vol-
ume in humans (29), and are considered part of the blood
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supply to the voxel of interest (30) and hence are not
considered as part of the arterial contamination.

We observed in the resting state data that the phase
difference between control and tagged images decreased
dramatically as the arterial signal was removed. In the
activation case, subtle changes in the phase difference
between control and tagged could be detected by the PO
and MP models when the arterial contribution was pre-
served, but they were much smaller when the arterial
contribution was removed by postinversion delays or by
crushers.

A potential confound in the correlation analysis is that
the SNR of the raw time courses is reduced by the use of
flow crushers that null the arterial signal. Reduced SNR
would decrease the correlation coefficient of the signals.
This is not so much the case with postinversion delays
because the arterial signal is preserved in the unsubtracted
data, even if the labeled blood has cleared the arteries. It
must be noted that although the total ASL signal (the
difference between control and tagged images) is reduced
by the clearance of the arterial label during the postinver-
sion delay, the label content in the tissue compartment
remains unchanged until the arterial compartment clears.
The amount of label in the tissue indeed decreases when
the postinversion delay exceeds the transit time because
tagging time is also reduced, but at a slower rate than that
in the arterial compartment (30). Since the magnitude of
the subtracted ASL signal was reduced by the crusher
gradients and the first postinversion delay (1200 ms) by
approximately the same amount (44, 46, and 45%), we can
infer that the postinversion delay of 1200 ms accounts
mostly for the label clearing the arterial compartment,
rather than a reduction of tissue label because of shortened
tagging time. On the other hand, the signal reduction of
67% due to the 1800-ms postinversion delay implies that
the loss in tissue label could account for the observed
reduction of the phase difference.

The use of a pair of flow-crushing gradients dramatically
increased the variance of the phase over time, as diffusion
gradient pairs are known to do. This increase in phase
noise was very detrimental to the PO and MP analyses,
essentially yielding no active voxels in the visual cortex.

Including postinversion delays to remove the arterial
label’s contribution to the signal also reduced the sensitiv-
ity to activation-related perfusion changes, but activation
could still be detected at lower threshold values because
the postinversion delays had no significant effect on the
phase noise. We hypothesize that including flow crushers
together with the postinversion delays should not change
the ASL signal because they both eliminate the arterial
compartment. However, we speculate that the phase noise
would increase dramatically, as observed in the flow-
crushed data.

Activation-induced changes in perfusion are accompa-
nied by changes in blood volume (31) and arterial velocity
(32,33). Two-photon bolus injection studies on rats indi-
cated significant changes in transit time from the arteries
to the capillaries and venules, but not significant from the
arteries to the arterioles (34). It is well known that changes
in velocity of blood affect the MR signal’s phase, but our
data indicate that the arteriolar volume is too small to
show large phase changes in the PO analysis. Although the

Hernadez-Garcia et al.

effect is still observable in the PID data, the number of
active voxels is reduced relative to that of the other models
because of the large phase noise, as Fig. 5 and Table 1
indicate. However, the MP analysis of the PID and whole
data did show significant activation in the visual cortex
while reducing the number of active voxels outside the
visual cortex, indicating that including the phase informa-
tion into the model decreased the size of the activation
region and led to an apparent increase in the focality of the
analysis.

Although absolute quantification of perfusion is not nec-
essary for most cognitive psychology FMRI experiments, it
is certainly beneficial. Current perfusion models are based
solely on the magnitude of the ASL signal and discard the
phase. Although these quantification models may not be
fully efficient from a statistical point of view, it must be
noted that they are still valid under the model described in
Fig. 1 and the phase effects described and reported in the
present work. Including phase information in quantifica-
tion of perfusion from the ASL signal is desirable but not
straightforward because blood flow is proportional to the
product of both blood velocity and blood volume (assum-
ing no changes in vessel length). Because no large changes
in transit time have been reported between arteries and
arterioles, the phase of the ASL signal can be seen as an
indicator of vascular volume, particularly in the label im-
ages. The phase information can be used to estimate ve-
locity along the images vascular volume and/or to differ-
entiate the velocity contribution to the increases in cere-
bral blood flow. This might be advantageous, considering
some of the current methods to measure cerebral blood
volume and mean transit time. For example, dynamic sus-
ceptibility contrast bolus-injection experiments quantify
perfusion as cerebral blood volume over the mean transit
time through the capillary. However, a robust implemen-
tation of velocity estimates would require encoding veloc-
ity in all cardinal directions. More problematic is that this
calculation is likely to be confounded by multiple vessels
with different orientations within a voxel. Thus, a more
complete model that includes the phase of the signal to
efficiently use all the information available is beyond the
scope of this work but currently under investigation.

Finally, although preserving the whole arterial signal
(by not using flow crushers or postinversion delays) pre-
vents the classic quantification of perfusion, it enhances
the ability to detect neuronal activity. Thus, when design-
ing an ASL-based FMRI experiment, investigators should
consider whether their main goal is to detect or quantity
changes in blood flow. In experiments in which CNR is
low, it may be useful (or even necessary) to sacrifice quan-
tification for the sake of sensitivity. For example, a multi-
session study in which BOLD imaging is problematic be-
cause of scanner drifts would still benefit from nonquan-
titative ASL techniques. Although outside the scope of the
present work, ASL techniques that leverage transit time
changes to amplify activation responses (35,36) should
also benefit from complex-valued analysis.

In summary, there is valuable phase information in the
phase of ASL-based FMRI time series that could be used to
increase activation if modeled properly. The complex ac-
tivation model that we are using follows the classic ther-
mal noise model and does not account for physiologic
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noise in the phase. The source of this phase information is
arterial in nature. Because there is arteriolar signal still
present even after arterial suppression, the phase informa-
tion is greatly reduced but still detectable in some of the
pixels of the active region (see Fig. 4). One must keep in
mind, though, that if arterial suppression is achieved
through diffusion crushers, the phase noise overwhelms
the signal. Thus, postinversion delays are a preferable
method of suppression when analyzing the phase of ASL
images.

APPENDIX
MO, PO, and Magnitude-Phase Activation Models

Here, we describe the activation models that are necessary
for the maximum likelihood estimation process. These
three models can be described from a complex-valued
perspective. Let the complex-valued measurement in a
voxel yg; + iyy at time t be described as

< Y > _ < pcosb, > 4 < MNRre >
Y psind, e /)’
where p; and 6; are the true MP while mg, and my are
additive statistically independent normally distributed
noise with zero mean and variance o (2). From Eq. [A1], a
joint distribution p(yge,yulpw8: o (2)) and likelihood can be

presented. This distribution can be converted to MP polar
coordinates

[A1]

p(mu‘Pt|Pu9u0'2)

m,

1
= WBXP{ —W[mf + pf — 2pmcos(g, — Gt)]}

[A2]

Upon discarding the phase portion of the data (equiva-
lent to marginalizing Eq. [A2] with respect to ¢), the
observed magnitude m; follows the Ricean distribution

p (mt| pho-z)

1

my m{ + o} 1 P
= 528XP) T 557 518XP| ;2 cosle, — o) rde,
et=—1

[A3]

as has been previously described (2-4). The true underly-
ing magnitude in Eq. [A3] is then modeled as
m = x/B = Bo + BiXy + + -+ + ByXq Where X/ is the t
row of a magnitude design matrix X and B is a q; + 1
dimensional vector of magnitude regression coefficients.
This Ricean distribution is well approximated by the nor-
mal distribution with mean p, and variance o (2) when the
temporal SNR is high, above 7.5 (3). The usual MO linear
regression model m, = x{B + g, parameter estimates, and
test statistics follow where ¢ are additive, statistically
independent, normally distributed noise with zero mean
and variance o (2) (3).
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Upon discarding the magnitude portion of the data
(equivalent to marginalizing Eq. [A2] with respect to my),
the observed phase ¢; follows the distribution

1 pi
P(‘Pt‘PnenUz) = ?eXp{_T&}

[o1

piy2

picos(e, — 6)
202

q)<PtCOS(‘Pt - et)>:| [A4]
i

as has been previously described (2,4). The true under-
lying phase in Eq. [A4] 1is then modeled as
0, =Xy = o T ViXq + -+ T ¥g2Xqoe Where y is a q; + 1
dimensional vector of phase regression coefficients. We
use the same design matrix in MP, although this is not
required (5,6). This distribution is well approximated by
the normal distribution with mean 6, and variance (a/p;)
(2) when the temporal SNR is reasonable (19). The usual
PO linear regression model ¢, = x{B + d;, parameter esti-
mates, and test statistics follow where 8, are additive sta-
tistically independent normally distributed noise with
zero mean and variance (o/py) (2) (19).

Alternatively, the MP can be modeled simultaneously as
p=XB=PBo+ Brxy + -+ Bq1Xqut and 6, = x{y = Yo
+ YiXy + oo+ VX from Eq. [A1] and Eq. [A2]. Upon
doing so, a likelihood can be formed from Eq. [A2], max-
imized under null and alternative hypotheses, and a like-
lihood ratio statistic formed (5,6).

X[l-ﬁ- cos(q — Ot]exp{
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