The Rician Distribution of Noisy MRI Data

Hé}(on Gudbjartsson, Samuel Patz

The image intensity in magnetic resonance mégnitude images
in the presence of noise is shown to be governed by a Rician
distribution. Low signal intensities (SNR < 2) are therefore
biased due to the noise. It is shown how the underlying noise
can be estimated from the images and a simple correction
scheme is provided to reduce the bias. The noise character-
istics in phase images are also studied and shown to be very
different from those of the magnitude images. Common to
both, however, is that the noise distributions are nearly Gaus-
sian for SNR larger than two.

Key words: Rician, Rayleigh, Gaussian, noise.

INTRODUCTION

It is common practice to assume the noise in magnitude
MRI images is described by a Gaussian distribution. The
power of the noise is then often estimated from the stan-
dard deviation of the pixel signal intensity in an image
region with no NMR signal. This can, however, lead to an
approximately 60% underestimation of the true noise
power. Here we will show that there is a simple analyt-
ical relationship between the true noise power and the
estimated noise variance.

The characteristics of noise in magnitude MRI images
has been studied before by Henkelman and the reader is
referred to ref. 1 for the formulation of the problem.
Henkelman analyzed the problem numerically and did
not provide analytical expressions for the noise charac-
teristics. The noise characteristics of quadrature detec-
tion, however, have been thoroughly analyzed and doc-
umented in applications to communication (2-3).

During the preparation of this manuscript, we have
come across several references in the MRI literature that
describe some of the results presented here. Edelstein et
al. (4) showed that pure noise in magnitude images is
governed by the Rayleigh distribution and later Bernstein
et al. (5) provided the closed form solution of the more
general Rician distribution in their study on detectability
in MRL Brummer et al. (6) have also exploited the Ray-
leigh distribution in a histogram analysis for automatic
evaluation of the “true noise” in application to image
segmentation.

In this paper we will review the theoretical distribu-
tions for the noise in magnitude images and then we
supplement it with the exact expression for the noise
distribution in phase images as well. A very simple post-
processing scheme is proposed to correct for the bias due
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to the Rician distribution of the noisy magnitude data.
The statistical properties of the correction scheme are
studied and compared with a similar correction scheme
for power images, proposed earlier independently by
Miller and Joseph (7) and McGibney and Smith (8).

THEORY

Magnitude images are most common in MRI because they
avoid the problem of phase artifacts by deliberately dis-
carding the phase information. The signal is measured
through a quadrature detector that gives the real and the
imaginary signals. We will assume the noise in each
signal to have a Gaussian distribution with zero mean
and each channel will be assumed to be contaminated
with white noise.

The real and the imaginary images are reconstructed
from the acquired data by the complex Fourier transform.
Because the Fourier transform is a linear and orthogonal
transform, it will preserve the Gaussian characteristics of
the noise. Furthermore, the variance of the noise will be
uniform over the whole field of view and, due to the
Fourier transform, the noise in the corresponding real
and imaginary voxels can be assumed uncorrelated.

There are many factors that influence the final signal-
to-noise ratio (SNR) in the real and imaginary images.
Not only is the noise associated with the receiving coil
resistance, but also with inductive losses in the sample
(9). Which one is the dominant source will depend on the
static magnetic field (By) and the sample volume size.
Furthermore, the final image noise will depend on the
image voxel size, the receiver bandwidth and the number
of averages in the image acquisition (10).

Magnitude Images

The magnitude images are formed by calculating the
magnitude, pixel by pixel, from the real and the imagi-
nary images. This is a nonlinear mapping and therefore
the noise distribution is no longer Gaussian.

The image pixel intensity in the absence of noise is
denoted by A and the measured pixel intensity by M. In
the presence of noise, the probability distribution for M
can be shown to be given by (2, 3)

pu(M) = ge'(M‘JrAz)/Zol IO(A(;JM) [

where I, is the modified zeroth order Bessel function of
the first kind and o denotes the standard deviation of the
Gaussian noise in the real and the imaginary images
(which we assume to be equal). This is known as the Rice
density and is plotted in Fig. 1 for different values of the
SNR, A/o. As can be seen the Rician distribution is far
from being Gaussian for small SNR (A/a < 1). For ratios
as small as A/o = 3, however, it starts to approximate the
Gaussian distribution.

910

N m 0




fe data.
eme are
scheme
mtly by
(8).

use they
tely dis-
ieasured
and the
in each
ro mean
minated

structed
insform.
‘hogonal
ristics of
> will be
e to the

ling real -

ited.
1 signal-
images.
7ing coil
: sample
id on the
me size.
1 on the
:number

ting the
e imagi-
herefore

noise is
by M. In
on for M

[1]

1ction of
on of the
'~ images
the Rice
es of the
on is far
or ratios
mate the

Rician Distribution of Noisy MRI Data

ru (M/o)

T T T T L T

FIG. 1. The Rician distribution of M for several signal to noise
ratios, A/o, and the corresponding means.

Note that the mean of the distributions, M/o, which is
shown by the vertical lines in Fig. 1, is not the same as
Alo. This bias is due to the nonlinear transform of the
noisy data.

A special case of the Rician distribution is obtained in
image regions where only noise is present, A = 0. This is

better known as the Rayleigh distribution and Eq. [1] °

reduces to

M
pM(m — ?eﬁmlza* [2]

This Rayleigh distribution governs the noise in image
regions with no NMR signal. The mean and the variance
for this distribution can be evaluated analytically and are
given by (11)

M=o /a2 and o%, = (2 — n/2)? [3]

These relations can be used to estimate the “true” noise
power, o, from the magnitude image. Another interest-
ing limit of Eq. [1] is when the SNR is large.

1
~ ~(M— JAZF o2)2/242
pu(M) 5—6" - [4]

This equation shows that for image regions with large
signal intensities the noise distribution can be consid-
ered as a Gaussian distribution with variance o* and

mean JA? + 2. This trend is clearly seen for large ratios,
Alo, in Fig. 1.

Phase Images

Phase images, which are commonly used in flow imag-
ing, are reconstructed from the real and the imaginary
images by calculating pixel by pixel the arctangent of
their ratio. This is a nonlinear function and therefore we
no longer expect the noise distribution to be Gaussian.
Indeed, the distribution of the phase noise, Ap = ¢ — 0, is
given by ref 3
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Although the general expression for the distribution of
A# is complicated, the two limits of AAA=0and A > o,
turn out to yield simple distributions.

In image regions where there is only noise, A = o, Eq.
[5] reduces to

1.
Pas(A8) = Erlf*ﬂ'<A0<1T (6]
0 otherwise

This result is obvious since the complex data, which only
consists of the noise, “points in all directions” with the
same probability.

For large SNR, A » ¢, itis easy to see that the deviation
in the phase angle, A9, due to the noise will be small. The
integral in Eq. [5] will therefore be close to 1 and the
second term in the brackets will therefore dominate the
constant 1. Equation [5] therefore reduces to 1 ap

SR
——
A0 A cos A# —A%(1 - cos? Ap)
Pas(A6) = T\lz—"— OXp |
Sin 00 8e™ [7}

1 —-A&
~ 2m(orap P [2 (U/A)z]

The noise distribution in the phase angle can therefore be
considered as a zero mean Gaussian distribution, when A
> ¢. This result is not surprising because when the pixel
intensity is large, all deviations parallel to the complex
pixel intensity can be ignored. Also the phase variations,
due to the noise which is orthogonal to the complex pixel
intensity, can be linearized as o/A, where & represents
the orthogonal part of the nojse.

The standard deviations for the phase noise can in
general be calculated by using Eq. [5], however, for the
two special cases in Egs. [6] and [7] it is given by

a

AlfA>0'

Tpp = 7_‘2 {8]

Figure 2 shows the distribution in the phase noise, eval-
uated by Eq. [5], for several signal to noise ratios. The
Gaussian approximation is also shown by the dotted line
for A/o = 3. Clearly the Gaussian approximation is very
good even for fairly small signal to noise ratios.

Phase images are sometimes weighted by the magni-
tude data, to reduce phase variations in regions with no
signal. The general noise distribution for such images is
nontrivial. For regions with large SNR one can show that
the distribution approaches a Gaussian distribution

- whose standard deviation is o.
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FIG. 2. The distribution of the phase noise for several signal to
noise ratios, A/o. The Gaussian approximation is shown with a
dotted line for A/o = 3.

BIAS REDUCTION IN MAGNITUDE DATA

For large SNR Eq. [4] shows that the mean of M is not the
true image intensity A, but approximately /A% + ¢Z. This
is a small deviation for large SNR, however, when the
SNR is small this bias has to be considered. We will
continue to approximate the mean by the simple expres-
sion JA* + o for all SNR, but for an exact analytical
evaluation of the mean of Eq. [1] see refs. 2 and 5. Figure
1 shows the mean of the Rician distribution for several
values of A/c plotted as a straight vertical line. Henkel-
man suggested a look-up table correction scheme to cor-
rect for this bias (1). We, however, suggest a much sim-
pler correction scheme.

To reduce the bias the following postprocessing cor-
rection scheme is suggested:

A= ||M - (9]

The probability distribution for the corrected signal, A, is
then given by

A 'PM( \’0‘2 + Az) + A 'PM( \’0’2 ,AZ)
— AZ

) Jo& + A? N'a ifA<o
- A = -
PAA) A py(\o® + A?) ifA=o
BNy
[10]

where p,, is defined by Eq. [1]. The distribution of A is
shown in Fig. 3 for several signal to noise ratios. We see
that the bias is greatly reduced, however, the corrected
distribution is not Gaussian. For ratios of A/c > 2 the
corrected distribution is however very close to being a
Gaussian. Table 1 lists the mean and the standard devi-
ation of the corrected and uncorrected distributions.

A different, but somewhat similar, correction scheme
has been proposed for power images, independently by
Miller and Joseph (7) and McGibney and Smith (8), to
perform quantitative analysis on low SNR images and as
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FIG. 3. The distribution of the corrected pixel intensity, A (bold),
compared with the Rician distribution of M for several signal to
noise ratios. The mean of the corrected distribution, A, is shown
with a vertical line.

Table 1
Some Statistical Properties of the Rician Distribution and the
Correction Scheme for Several Signal-to-Noise Ratios

Alo Ala oz/o M/a oo
0 1.03 0.35 1.25 0.43
0.5 . 1.10 0.42 1.33 0.48

1.30 0.59 1.55 0.60
1.5 1.61 0.79 1.87 0.73
2 2.03 0.96 2.27 0.84
2.5 2.50 1.04 2.71 0.90
3 3.00 1.07 3.17 0.93

an unbiased SNR estimate, respectively. It is interesting
to compare this with our correction scheme, described
above.

Their correction scheme is based on the simple rela-
tionship between the mean of the measured power and
the true image power, namely M? = A% + 202 (1, 7). Their
correction scheme is therefore simply

A% = M? - 20° [11]

We have found that the resulting distribution for the
corrected power, A?, is given by

: A2+202)
———

1 1 A2 2
p,iz(Az) = F e-(A +202+A?)/202 I (_,, [12]
The mean of A® gives an unbiased estimate of A% We
have calculated the variance of A% and found it to be
given by

0% = 4A% + 40t (13]

Figure 4 shows the distribution of M? and A? as the
original and the corrected image power, respectively.
The distributions are clearly far from being Gaussian at
low SNR although their mean is always the true mean,
A?. This can lead to some ambiguities, when information
is extracted from corrected power data, because least-
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Apart from the extra correlation in the vicinity of (0, 0),
resulting from the point spread function of the Fermi
low-pass filter, the agreement with Eq. [14]) is only with
accuracy of ca. 3%.

CONCLUSION

In this note we have given the theoretical noise distribu-
tions for magnitude and phase images and shown how
these distributions reduce to the Gaussian distribution for
even fairly small SNR. We also introduced a simple post-
processing scheme to correct for the noise dependent bias
in magnitude images where the SNR is poor. The statistical
properties of our correction scheme were compared with an
existing correction scheme for power images.

We were not able to verify the mathematical model for
the Rayleigh distribution statistically, however, the ana-
lytical distributions provided here are in good agreement
with earlier results (1). Some unknown manipulations of
the data by the reconstruction program seems to invali-
date the simplistic assumptions made in the formulation
of the problem. As shown in Fig. 6 the disagreement is
however very small.
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