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SUMMARY

This paper considers the problem of regressing an angular response variate on a set of linear
explanatory variables. A general class of models is proposed in which the mean direction and
dispersion of a von Mises variate are related to the explanatory variables by general link functions.
Appropriate regression diagnostics, estimation and testing procedures are developed for fitting the
models. The meaning of “correlation” between an angular and a linear variable is clarified, and leads
to a general notion of multiple correlation associated with the regression model. The methods are
applied to a set of data arising from a study of movements of intertidal gastropods.

1. Introduction

The theory of regression models when the response variable is angular is a somewhat
neglected area of statistics, although problems of this sort are not uncommon in a number
of areas of application, particularly in biology, geology, and meteorology. Examples include
the dependence of the direction an animal moves on the distance moved (as studied later
in this paper), the dependence of the strike of a fault plane on displacement, and the
dependence of wind direction on wind speed.

Such work as exists relates largely to the study of potentially interesting families of joint
distributions of an angular variate ® and a continuous linear variate X. Gould (1969),
Laycock (1975), and Mardia (1972, pp. 127-128, 167) have considered various forms of
the so-called “barber’s pole” model, in which the mean response of ©, conditional on
X = x, is a curve winding in an infinite number of spirals up the surface of an infinite
cylinder. Johnson and Wehrly (1978) proposed a different class of models in which the
response completes just a single spiral as x increases through its range.

In Section 2 of this paper we review this work and in Section 3 propose some extensions
to the Johnson and Wehrly models, and introduce a multiple correlation coefficient that
measures the type of association described by one of the models. This section also sheds
light on the curious fact that the “correlation” between an angular and a linear variable
should be defined in the context of the nature of the regression model being contemplated—
0 regressed on X or X regressed on ®@—with quite different types of correlation coefficient
being appropriate to the two cases. Finally, in Section 4 we discuss the application of the
methods to a set of data arising from a study of movements of intertidal gastropods.

Key words: Angular-linear correlation; Angular response; Iteratively reweighted least squares;
Maximum likelihood; von Mises distribution.
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2. Some Models for Angular Regression

There are a number of ways in which we may want to model © in terms of several
explanatory variables. For example, we may wish to:

A: Model the mean direction of © in terms of a vector of covariates x = (xi, ..., x)’.
B: Model the dispersion of ® in terms of xi, ..., X.

C: Model both the mean direction and the dispersion simultaneously, in terms of
X1y oooy Xieo

A peculiarity of regression models with a circular response variable is that a special null
model is available, namely the uniform distribution, for which there is no mean direction.
This is one reason for considering regression models based on dispersion as well as on
mean direction; another is the fact that many data sets encountered in practice (e.g., wind
direction and wind speed measurements) exhibit features such as increased variability of ®
for small values of X.

Modelling dispersion for an angular deviate presents certain difficulties, because there is
no natural measure of scale for circular distributions. For this reason, it is convenient to
work with the von Mises family of distributions, which has an in-built measure of dispersion,
and shares many of the key properties for statistical inference that the normal distribution
has for linear data. The density of a von Mises VM(u, «) distribution is given by

SO w, k) = 27lo(x)] 'explx cos(0 — w)], —w <O u<m, «=0,

where u is the mean direction and « the concentration parameter. The value « = 0
corresponds to the circular uniform distribution; for x > 0, the density is unimodal and
symmetrical about u, and increasingly concentrated as « increases. For « = 2 the density at
the antipode u + 7 is effectively zero, and f'is well approximated by a normal distribution
with variance 1/«. In the sequel, it will be assumed that © is a von Mises variate.

A regression model of type A was proposed by Gould (1969), who considered the
structure

w=uo + X BiX

for the mean direction, resulting in a “barber’s pole” form. Gould gave an iterative method
for calculating the maximum likelihood estimates (MLEs) of the model parameters, and
provided some approximate methods of inference for the case when « can be considered
large. Laycock (1975) also discussed this model, and noted that maximum likelihood (ML)
is equivalent to least squares. Johnson and Wehrly (1978) pointed out that the likelihood
function in the Gould model has infinitely many equally high peaks, leading to ambiguously
defined MLEs. As an alternative, for a single explanatory variable, they suggested an
approach via a specific model for the joint distribution of ® and a linear variate X with a
completely specified marginal distribution function F(x). Their conditional distribution of
0 given X = x is VM(u + 27 F(x), ), a model which allows direct estimation of x and «.
We will refer to this as the Johnson-Wehrly type A model.

For type B models with a single explanatory variable, they suggested modelling the
conditional distribution of ® given X = x as VM(u, «x), which also allows the direct
estimation of the parameters, and also includes the null case of zero concentration. In the
next section we consider extensions of these Johnson-Wehrly models for cases A and B,
which we then combine to give a model of type C.
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3. Extending the Johnson-Wehrly Models

3.1 The Basic Models

The Johnson-Wehrly models of Section 2 may be extended by assuming that we have
angular observations 0, . . . , ©,, which follow von Mises distributions with mean directions
Wi, ..., u, and concentration parameters «i, . . . , k,. Our first model, which generalizes the
Johnson-Wehrly type A model, assumes that all the concentration parameters are equal to
k say, and that the u’s are related to the covariates by means of a link function g so that

wi = np+ gB"x),

where x; is the vector of explanatory variables for the ith case and 8 is a k-vector of
regression coefficients. Parallels with the theory of generalized linear models are obvious.
The purpose of the function g is to map the real line to the circle, and we shall consider
only monotone link functions having the property that as x ranges from —oo to o, g(x)
ranges from —x to «, thus avoiding the problem of nonidentifiability of MLEs that afflicts
the Gould model. In order that x have an interpretation as an origin, we will also assume
that g(0) = 0. In the sequel, we refer to such links as “angular-monotone” or briefly,
“A-monotone.”

In the case of a single explanatory variable X, the regression function 6(x) = E(0 | x) (i.e.,
the conditional expectation of ® given x) can be regarded as a curve on the surface of an
infinite cylinder, which rotates once around the cylinder as x varies from —oo to c. Other
forms of regression function are of course possible—for example, functions that rotate
twice, three times, . . ., around the cylinder. The Gould model corresponds to a “barber’s
pole” regression function that spirals infinitely many times around the cylinder. We do not
consider such possibilities further in the present paper.

The link function g can be assumed known, or to be one of a parametric family of
suitable links, in a manner similar to the situation in the theory of generalized linear
models. One possibility is to use the function

g(x) = 2 tan"'(sgn(x) | x | %),

where A = 0 corresponds to a log transformation. The parameter A can then be estimated
from the data, analogously to the estimation of Box-Cox transformations. Another possi-
bility is to regard the covariates as lying in a bounded region, which after scaling we may
take to be [0, 1]%. The u,’s may then be modelled by

pi = p * 27g(xy),

where g is now a member of some flexible parametric family of k -dimensional distribution
functions concentrated on [0, 1]%. For example, in the case of a single covariate, we could
take g(x) = I.(a, B), the incomplete beta function

1 o _
I(a, B) = Bla ﬂ)J; N1 = )Pt d.

To extend the Johnson and Wehrly type B model, we can imagine that the mean
directions y; are all equal to u say, and the «’s are modelled by « = A(x), where 4 is some
function mapping %, to [0, «). One possibility is

h(x) = 4 exp(7'x),

where ¥'x = y,x; + -+ + v.xx. The null case of no concentration then corresponds to
A = 0. Alternatively, the constant 4 can be absorbed into the exponential, and we can
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consider the function
h(x) = exp(y'x),

where now ¥"'x = a + y,x; + --- + v x:. This eliminates the need for a separate type of
parameter A, but no longer includes the null case, except in the form o = —c. However,
we can perform a preliminary test of uniformity (see, e.g., Mardia, 1972, p. 173) and
proceed to the fitting of the model only if the uniformity test is rejected.

To conclude this section, we present a few simulated data sets to indicate how data
following one of these models might appear in practice. Figure 1 shows four synthetic
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Figure 1. Four simulated data sets, showing typical behaviour of realizations of A-monotone

regression of ® on X, when the conditional distribution of ©; given X; = X; is von Mises VM(u;, «)

with u; = u + g(6™X)) and link function g(x) = 2 tan~'(x) and the (one-dimensional) X’s equally
spaced on (—1, 1). Each data set is of size 100.



Regression Models for an Angular Response 669
samples, each of size 100 simulated from the model
0; ~ VM(u;, «),
where
pi=u+ gB'x)
with link function
g(x) = 2 tan"'(x)

and the (one-dimensional) x’s equally spaced on (—1, 1).

The method of display has been to plot the 100 points (x, ®) in Cartesian coordinates,
and then to plot the additional points (x, ® + 27) so that the relationship (if any) is fully
displayed.

3.2 Inference for the Mean Model

We first consider in more detail the model where the ©,’s are independently VM(u;, «),
where u; = u + g(8"x;) and g is assumed known. The extension to the case where g is a
member of a parametric family is in principle straightforward but will not be considered
explicitly. The log likelihood is

—nlog I(x) + x 3, cos(®, — u — g(BTX)),
i=1

where I,(x) is the modified Bessel function of the first kind and order p. Defining
u; = sin(0; — p — g(8'xy)),

u' = (uy, ..., ),
X=1|:[
Xn

G = diag(g’(8™xy), .. ., &' (6"x,)),

S = é sin(®; — g(8™x:))/n,

C= é cos(0; — g(8"x:))/n,

R =(S*+ C*»"3 1)
we see that the MLEs are solutions to the equations
X'Gu = 0, (2)
Rsinj =S, (3)
R cos p = C, 4)
A(K) = R, (%)

where A(x) = Ii(x)/Io(k). An iterative scheme for the solution of the equations (2)—(5)
suggests itself. We can start with an initial value for 8, calculate S, C, and R and hence u
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and < by (3)-(5). These estimates can then be used to solve (2) for an updated version g*
of 8. The solution of (2) is easily accomplished by means of the iteratively reweighted least
squares (IRLS) algorithm of Green (1984). The updating equations are

X'G2X(8* — B) = X'G?y, (6)

where y = ()1, ..., y») and y; = u;/[A(x)g’(B™x,)]. We update 8 by solving (6) and then
update g and & by (3)-(5), which are analogous to the ML equations for an independent,
identically distributed (i.i.d.) von Mises sample. This cycle is repeated until convergence.

From standard likelihood theory, the asymptotic standard errors of 8 are obtainable
from

()

TO2YW Y- 1YW Togal T2y -1
var = KAI( ) { xr@xy + KGN X'gg XX'GX) }
K

(n — g'X(X'G*X)"'X"g)

where g is a vector whose elements are the diagonal elements of G. The asymptotic variance
of x and the circular variance of g are given respectively by

var(s) = 1/(nd’(x)) 8)
and

circ. var(g) = [2(n — k)xA(x)]™
\ivl}ence, from Fisher and Lewis (1983, Example 1), the estimated circular standard error of
s
i = [(n = k)RA)]™"?,

from which a large-sample confidence interval for u can be calculated.
In the case of a single predictor, (7) reduces to

A 1
var B = ) S o — 5
where v; = g’ (8"x;)x;.

One difficulty exists in the maximisation of this log likelihood. If 8 = 0, we have a null
model where all observations cluster around a common mean direction u. However, as the
elements of 8 become infinite, use of any monotone link function also leads to a null
model with mean direction u + 7. In such cases, the likelihood will have a peak in the
vicinity of zero, and attain a similar magnitude as the elements of 8 tend to xc. The
estimate can arbitrarily be taken to be the location of the peak around zero in this case,
even though this may be only a local maximum. Note that the optimisation process is
simplified if the X’s are centred at their means.

An alternative procedure, particularly useful in the case of one or two explanatory
variables, is as follows. We can write

4

cos(®; — u — g(B™x.)) = R cos(u — A), ©)

where R is a function of 8 but not of « or u. From the form of the log likelihood, the value
of 8 that maximises R is also the value of 8 that maximises the log likelihood. Once the
maximising 8 is found, the values of 4 and k can be found from (3)-(5). Inspecting the
graph of R as a function of 8 will produce a good starting value for the numerical
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maximisation of R. Simulations show that local maxima can exist quite close to the global
maximum so that graphical exploration of the likelihood surface is advisable anyway.

Asymptotic tests and confidence intervals for the parameters based on the asymptotic
normality of the ML estimators can be carried out in the usual way. The behaviour of the
estimators in small samples was investigated in a small simulation study, using the model
w; = g(8"x;) and the link

g(x) = 2 tan™!(x),

with a single explanatory variable. For sample sizes n of 10, 20, 50, von Mises data were
generated using the algorithm of Best and Fisher (1979) for values of x equally spaced from
—1tol,x=1,2,5,and 8 =0, 2, 6. The ML estimates were computed using the iterative
scheme proposed above, and their global (as opposed to local) maximality checked by
evaluating the likelihood on a grid of points. The simulations showed that there are no
difficulties with the estimation of u. There is no appreciable bias in the ML estimators, and
formula (9) provides a good approximation to the mean resultant length. The circular
standard error of 1 can be computed using the methods of Fisher and Lewis (1983, Example
1); this point is pursued in the next subsection.

The simulations also showed that there is some degree of bias in the ML estimator of 8
in the case of small dispersions and small sample sizes. This bias is negligible when the
sample size exceeds 20 or when « exceeds unity, for the ranges of parameter values
considered. For the same range of parameter values that involve some bias, there were
some problems with convergence, and formula (7) tends to underestimate the standard
errors. The likelihoods tend to be rather badly behaved for these parameter values, with
local minima close to the global maximum, so that a careful choice of starting values is
essential.

Finally, there may be substantial bias in the estimation of x that persists even at large
sample sizes, which should not be surprising in view of the large biases that occur in the
estimation of « from i.i.d. von Mises samples (see Best and Fisher, 1981). As in the i.i.d.
case, there may well be a case for estimating « by some resampling method such as the
parametric bootstrap or jackknifing.

3.3 Inference for the Dispersion Model

As mentioned in Section 2, there may be occasions when it is desired to model the
dispersion rather than the mean direction in terms of the covariates x. Specifically, we may
assume that the observed angles 0, . .., 0, follow von Mises distributions with common
mean direction x and dispersions «; given by «; = A(x;), where / is a link function mapping
Fy. to [0, ). Assuming a link of the form A(x) = A(y"x), where y'x = o + yix; + -+ +
YiXk, the log likelihood for this model is

= log Io(k;) + X kicos(®; — u),
i=1 i=1

where «; = h(y"x;). The ML estimates are obtained by solving the equations
Y {cos(0; — u) — A(k}h' (¥ x:)x;; = 0, (10)
i=1

Rsin g =S, (11)
Rcosp=C, (12)
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where for this model

§'= 3 «sin(0;),
i=1

C= 2 KjCOS(@f),
i=1

R=(5*+ CH)”,

Assuming the value of g is known, the equations (10) may be solved by IRLS: Given a
starting value %, an updated 4* is obtained from the updating equation

XTWX(F* — 9) = X'Wy, (13)
where
yi = {cos(0; — u) — A()}/[h' (v x4’ (xi)] (14)
and W is a diagonal matrix with elements
wi = {h' (Y™ x)PA (k). (15)

Then solution of the likelihood equations proceeds as follows: We pick a suitable starting
value for 4, compute 4 via (11) and (12) and then update v using (13). This cycle is then
repeated until convergence.

The asymptotic variance of 4 is given by

var ¥ = (XTWX)™! (16)
and the asymptotic mean resultant length of s is

1
2 Yt ki A(ki) "

In view of the difficulties involved in estimating « using ML estimation, it was thought
prudent to run another small simulation to check the small-sample behaviour of the
estimators, in the case of a single dependent variable using the link A(x) = exp(a + yx).
The details of the simulation were identical to those for the mean model, except that ranges
of values selected were o = 1, 2 and vy = —1, 0, 1.

There were no problems with the estimation of u, with the bias in the estimates being
small and the asymptotic formula (17) giving a good approximation to the actual mean
resultant length. In view of the difficulties in the ML estimation of « in the von Mises case,
we might expect the situation to be not quite as satisfactory for o and y. However, for
sample sizes of 20 or more, the bias of the estimates is not excessive and their standard
errors are well approximated by the asymptotic formula (16).

We conclude this section by presenting a graphical method for diagnosing the possible
dependence of dispersion on the covariate. For convenience we assume that there is just a
single explanatory variable X. Recalling that the concentration parameter «x of a von Mises
distribution is related to the mean resultant length p by

1 (17)

p = A(x),
we see that, if the dispersion model is correct, the function A~'(47'(p)) is linear in x.
Accordingly, we need estimates of p; = A(x;), i = 1, ..., n. Without replication, the only

precise information about p; is contained in ©;, and even if the mean direction yu is known,
it is not easy to find a stable estimate of p; from just this one datum. However, a reasonably
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stable estimate can be obtained by rearranging the @’s so that their corresponding x;’s are
increasing, and then estimating p; from the 2m + 1 ordered directions O, . . . , O+m) for
some small value m (e.g., m = 2). (Adjustments will clearly be needed if there are a few
holes in the range of x-values.) Then plot (x;, #7'(47"(p;))) for appropriate values of i. An
example of this diagnostic using an exponential link function is given in Section 4.

3.4 The Mixed Model

The combination of the models A and B into the mixed model C is straightforward. Writing
;= h(y"x;), the log likelihood is now

— 3 log Jolw)) + ;l kicos(0; — u — g(8™x)) (18)

and is maximised by combining the methods of the previous two subsections. Specifically,
given starting values of 8 and + (a practical method of finding these is discussed in the next
section) we maximise (18) by first updating 8 by means of a slightly modified version of
(6), the matrix G* being replaced by GKG, where K is a diagonal matrix with elements
kiA(k;). Also, in the definition of the vector y, A(x;) replaces A(x). We then update the value
of v as in Section 3.3, except that (14) must be changed to

Yi = (cos(0; — pu — g(B"x)) — A(x;))/(h'(¥"x,)4’ (x:)).

The weights (15) are unchanged. These two updating steps are alternated until convergence.

The estimates 8 and 4 are asymptotically uncorrelated with 4. The formula (16) is still
correct, and up to o(n™!), the asymptotic mean resultant length of 4 and the asymptotic
variance of 8 are given by (17) and

var 8 = (X"GKGX)™!,

respectively.

3.5 Measuring Association Between © and X

In this section we introduce a multiple correlation coefficient connected with the type A
regression model, and develop a test for zero correlation. As mentioned in the introduction,
several authors have derived regression models by considering bivariate distributions for ©
and X. For example, Mardia and Sutton (1978) consider a distribution on the cylinder for
which the regression of X on 0 (i.e., the conditional distribution of X given 0) is of the
form

X =asin® + b) + ¢, (19)

where ¢ is normally distributed. Measures of the correlation between X and ©. associated
with this regression are thus associated with barber’s pole models. This is in marked contrast
to the sort of correlation between © and X appropriate for the angular regression models
considered in Section 3.2.

In a similar manner we can construct a joint density in the present case. Consider a joint
density of the form

f(x, 0) = [2wlo(x)]'exp(k cos(d — uo — g(8"X))) f(x), (20)

where f(x) is any density on %,. The conditional distribution of © given x is von Mises
VM(uo + g(8"x), «) and independence of X and © corresponds to 8 = 0. A test of
independence for this model may thus be carried out by testing 8 = 0. A multiple correlation
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coefficient between ® and X may be defined by introducing a circular variate &, given by
®, = g(b"X) and defining a correlation p between ® and X by

Panglin = mbax PA(b)>

where pa(b) is some signed angular-angular correlation of ® and ®,. We shall use the
coefficient pr; described in Fisher and Lee (1983). Using pa = pry, it is immediate from the
results of that paper that panin = 0 when 8 = 0 (i.e., under independence of ® and X). In
fact, we have pangin = pr(B) since it can be shown that pp(b) attains its maximum at b =
B. It can also be shown that pangin = 1 if and only if ©® = u + g(8"x), which will happen if
and only if « is infinitely large. ‘

An estimator of pangin 1S or(B), where ppy is the estimator of pr discussed in Fisher and
Lee (1983, 1986; see latter reference for an efficient computational form), and g is the ML
estimator of Section 3.2. Provided that both pr(8) and 8 are jointly asymptotically normal
(they both are marginally asymptotically normal), the results of Pierce (1982) show that
orL(B) is also asymptotically normal.

4. An Example of a Mixed Model

It is not uncommon in practice to observe that dispersions of directions about the mean
direction tend to be larger for values of explanatory variables that are near zero, in addition
to any dependence of the mean direction on these variables. Such is the case for the data
in Figure 2(a), which are drawn from a series of experiments by Chapman (1986), Chapman
and Underwood (1992), and Underwood and Chapman (1985, 1989, 1992) on distances
moved by small blue periwinkles, Nodilittorina unifasciata, after they had been transplanted
downshore from the height at which they normally live (see Table 1). The results of
experiments at two different locations have been combined for the purposes of this example.

(a) Spatial data plot (b) Angular-linear data plot
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Figure 2. (a). Plot of positions of 31 small blue periwinkles, Nodilittorina unifasciata, observed

subsequent to release. The arrow shows the direction of the sea. (b) Alternative display of same data

as plot of direction against distance, with each point replicated by having 2« added to its direction as
in display in Figure 1.
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Table 1
Measurements of direction and distance travelled by 31 blue periwinkles, Nodilittorina unifasciata,
after they had been transplanted downshore from the height at which they normally live

i 1 2 3 4 5 6 7 8 9 10 11
X; (cm) 107 46 33 67 122 69 43 30 12 25 37
O, 67 66 74 61 58 60 100 89 171 166 98

i 12 13 14 15 16 17 18 19 20 21 22

X 69 5 83 68 38 21 1 71 60 71 71

(S} 60 197 98 8 123 165 133 101 105 71 84
i 23 24 25 26 27 28 29 30 31

X; 57 53 38 70 7 48 7 21 27

(S} 75 98 83 71 74 91 38 200 56

The positions shown in the figure correspond to a total of 31 animals, 15 of which were
measured one day after transplantation and the other 16 four days after; plots of the
separate sets indicate comparable behaviour. The arrow shows the approximate direction
(275°) of the sea.

Figure 2(a), and an alternative view [Figure 2(b)] using the previously described display
method of Figure 1, indicate dependence of the mean and the dispersion of direction
moved on distance travelled. Further evidence is provided by the sample value of the
correlation p,ngin described in Section 3.5: pangin = —.316, which has significance probability
.057 using a randomisation test for the hypothesis of no A-monotone dependence of
direction on distance.

Fitting of the full mixed model is helped by initial two-stage fitting of mean direction
and dispersion models. After fitting a regression model for the mean of 0, we obtain as
initial estimates

B=-013, p=097"

The function R defined in (1) is plotted as a function of 8 in Figure 3(a). We see that the
likelihood has two maxima, one rather more pronounced than the other, illustrating the
care that must be taken with starting values as discussed in the previous section. Figure
3(b) shows a plot of residuals from the fitted model, with clear evidence of the dependence
of dispersion of the direction on distance travelled. Figure 3(c) is a von Mises Q-Q plot of
the residuals, showing that the von Mises assumption is already quite tolerable.

Proceeding to the next stage, we consider modelling the dispersion using an exponential
link function. Let §,, ..., 6, denote the residual deviations (unit vectors) after fitting the
first stage of the model. Using the diagnostic plot described at the end of Section 3.3, we
get the display in Figure 3(d). Based on this, the exponential form does not seem unreason-
able. Initial estimates of the parameters o and v of the link function can be obtained by
fitting a straight line to a scatterplot of points, yielding ag = —.36, ¥¢ = .04. A proper fit of
the dispersion model to the residuals then yields & = —.0055, ¥ = .034.

Using as starting values the estimates obtained from the two-stage process, we now fit
the full mixed model, to get ¢ = 117.1, g, = .0458 (leading to an asymptotic 95%
confidence interval of half-width 5.2°), 3 = —.009 with standard error (s.e.) .0025, & = 1.78
(s.e. .25), ¥ = .045 (s.e. .009), and cov(a, ¥) = —.00007. (An alternative to the use of these
standard errors would be to calculate confidence intervals based on a parametric bootstrap
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(a) Likelihood function

(b) Plot of residuals
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Figure 3. (a) Plot of likelihood function for A-monotone regression model fitted to data of Figure

2. (b) Residual directions from A-monotone model fitted in (a). (c) von Mises circular Q-Q plot of
residual directions. (d) Plot to examine possibility of exponential link function to model dispersions
of residual directions.

approach, resampling from the fitted von Mises distribution, but we shall not pursue this
here.) On the basis of the circular Q-Q plot and these standard errors of parameter
estimates, it seems reasonable to conclude that the data may be satisfactorily described by
a model taking account of the dependence of both mean direction and dispersion on
distance moved.
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RESUME

Cet article considére le probléme de la régression d’une variable aléatoire sous la forme d’une réponse
angulaire sur un ensemble de variables explicatives linéaires. On propose une classe générale de
modéles dans lesquels la direction moyenne et la dispersion d’une variable aléatoire de von Mises
sont reliées aux variables explicatives par des fonctions de lien générales. Pour ajuster ces modéles,
on développe des diagnostics appropriés de régression, des procédures d’estimation et de test. On rend
plus claire la signification de la “corrélation” entre une variable angulaire et une variable linéaire, ce
qui conduit a la notion générale d’une corrélation multiple associée au modéle de régression. On
applique les méthodes a un ensemble de données provenant d’une étude de mouvements de
gastropodes.
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