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In BOLD fMRI, stimulus related phase changes have been repeatedly observed in humans. However, virtually
all fMRI processing utilizes the magnitude information only, while ignoring the phase. This results in an
unnecessary loss of physiological information and signal-to-noise efficiency. A widely held view is that the
BOLD phase change is zero for a voxel containing randomly orientated blood vessels and that phase changes
are only due to the presence of large vessels. Based on a previously developed theoretical model, we show
through simulations and experimental human BOLD fMRI data that a non-zero phase change can be present
in a region with randomly oriented vessels. Using simulations of the model, we first demonstrate that a
spatially distributed susceptibility results in a non-zero phase distribution. Next, experimental data in a
finger-tapping experiment show consistent bipolar phase distribution across multiple subjects. This model is
then used to show that in theory a bipolar phase distribution can also be produced by the model. Finally, we
show that the model can produce a bipolar phase pattern consistent with that observed in the experimental
data. Understanding of the mechanisms behind the experimentally observed phase changes in BOLD fMRI
would be an important step forward and will enable biophysical model based methods for integrating the
phase and magnitude information in BOLD fMRI experiments.
© 2009 Elsevier Inc. All rights reserved.
Introduction
Blood oxygenation-level dependent (BOLD) fMRI has been a
popular tool for studying the brain noninvasively. A change in blood
oxygenation level in response to local activation changes the T2⁎

relaxation time, and subsequently changes the MRI signal. The
complex-valued BOLD fMRI signal (Hoogenraad et al., 2001) contains
physiologic information. However, so far, virtually all fMRI studies
have analyzed only the magnitude changes. A standard approach of
analysis is to correlate the time series of themagnitude fMRI datawith
an assumed reference signal (Bandettini et al., 1993). This procedure
completely discards the phase information in the images. If indeed
useful information is being discarded, it would be quite important and
interesting to utilize this information in the phase of the signal.

Due to the susceptibility difference between the intravascular (IV)
blood and tissue, there is a shift in the resonance frequency of the
water protons. A zero phase change from the extravascular (EV) signal
contribution was predicted for a model using cylinders to represent
blood vessels (Bandettini and Wong, 1995; Ogawa et al., 1993;
Yablonskiy and Haacke, 1994). This result depends on the spatial
symmetry of the induced magnetic field. IV signal contribution has
also been considered in Boxerman et al. (1995), Hoogenraad et al.
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(1998), and Menon (2002, 2003). Boxerman pointed out that the IV
spins account for the majority of fMRI signal change on T2⁎-weighted
images at 1.5 T (Boxerman et al., 1995). When the IV and EV signal
contributions are considered together it was concluded that the phase
changes only come from large vessels (Klassen and Menon, 2005;
Menon, 2002, 2003).

Phase changes during BOLD imaging studies have been repeatedly
observed. A number of these reports are concerned with voxels with
larger venous to arterial blood volume fraction (Hoogenraad et al.,
1998; Lee et al., 1995;Menon, 2002). There have also been a number of
different post-processing approaches to utilize the phase data. For
example, phase sensitive fMRI methods have been used to reduce
contaminations from oriented draining veins (Klassen and Menon,
2007; Menon, 2002; Nencka and Rowe, 2007; Tomasi and Caparelli,
2007) although Tomasi and Caparelli's model neglected to consider
the sphere of Lorentz which should be considered in such vascular
models (Chu et al., 1990). All of these methods did not consider
whether task-related phase changes can be observed in regions absent
of macro vessels. Instead, they were interested in filtering out voxels
with macro-vascular contribution. We show that the proposed model
predicts a task-related phase change in regions absent of macro
vessels. Our approach and Menon's model (Klassen andMenon, 2005;
Menon, 2002, 2003) are complementary; thus, in future work we will
explore the combination of those two approaches. Rowe provides a
general complex fMRI model (Rowe, 2005a), and considers a number
of cases of modeling the phase. A task-related phase was considered
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(Rowe, 2005a,b) and the phase is modeled as an arbitrary value by
Rowe and Logan (2005) as well as using a constant value (Rowe and
Logan, 2004). Furthermore, the analysis of phase-only fMRI data has
been improved by adopting an angular regression model (Rowe et al.,
2007). Methods, such as a complex correlation coefficient (Lai and
Glover, 1997), a complex generalized likelihood ratio test (CGLRT)
(Nan and Nowak, 1999; Rowe and Logan, 2004), and independent
component analysis (Calhoun et al., 2002), have also been utilized to
process complex-valued fMRI data. However, most of these papers
focus on data processing and do not address the underlying
mechanism for the phase change.

Recently, a new model for the phase change in BOLD and cerebral
blood volume (CBV)-weighted fMRI was investigated by Zhao et al.
(2007). CBV-weighted fMRI was performed by injecting a super-
paramagnetic IV contrast agent into the brain of a cat. In a related
paper (Zhao et al., 2006), simulations were performed using the CBV-
weighted fMRI phase change data to validate the proposedmodel with
experimental CBV data. However, this model has not been tested in
BOLD fMRI. The magnetic susceptibility effect in BOLD contrast is
much smaller than that produced by exogenous intravascular contrast
agents, making it more difficult to validate the model with experi-
mental BOLD fMRI data. In addition, the results in Zhao et al. (2007)
were obtained in cats, because the CBV-weighted fMRI (as imple-
mented in the paper (Zhao et al., 2007) with MION) cannot be
performed on humans due to its invasive nature. We apply Zhao's
model (Zhao et al., 2007) to BOLD fMRI experimental data for the first
time. Here the signal change depends on the variation in local
magnetic field inhomogeneity caused by the blood oxygenation level
change.

The approaches used in most of previous literature, which model
blood vessels as long cylinders, provide good insights into suscept-
ibility contrast mechanisms. However, as pointed out in Pathak et al.
(2008), their inherent assumptions limit their applicability and
cylinders may not adequately represent the micro-vessel architecture
being studied. The model (Zhao et al., 2007) used in this paper
calculates the magnetic field for arbitrary geometries and spatially
distributed susceptibility change inside the volume of activation
(VOA) during the activation. We demonstrate that even for a voxel
with randomly oriented micro-vessels the phase change is small, of
the order of a degree, but not necessarily zero. This does not preclude
the possibility that a single or more macro vessels in a voxel can also
cause similar phase changes. In addition, with experimental data we
demonstrate that this small phase is measurable in the presence of
noise and can be used to define task-related phase changes. Our intent
is to better understand the observed magnitude and phase changes.
The goal of our paper is to investigate this model through simulations
and by comparison with experimental BOLD fMRI data in humans.

In this paper, we first present the theory for calculating the local
magnetic field seen by a water proton for arbitrary geometries and
inhomogeneous susceptibility changes in the VOA. Computer simula-
tions in both frequency domain (Deville et al., 1979; Koch et al., 2006;
Salomir et al., 2003) and spatial domain of the phase change caused by
a series of different 3-D Gaussian volume-averaged magnetization
changes provide us with insight into the properties and applicability
of the theoretical model. This is done by simulation results from a
simple Gaussian model showing typical quadrupolar phase effects.
Here we define the term “quadrupolar” pattern as the field distribu-
tion with four lobes, two with positive and two with negative values.
Next, we show a slightly more complicated simulation which
produces bipolar patterns. Finally, we directly compare BOLD fMRI
data with simulations and demonstrate that the model is capable of
producing phase patterns quite similar to those observed in a finger
tapping fMRI experiment in humans. Our expectation is that with
better understanding of the observed fMRI signal phase change we
will improve methods for combining phase and magnitude data in
BOLD fMRI experiments.
Theory

The phase change at a position r is given by

Δ/ rð Þ = − γ · TE · ΔB rð Þ; ð1Þ

where γ is the gyromagnetic ratio, TE is the echo time, and ΔB is
the change in magnetic field along B0 at position r and MKS units
are used.

Blood vessels and surrounding EV tissue can be described by a two-
component model (Durrant et al., 2003; Wolber et al., 2000; Ye and
Allen, 1995; Zhao et al., 2007). In each voxel, the volume-averaged
magnetic susceptibility χ can be calculated from the volume-
weighted average of magnetic susceptibilities of the EV tissue χt

and the IV blood χb:

χ = fχb + 1− fð Þχt ð2Þ

where f is the relative blood volume fraction. Subsequently, the
volume-averaged magnetization for a voxel at position r can be
written as

M rð Þ≈Mz rð Þ⌢z≈χ rð Þ · B
→

0

μ0
; ð3Þ

where χ(r) is volume-averaged magnetic susceptibility at this
position, B0 is the external magnetic field, and μ0 is a constant,
representing the vacuum permittivity.

We now discuss the phase change model proposed in Zhao et al.
(2007), which used the Lorentz sphere concept for its derivation. The
Lorentz sphere concept was originally introduced in the electrostatic
and magnetostatic treatment of microscopic fields (Feynman et al.,
1975; Lorentz, 1915). It can be used to calculate nuclear magnetic
resonance (NMR) shifts induced by magnetic susceptibility changes
(Chu et al., 1990; Dickinson, 1951; Haacke et al., 1999; Levitt, 1996;
Springer, 1994); and in the case of a heterogeneous system like blood
(Durrant et al., 2003; Wolber et al., 2000; Ye and Allen, 1995)
extended the sphere of Lorentz to the size of ∼20 μm to include a
number of the blood cells and tissue molecules, much larger than the
classic sphere of Lorentz size (on the order of several intermolecular
distances). Furthermore, this conceptual device has been adapted to
the system consisting of magnetic susceptible blood vessels and EV
tissue (Zhao et al., 2007; Zhao et al., 2006). The size of the sphere, in
this case, is at the sub-millimeter to millimeter scale (Zhao et al.,
2007; Zhao et al., 2006). In a BOLD fMRI experiment, the blood
susceptibility during activation is modulated by a decrease in
paramagnetic deoxyhemoglobin concentration. The magnetic field
change at position r can be written as (Zhao et al., 2007)

ΔB rð Þ = ΔBd rð Þ + μ0

3
ΔM rð Þ +

X
ΔBb rð Þ; ð4Þ

where the first term is change of the demagnetizing field (Bd(r))
caused by vessels inside the VOA but outside the Lorentz cavity. And
the demagnetizing field is given by Reitz et al. (1979)

Bd rð Þ = 1
4π

Z Z
S0

χin rVð Þ− χout rVð Þð Þ B0 · nð Þ r − rVð Þ
jr−rVj3 dsV

− μ0

4π

Z Z Z
V

jV· M rVð Þð Þ r − rVð Þ
jr−rVj3 dvV ð5Þ

where χin and χout are the volume-averaged susceptibility inside and
outside the VOA surface, respectively. S0 and V indicate the surface
and volume of the VOA, respectively; r′ is the position on the surface
for the surface integration term (the first integration) or within the
VOA (excluding the Lorentz sphere) for the volume integration term
(the second integration); χin(r′) and χout(r′) are the volume-
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averaged susceptibility inside and outside the surface at position r′,
respectively; n is the unit normal vector of surface at position r′; ▿ is
the divergence operator. The second term of Eq. (4) is the change of
the Lorentz cavity field μ0

3 M rð Þ� �
from the magnetization distribution

on the Lorentz sphere surface, and the last term of Eq. (4) is the
change of field caused by vessels inside the Lorentz cavity (Bb(r)). The
sum of the contributions from those local blood vessels to the fMRI
phase change in a voxel with large vessels absent is essentially zero
because of the spatial symmetry of the induced magnetic field in EV
water (Ogawa et al., 1993; Yablonskiy and Haacke, 1994) and
randomly orientated micro-vessels (Menon, 2002, 2003). As the
result, the last term of Eq. (4) disappears. In addition, because
effectively only the component of the field change along B0

contributes to phase change, then we have ΔB rð Þ≈ΔBz rð Þ⌢z. Denote
ΔBdz as the z component of ΔBd. Finally, Eq. (4) becomes,

ΔBz rð Þ = ΔBdz rð Þ + μ0

3
ΔMz rð Þ: ð6Þ

If we know ΔMz(r) or, equivalentlyχ(r), then the above equation
can be used to calculate ΔBz(r), and subsequently from Eq. (1) the
phase change.

Next, we show the approximations made to evaluate Eq. (6) in the
spatial domain for this specific application. In fMRI experiments, by
definition, the activation is negligible at the surface of the VOA
denoted by S0; subsequently, the susceptibility change at the surface
S0 is negligible, which implies that

Δχin = Δχout: ð7Þ

Thus, the first term in the demagnetizing field expressed in Eq. (5)
disappears. Now let us focus on the second term of the demagnetizing
field. In our model, M(r) is parallel to the z axis (Eq. (3)), which
implies that Mx=My=0. Thus we have

jV· ΔM rVð Þ = AΔMz rVð Þ
AzV

z ; ð8Þ

and the demagnetizing field becomes

ΔBdz rð Þ = − μ0

4π

Z Z Z
V

AΔMz rVð Þ
AzV

z − zV
jr−rVj3 dvV: ð9Þ

Finally, the magnetic field change at r in Eq. (6) can be simplified as,

ΔBz rð Þ = μ0
ΔMz rð Þ

3
− 1

4π

Z Z Z
V

AΔMz rVð Þ
AzV

z − zV
jr−rVj3 dvV

2
4

3
5: ð10Þ

Eq. (10) is expressed in the spatial domain but it can be calculated
in a simpler manner in the frequency domain. The frequency domain
method (Deville et al., 1979; Koch et al., 2006; Salomir et al., 2003)
shows that given a susceptibility distribution, the resultant magnetic
field perturbations can be calculated by

ΔBz rð Þ = B0 · FT−1 1 = 3− K 2
z = K2

� �
· FT χ rð Þð Þ

h i
: ð11Þ

where FT and FT−1 indicate the Fourier transform and inverse Fourier
transform, Kz is the z component of k-space and K2=Kx

2+Ky
2+Kz

2.

Methods

fMRI experiments

All experiments were performed on a 3T Siemens TIM Trio system
with a 12-channel radio frequency (RF) coil. The data is combined
from the multiple channels using coil sensitivity maps obtained
automatically in a separate low resolution calibration experiment. The
fMRI experiment used a standard Siemens gradient-echo EPI sequence
modified to store real and imaginary data separately. We used a Field-
of-View (FOV)=240 mm, Slice Thickness=3.5 mm, Slice
Gap=1 mm, Number of slices=32, Matrix size=64×64,
TE=29 ms, and TR=2 s. The fMRI experiment used a block design
with periods of 30 s off and 30 s on. Nine healthy subjects participated
in the experiment. The subjects tapped the fingers of their right hand
during the on period. There were five and a half cycles, starting with
off and ending with an off period. We collected 15 whole head fMRI
images during each ‘on’ or ‘off’ period. The total experiment time was
5.5 min.

Preprocessing

Datawere preprocessed using the SPM5 software package (http://
www.fil.ion.ucl.ac.uk/spm/software/spm5/). The phase images were
unwrapped by creating a time series of complex images (real and
imaginary) and dividing each time point by the first time point, and
then recalculating the phase images. Further phase unwrapping was
not required. Data were motion corrected using INRIalign—a motion
correction algorithm unbiased by local signal changes (Freire et al.,
2002). The transformation obtained by motion correcting the
magnitude image was then applied to the phase images. Both
magnitude and phase images were then spatially smoothed with a
10×10×10 mm3 full width at half-maximum Gaussian kernel, and
spatially normalized into the standardMontreal Neurological Institute
space. Following spatial normalization, the data (originally acquired at
3.75×3.75×4.5 mm) were slightly up-sampled to 3×3×3 mm,
resulting in 53×63×46 voxels. Motion correction and spatial normal-
ization parameters were computed from themagnitude data and then
applied to the phase data. Activation maps were computed using the
multiple regression framework within SPM5 in which regressors are
created from the stimulus onset times and convolved with the
standard SPM hemodynamic response function (HRF) which is a sum
of two gamma functions, one to model the activation, the other to
model a small post stimulus undershoot (Friston et al., 1995). One
regressor for tapping versus rest was used in addition to a constant
regressor modeling the mean. A contrast was created for each
individual subject for finger tapping versus rest. To compute the
group maps, a second level analysis was performed using the
activation maps from each individual subjects and entering them
into a one-sample t-test.

Simulations

We performed a computer simulation in both frequency domain
and spatial domain of the phase change in order to better understand
the theory described above. For our example, we assume that in the
VOA the volume-averaged susceptibility or magnetization change
along the direction of B0 is 3D Gaussian. Then, the unitless volume-
averaged susceptibility change is written as,

Δχ rð Þ = Ck exp −1
2

x2

σ2
x
+

y2

σ2
y
+

z2

σ2
z

" # !
; ð12Þ

where Ck is a scaling constant. We choose the value of Ck based on
parameter values from the literature. We define Δχ′ as the suscept-
ibility difference between completely deoxygenated and completely
oxygenated red blood cells (0.264 ppm in CGS units (Spees et al.,
2001)) with a hematocrit level of 0.4 (Guyton and Hall, 1996), and
oxygenation level Y is the fractional oxygenation in the red cells with
ΔYcap=0.08 (Hoogenraad et al., 2001; Hoogenraad et al., 1998). Then
for a blood volume fraction f of 0.05 and ignoring the cerebral blood
volume change, Ck=− f·ΔYcap·4π·Δχ′·Hct, as a result, Ck is
approximately −5.3×10−9.

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/


Fig. 1. Simulation of phase change corresponding to 3D Gaussian volume-averaged susceptibility change for the cases of σx:σy:σz=1:1:1, 1:1:2, 2:2:1 and 2:2:1 rotated counter-
clockwise around the x-axis by π/3, respectively.
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However, for real fMRI experiments, we usually do not have
information about the volume-averaged susceptibility Δχ(r) or
magnetization changeΔM(r), which poses a difficulty for us to simulate
the phase change based on Eqs. (1) and (6). In order to test our phase
model, we make the following assumptions to approximately calculate
the change in magnetization from the relative change in BOLD signal.
We define S as the magnitude of the signal, and define R2⁎ as the
relaxation rate. Assuming the change in R2⁎ is small and the proton spin
density remains constant, for a fixed TE we have (Hoogenraad et al.,
2001)

ΔS
S

i − TE · ΔR T
2 : ð13Þ

Under the condition that TE is greater than the characteristic time
(1/δω), R2⁎ is a linear function of f(χb−χt) (Yablonskiy and Haacke,
1994),

ΔR T
2
fΔ f χb − χtð Þ½ �uΔχ rð Þ: ð14Þ
Fig. 2. Considering the noise, the phase of quadrupolar pattern becomes bipolar for an ex
susceptibility change has σx:σy:σz=6:6:8 with the amplitude of 0.5 and another half has σx:
clockwise around the x-axis by π/5.
From Eqs. (3), (13), and (14), we conclude that the magnitude
change is approximately linearly proportional to ΔM(r) and can write

ΔS
S

= A · ΔM rð Þ; ð15Þ

where A is a scaling constant.
Three simulations were performed as follows. 1) First, we

investigate the properties of phase change resulting from the
theoretical model and understand the dependence of the phase
change patterns on the spatial distribution and orientation of the
susceptibility distribution. We take 3D Gaussian as an example of
susceptibility distribution and show expected phase change patterns
for a 3D Gaussian susceptibility distribution. Note that magnetization
and susceptibility distributions are proportional. 2) However, in our
fMRI BOLD experimental results the patterns tend to be bipolar. Next,
simulation shows how a Gaussian susceptibility distribution can be
combined and modified to convert a quadrupolar to approximately a
bipolar pattern. We do not claim that the chosen distribution is the
ample of asymmetric 3D Gaussian volume-averaged susceptibility change. Half of the
σy:σz=6:6:1 with the amplitude of 1. The total susceptibility change is rotated counter-
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only case that will produce the bipolar phase change; rather we
wanted to use any simple model to test whether it was possible to
produce a bipolar phase (which is not intuitive). 3) Finally, we directly
compare experimental fMRI phase and magnitude data to simulation
results and demonstrate that the model is capable of producing
patterns quite similar to those observed in amotor finger tapping fMRI
data set.

Results

In Fig. 1, we show expected phase change patterns for a 3D
Gaussian volume-averaged susceptibility distribution from computer
simulations. This is used to understand the dependence of the phase
change patterns on the spatial distribution and orientation of the
susceptibility distribution. These simulations show the distribution of
the phase change to be typically quadrupolar, with the intensity of the
positive and negative variations being dependent on the spatial
distribution, shape and the orientation of the Gaussian distribution.
Fig. 3. Magnitude (M) and phase (P) changes (t-values) for single subjects A, B, and C togeth
subjects show the t-value ranges. The color bar for the simulated results indicates the relat
However, in our BOLD fMRI experimental results the patterns tend to
be bipolar (examples are shown in Figs. 3 and 4). Hence, next we
wanted to evaluate whether our model was capable of producing
bipolar patterns. In Fig. 2, we show that a quadrupolar phase pattern
can look like a bipolar pattern by combining parts of two Gaussian
distributions and thresholding the results to suppress low signal
intensity noisy regions. Finally, we directly compared our simulated
results to the patterns observed in real fMRI data by first approximat-
ing the phase pattern observed in the fMRI data and inverting through
our model to produce the corresponding susceptibility pattern. These
results are shown in Fig. 3. Detailed results are as follows.

Fig. 1 shows the simulation results of phase change corresponding
to 3D Gaussian volume-averaged susceptibility change for the cases of
σx:σy:σz=1:1:1, 1:1:2, 2:2:1 and 2:2:1 (Eq. (12)) rotated counter-
clockwise around the x-axis by π/3, respectively. Both the frequency
domain and spatial domain give approximately the same results. For
the value of Ck selected above, the resulting maximum simulated
phase change for all of these configurations is in the order of 1°.
er with the susceptibility and phase change of simulated results. The color bars for the
ive strength of susceptibility and phase change.
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Depending on the spatial distribution of the susceptibility changes in
the VOA and the angle of the cut plane of the magnetic field change,
the resulting phase shows patterns of dominantly positive, dom-
inantly negative, or combinations of positive and negative phase
changes due to the volume-averaged magnetization and demagneti-
zation effects. More specifically, when the susceptibility change is a
sphere, the resulting phase is quadrupolar, which coincides with
Haacke et al. (1999); when the long axis of the susceptibility change is
parallel to the external magnetic field B0, the volume-averaged
magnetization effect dominates and the resulting phase change
tends to be dominantly positive, which agrees with the results in
Wolber et al. (2000), and Zhao et al. (2007); when the long axis of the
susceptibility change is perpendicular to the external magnetic field
B0, the demagnetization effect plays a big role, the resulting phase
change becomes more negative; in fact, the absolute value of the
negative lobe of the phase is greater than the positive lobe of the
phase. For the case of σx:σy:σz=2:2:1 and the distribution of
susceptibility change is rotated counter-clockwise around the x-axis
by π/3, the resulting phase change is rotated and twisted. The positive
and negative lobes are no longer 90° from each other. The resulting
phase change varies according to the spatially distributed volume-
averaged susceptibility change.

Fig. 2 shows in the left panel that given an asymmetric 3D
distribution of susceptibility change constructed by taking a part from
a Gaussian distribution with σx:σy:σz=6:6:8 and amplitude 0.5 and
another part with σx:σy:σz=6:6:1 and amplitude 1. The total
susceptibility change is rotated counter-clockwise around the x-axis
by π/5. For this example, the resulting phase has a pattern of
asymmetric quadrupoles. Considering the real fMRI data are noisy, we
threshold both susceptibility change and phase change at 0.45 and 0.4,
respectively. Here, the thresholds are chosen in a way that the ratio of
threshold over the maximum is closer to that of the real fMRI data.
After the threshold is applied, the asymmetric quadrupolar phase
appears bipolar.

In Fig. 3, the first three panels show the magnitude and phase
change of the results (t-value) for subject A, subject B and subject C,
respectively. The panel in the lower right corner of the figure shows
the scaled susceptibility change and phase change of simulated
results. Here, we assume the magnitude change is approximately
linear to the volume-averaged susceptibility change. For the three
Fig. 4. The axial slices of magnitude and phase
subjects, the thresholds were all greater than t=8 (pb1×10−13),
which is highly significant. The highest magnitude change was
observed in the motor cortex. The phase changes all show the bipolar
patterns. Further observation of Fig. 3 indicates the peak of the
magnitude change is not located where the phase change peaks;
instead, it is closer to the sign change of the phase change. The
observations above also hold true for the other subjects shown in
Fig. 4. The simulations to match the observed fMRI phase/magnitude
changes were conducted by modeling the phase change due to a
susceptibility distribution which resembles the experimentally
observed BOLD fMRI magnitude change pattern, and the resulting
phase change matches the experimentally observed bipolar phase
patterns of fMRI after thresholding. The simulation results in the
lower right corner of Fig. 3 show that our model can closely match
phase and magnitude change patterns observed experimentally.

Fig. 5 shows the spatially unsmoothed and smoothed phase and
magnitude change time courses from a single voxel (the one showing
maximal phase change) for subject D, who is representative. The time
evolutions of the phase andmagnitude change are similar to each other,
suggesting that both changes originate from the same source, the
deoxyhemoglobin-induced susceptibility change. The measured voxel
phase change (unsmoothed) is around 1° (0.017 rad), on the same order
of 1° in the simulation results as shown in Figs.1 and 2. They are both on
the same order of a measured voxel phase change (no large vessel
present) 0.028 rad or 1.6° in Menon (2002). While in the voxels with
large vessels present, the phase change is relatively larger (for example,
0.085 rad in Menon (2002)). The spatially smoothed phase change for
the same voxel is more reduced than the spatially smoothedmagnitude
change since the adjacent negative and positive phase changes can
cancel. In this paper, we focus on modeling the phase change; in the
future, a ‘smart smoothing’ approach would appear to be more
important for phase change. For completeness, we present unprocessed
data (no smoothing and no spatial normalization) in Fig. 6. Here we use
the first timepoint of the EPI data for the anatomical underlay.

Although, the principal cause of magnitude and phase change in
the BOLD experiment is the susceptibility change, bothmagnitude and
phase also depend on other factors, which includes diffusion, presence
of large vessels, and physiological noise. In addition, these factors
affect the phase and magnitude signal in different ways. We are
collecting data from a 12 channel RF coil and combining them
change (t-value) for single subjects D–I.



Fig. 6. Unprocessed magnitude and phase data (no smoothing and no spatial normalization) for nine subjects A–I.

Fig. 5. Spatially unsmoothed and smoothed phase and magnitude change time courses for subject D.
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(internally by Siemens) in an optimal manner based on coil sensitivity
profiles. Under these conditions, the measurement noise in the real
and imaginary channels can be correlated. Thus, methods of properly
combining magnitude and phase change in the presence of noise and
their dependence on other previously discussed factors will prove to
be useful to further improve estimates of the susceptibility change.

Discussion

We begin with Zhao's model (Zhao et al., 2007) and calculate the
magnetic field change seen by a water proton at position r based on
the frequency domain method (Deville et al., 1979; Koch et al., 2006;
Salomir et al., 2003) and the spatial domain method described above.
Zhao's model shows that for a random distribution of micro-vessels
we can do the analysis in terms of volume-averaged magnetization
or susceptibility. Under these assumptions, we can do an analysis
without the details of intra-voxel susceptibility distribution. Eq. (10)
suggests that calculation of the magnetic field from magnetization
depends on the demagnetizing field given by the volume integral
and a Lorentz cavity field. This interpretation gives additional insight
on the dependence of magnetic field change on the susceptibility
distribution. The change in the Lorentz cavity field is due to the
change in the volume-averaged magnetization at the measured
point, while the derivatives of this volume-averaged magnetization
at all other points in the direction of B0 contribute to the change in
the demagnetizing field. Depending on the relative strengths of these
two fields, the net phase change will bear a dominantly positive,
dominantly negative or the combination of positive and negative
sign.

We next calculate susceptibility distributions that can predict the
phase patterns observed experimentally in BOLD fMRI. We beginwith
a Gaussian spatial distribution for susceptibility and show that the
phase pattern it generates can be quadrupolar. The phase is zero at the
centre of the Gaussian distribution, where the susceptibility distribu-
tion is symmetric, and not zero in surrounding regions, where the
susceptibility distribution is not symmetric. After combining more
than one Gaussian distribution and suitable thresholding, we can
convert a quadrupolar phase pattern to approximately a bipolar
pattern. Finally, we simulate the phase change due to a susceptibility
distribution which approximates the real fMRI magnitude change
pattern, and the resulting phase change matches the experimentally
observed bipolar phase patterns of fMRI after thresholding. This result
shows that even though the spatial patterns of the magnitude and
phase change in an fMRI experiment are not similar, they can be
analyzed jointly if a model is used to link a change in susceptibility to a
change in the phase and magnitude of the fMRI signal. Also, in the
presence of noise, there can be voxels where a phase change is
detectable and a magnitude change signal is not. This is a potential
benefit of using the phase. Besides, the measurement noise in the
phase and magnitude being statistically independent for small SNR
and approximately independent for moderate to large SNR (Lei and
Wehrli, 2007) is another reason for their joint analysis. Thus, the joint
analysis will not only improve spatial localization of activation but
may also potentially let us infer intra-voxel properties, such as the
presence of large vessels in a voxel. In future research, wewill develop
methods to infer the activation information of Δχ(r) by fitting both
the magnitude and phase data to the proper magnitude model and
phase model.

In the simulations discussed here we have ignored details of intra-
voxel susceptibility distribution and diffusion effects. The analysis was
done in terms of volume-averaged magnetization, which is accurate
for a random distribution of micro-vessels. In the general case, such as
the presence of large vessels, the large vessels' orientation and
position will play a role in the phase change. As mentioned earlier in
the paper, phase sensitive fMRI methods have been used to reduce
contaminations from oriented large veins (Klassen and Menon, 2007;
Menon, 2002; Nencka and Rowe, 2007; Tomasi and Caparelli, 2007).
Those methods state that during the activation only the large oriented
vessels produce phase changes and for randomly oriented micro-
vessels, the phase change is zero. However, the approach used in our
paper predicts that a voxel with randomly oriented micro-vessels can
produce a non-zero phase change of the order of a degree (0.017 rad).
Those methods can be used to reduce activation contributions from
well oriented draining vessels. In contrast, the phase model we utilize
can be used to extract useful physiologic information such as task-
related activation (susceptibility change) from phase change data. Our
approach and thosemethods are complementary; thus, in futurework
we will explore the combination of them together. On the other hand,
in order to test the phase model in the real BOLD fMRI experiments,
we draw upon Yablonskiy's result showing that, in the absence of
diffusion, the magnitude change is approximately linearly propor-
tional to the change in volume-averaged magnetization ΔM(r) so that
we can approximately calculate the change in volume-averaged
magnetization from the relative change in BOLD magnitude signal.
The conditions when diffusion can be neglected have been discussed
by Yablonskiy and Haacke (1994) and the simulation can follow
Martindale's method (Martindale et al., 2008), where the frequency
domain method is used to calculate the magnetic field distribution
from a susceptibility distribution.

Venograms will be collected in the future to detect the presence of
large vessels and incorporate their effect in simulations. In addition,
wewill collect physiologic data to determine the relationship between
the phase signal and physiological signals, similar to what is done for
magnitude imaging (Glover et al., 2000; Kruger and Glover, 2001).

In this paper, we have demonstrated that the Lorentz sphere model
for BOLD fMRI data from human subjects predicts phase change
patterns observed in these experiments. At this stage, we have
qualitatively shown that the model is capable of producing the
observed patterns. Quantitative fitting to predict change in blood
susceptibility will be pursued in future work. Our approach provides
strong motivation for the development of additional methods for
utilizing the phase information in fMRI BOLD data.
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