Marquette University
Daniel B. Rowe, Ph.D.
MSCS 6960: Seminar in Math/Stats/Comp - Complex-Valued FMRI
We will be reading seminal and modern journal articles in fMRI analysis.
Course SyllabusPapers Readings List: * indicates background paper Topic 1
Bandettini, et al.: Time course EPI of human brain function during task activation, MRM 25:390-397, 1992.
Kwong et al.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. PNAS 89:5675-5695, 1992. (Bandettini 92 submitted before Kwong 92.)
*Ogawa et al.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868-9872, 1990.
Topic 2
Bandettini et al.: Processing strategies for time-course data sets in functional MRI of the human brain MRM 30:161-173, 1993.
Cox et al.: Real-time functional magnetic resonance imaging. MRM 33:230-236, 1995.
Topic 3
Friston et al.: Analysis of fMRI time-series. HBM 1:153-171, 1994.
Friston et al.: Analysis of fMRI time-series revisited. NIMG 2:45-53, 1995.
Worsley and Friston: Analysis of fMRI time-series revisited - Again. NIMG 2:173-181, 1995.
Topic 4
Rowe and Logan: A Complex way to compute fMRI activation. NIMG 23:1078-1092, 2004.
*Rice: Mathematical analysis of random noise. Bell Syst. Tech. 23:282, 1944.
(Reprinted by N. Wax, Selected papers on Noise and Stochastic Process, Dover Publication, 1954. QA273W3).
*Gudbjartsson and Patz: The Rician distribution of noisy data. MRM 34:910-914, 1995.
*Lai and Glover: Detection of BOLD fMRI signals using complex data. Proc. ISMRM, 5:1671, 1997.
*Nan and Nowak: Generalized likelihood ratio detection for fMRI using complex data. IEEE-TMI 18:320-329, 1999.
*Scharf and Friedlander: Matched subspace detectors. IEEE-TSP 42:2146–2157, 1994.
Topic 5
Rowe: Parameter estimation in the magnitude-only and complex-valued fMRI data models. NIMG 25:1124-1132, 2005.
*Review Cramer-Rao lower bounds.
Rowe and Logan: Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model. NIMG 24:603-606, 2005.
Topic 6
Menon: Postacquisition Suppression of large-vessel BOLD signals in high-resolution fMRI. MRM 47:1-9, 2002.
Nencka and Rowe: Reducing the unwanted draining vein BOLD contribution in fMRI with statistical post-processing methods. NIMG 37:177-188, 2007.
Bodurka et al: Current-induced magnetic resonance phase imaging. JMR 137:265-271, 1999.
*Chow et al.: Investigating direct detection of axon firing in the adult human optic nerve using MRI NIMG 30:835-846, 2006.
Topic 7
Rowe et al.: Characterizing phase-only fMRI data with an angular regression model. JNM 161:331-341, 2007.
*Marsaglia: Ratios of normal variables and ratios of sums of uniform variables. JASA 60:193-204, 1965.
*Johnson and Wehrly: Some angular-linear distributions and related regression models. JASA 73:602-606, 1978.
*Fisher and Lee: Regression models for an angular response. Biometrics 665-377, 1992.
Topic 8
Rowe: Modeling both the magnitude and phase of complex-valued fMRI data. NIMG 25:1310-1324, 2005.
*Rowe and Hernandez: An analytic magnitude and phase fMRI Activation model applied to ASL, Proc ISMRM 17:1716, 2009.
*Hernandez-Garcia, Vazquez, Rowe. Complex analysis of arterial spin labeling based fMRI signals. MRM 62:1597-1608, 2009.
Topic 9
Lee et al.: Complex data analysis in high resolution SSFP fMRI. MRM 57:905-917, 2007.
Rowe: Magnitude and phase signal detection in complex-valued fMRI data. MRM 62:1356–1357 2009.
Lee et al.: Combining complex signal changes in functional MRI. MRM 62:1358-1360, 2009.
Topic 10
Hahn et al.: Improving robustness and reliability of phase-sensitive fMRI analysis using Temporal Off-resonance Alignment of Single-echo Timeseries (TOAST). NIMG 44:742-752, 2009.
*Jezzard and Balaban: Correction for geometric distortion in echo planar images from B0 field variations. MRM 34:65-73, 1995.
Topic 11
Rowe et al.: Signal and noise of Fourier reconstructed fMRI data. JNM 159:361-369, 2007.
*Review FTs and multivariate transformations.
Topic 12
Nencka et al.: A Mathematical model for understanding the statistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI. JNM 181:268-282, 2009.
Topic 13
Nencka et al.: A Mathematical Model for Understanding the STatistical effects of Time-series (AMMUST-T) preprocessing on observed voxel measurements in fcMRI and fMRI. In Submission, 2010.
Topic 14
Rowe et al.: Functional MRI brain activation directly from k-space. MRI 27:1370-1381, 2009.
Topic 15
Zhao et al.: Sources of phase changes in BOLD and CBV-weighted fMRI. MRM 57:520-527, 2007.
Feng et al.: Biophysical modeling of phase changes in BOLD fMRI. NIMG 47:540-548, 2009.
*Arja et al.: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks. NIMG 49:3149-3160, 2010.