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utilization of conditional independence and proportionality more accessible to
applied researchers.

Finally, Chapter 8 provides useful approaches for testing pieces of a sim-
ulator and revisits the issue of formal model comparison. Here an importance
sampling estimator, the candidate’s formula, and reciprocal importance sam-
pling are discussed. Example 8.2.3 applies the candidate’s formula to a normal
mixture linear model. The suggested approximations based on the MCMC out-
put hint at the fact that label switching may be a concern in this case. Then prior
and posterior predictive analyses are introduced using examples.

The book concludes with an important discussion of how to deal with the
fact that different clients may have different priors. Two solutions are offered.
First, the complete MCMC output, including likelihood and prior evaluations,
could be transferred to enable importance sampling by the client. Second, the
investigator could report density ratio robustness bounds. However, both ap-
proaches do not seem to scale easily to more complicated hierarchical mod-
els.

I enjoyed reading Contemporary Bayesian Econometrics and Statistics and
think it would make a great textbook for a Bayesian course at the graduate level
in finance, business, marketing, and the social sciences. I note that Geweke is
working on a solution manual to the exercises in the text. The book is also a
great reference for the growing number of people who have been using MCMC
methods without a firm grounding in the theory of Bayesian inference.

Thomas OTTER

The Ohio State University
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This book develops, clearly and in full detail, a Bayesian approach to
a multivariate inverse problem called blind source separation. This problem
has important applications in diverse areas of science and engineering, in-
cluding image processing, remote sensing (hyperspectral imaging), acoustics,
radar and sonar reconstruction, economics and finance, and biomedical imag-
ing [electroencephalography, magnetoencephalography, and functional mag-
netic resonance imaging (fMRI)]. Most of these applications involve large or
high-dimensional datasets.

The motivating example in the book is the famous cocktail party problem.
The conversations of guests at a party are recorded by microphones scattered
about the room, amidst background noise and other known signals. The prob-
lem is to reconstruct what each guest said. In mathematical terms, the basic
version of the problem begins with m distinct sources producing temporal sig-
nals represented by a vector of time series s(t) = (s1(t), . . . , sm(t)). The source
signals are not observed directly (thus the word “blind”), and in general, m is
unknown. We do observe the output, x(t) = (x1(t), . . . , xn(t)), of n sensors,
each of which records a noisy mixture of the source signals; thus we can write

x(t) = A(s, t) + ε(t). (1)

An essential feature of the problem is that the mixing function A is unknown.
In the cocktail party problem, for instance, the sound received by a microphone
depends on the positions in the room of the various speakers and on the acoustic
configuration of the room. For many realistic systems, A will be nonlinear, will
mix signals produced at different times (consider delays and echoes), and can
vary over time. But a natural starting point is to take A to be linear, temporally
homogeneous, and instantaneous in the sense that it mixes source signals only
at a specific time, in which case we can write

x(t) = As(t) + ε(t). (2)

In form, it seems that we have a linear model, but with a critical difference.
Both s and A are unknown and of interest, s for recovering the sources and
A for understanding the system. Because of the way in which they combine
in the model, these quantities are not identifiable without further structural as-
sumptions.

Although the book does not discuss it, an extensive literature in signal
processing has built up around this problem. Most of the published approaches
achieve estimability of A and s by imposing hard constraints on the source
signals (e.g., independence, number, sparsity), mixing matrix (e.g., time invari-
ance, rank, orthogonality), or noise process. Solutions are obtained through iter-
ative optimization of a statistical or information-theoretic criterion function in a
classical framework. Independent components analysis (introduced by Heurault
and Jutten 1986 and developed vigorously since) is a prominent example in
which one constructs a linear transform W such that the columns of y = Wx
are as independent as possible as measured by the mutual information between
y and x. [In practice, this is approximated with a related criterion such as In-
fomax (Bell and Sejnowski 1995).] There are two different views of source
separation that manifest in this literature: an inference problem of finding the
unknown A and s and a representation problem of decomposing x into com-
ponents with some useful properties. Many of the signal-processing methods
solve the latter problem but still apply when the assumptions of the inferential
problem hold.

In contrast, Rowe’s book focuses directly on a Bayesian approach to the in-
ferential problem. One advantage of the Bayesian approach in this context is
greater flexibility in the constraints imposed on the model. Across increasingly
complex versions of the source-separation problem, the book presents several
basic models with standard priors (conjugate and a generalized form) and for
each offers various approaches to inference from Bayes estimators based on
posterior means or modes to approximate posterior expectations via Gibbs sam-
pling. The emphasis is on models that are straightforward to understand and
compute. Throughout the book, the derivations are detailed and complete, with
few steps skipped, making it easy for the reader to follow the mathematics.
The notation is consistent and generally well chosen. The material is clearly
presented, although the treatment is light on discussion and conceptual inter-
pretation.

Although developing Bayesian models for the source separation problem is
the book’s ultimate focus, Multivariate Bayesian Statistics builds to this from
an introductory discussion of Bayesian methods. After motivating the source
separation problem with the cocktail party metaphor, the first third of the book
(Chaps. 2–7) covers the basics of statistical distributions (Chap. 2), Bayesian
inference (Chaps. 3 and 6), prior distributions (Chaps. 4 and 5), and linear
regression (Chap. 7). Several methods of assigning prior distributions are dis-
cussed briefly with an emphasis on conjugate priors and a simple generalization
thereof, because these get heavy use later in the book. Chapter 5, on hyperpara-
meters, emphasizes using the form of the posterior with conjugate priors to mo-
tivate hyperparameter assignment from previous data. Chapter 6, on inferential
methods, covers posterior means and modes as estimators, direct integration to
derive posterior distributions, iterated conditional modes, and Gibbs sampling.
The description of Gibbs sampling is clear, but no introductory references are
given to lead the reader to a more complete treatment, nor is any mention made
of other Markov chain Monte Carlo techniques. Finally, as a prelude to the mod-
els covered later in the book, the derivation of Bayesian regression estimators
and posteriors is given in complete detail in Chapter 7.

Overall, this introductory material is clearly and concisely written but neces-
sarily terse given space limitations. Throughout the book, derivations are com-
plete. Nonetheless, for a reader not familiar with these ideas, the presentation
may be sufficient to follow the remainder of the book but not be sufficient to
build a conceptual understanding of the material. The handful of exercises at
the end of each chapter throughout this part tend to be basic and mechanical,
rarely going beyond standard cases, yet perhaps useful as a check on com-
prehension. Guidance or annotated references to introductory sources for this
material would be a useful addition to the text.

As a prelude to the source separation problem, the next part of the book
(Chaps. 8 and 9) offers detailed derivations of various Bayes estimators for
multivariate regression and factor analysis. The structure of these chapters is
the same: a description of the notation and likelihood, the derivation of posteri-
ors or estimators under conjugate priors, a similar derivation under generalized
conjugate priors, and a small data example. The derivations are complete and
easy to follow, and the exercises lead the reader to derive special cases. One
way in which these chapters could be used would be to ask students to derive
various posterior quantities under these models before reading the text, then
letting the text serve as an extended set of hints and solutions.

Chapters 10 and 11 follow much the same template with the source separa-
tion problem, first with all source signals unknown and second with a mixture
of known and unknown source signals. Chapters 13 and 14 extend the models
to incorporate phenomena that are present in many realistic systems, such as
delays, time-dependent mixing, and correlation among the source vectors. In
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these chapters, the models’ likelihoods and priors are the same as those ear-
lier in the book. This has the advantage of concreteness and allows detailed
derivations, although other models and priors may be of interest. What is left
unaddressed is a comparison between the Bayesian approach and the iterative
approaches mentioned earlier. It should be possible to construct realistic situa-
tions that demonstrate the advantages of the Bayesian models. This would also
be a useful framework within which to evaluate the sensitivity of the results to
the model assumptions.

The use of source separation algorithms, particularly independent compo-
nents analysis, has recently become a popular approach for analyzing fMRI
data. These data offer a rich testbed for these methods, because there is sub-
stantial prior information about the response function being modeled and be-
cause there is interesting spatial structure to account for. Chapter 12 gives a
case study applying the Bayesian methods developed earlier in the book to
simulated and real fMRI experiments. The results are promising. The book’s
description of fMRI experiments will be clear to a nonspecialist. The mod-
els here can simultaneously account for the main sources of variation in the
temporal data, including trends and physiological covariates that are usually
“removed” during preprocessing. The extended models of Chapters 13 and 14
would be appropriate here to account for additional features in the signal, but
these would be straightforward to implement. An advantage of this approach
is that it provides a data-adaptive method for estimating response functions;
commonly used methods either restrict to a simpler parametric model or use a
separate regressor at each time point. Careful choice of a general prior for the
source signals might further improve the fit.

Taken as a whole, the material in this book is technically detailed but nar-
row in scope, focusing on basic models and Bayesian methods. The writing is
clear but does not elaborate on concepts and variations. Given the book’s style
and strengths, it would be appropriate for several audiences. For practitioners
in an application area (e.g., fMRI) who want to study or implement methods
for the source separation problem, this would serve as a useful reference be-
cause it presents all necessary technical detail. For statistics graduate students
in a class on multivariate analysis or inverse problems, this could serve as a
supplementary text, although it would need to be accompanied by material on
other methods for the problem. In this case, most of the introductory mater-
ial through Chapter 7 could be skipped. A similar recommendation holds for
a short course on source separation problems. Multivariate Bayesian Statistics
fits into a relatively small niche but serves its purpose well.

Christopher GENOVESE

Carnegie Mellon University
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Before the work of Markowitz (1952), finance was more of an art than a
science. Before the work of Black and Scholes (1973) and Merton (1973), fi-
nancial practitioners did not have to worry about Brownian motion or Itô cal-
culus. Since the work of Harrison and Pliska (1981), martingales have become
recognized as natural tools in this area. As the limited ability of the standard
Black–Scholes model to reflect financial reality has become ever clearer over
the years, the pressure has been on to broaden the class of stochastic processes
used in financial modeling to achieve a better fit to real markets and real data.
As always, one is caught between the conflicting demands of simplicity (of
concepts or of implementation) and of goodness of fit, or range of phenomenon
that one can model adequately.

The thesis of this book is that jumps are needed in a model. The first chap-
ter, “Financial Modelling Beyond Brownian Motion,” is an eloquent and (to
me) convincing argument for the necessity of jumps. At 16 pages, reading this
would be a very good investment of time for anyone with access to this book.

The prototype of jump processes is the Poisson process, ubiquitous in the
modeling of actuarial and insurance problems. These two processes—Brownian
motion and the Poisson process—stand at opposite ends of a spectrum of
processes forming an important class: Lévy processes, or stochastic processes
with stationary and independent increments. These have a well-developed the-
ory, and the class is flexible for modeling purposes. This book is essentially a
monograph treatment of the burgeoning field of “Lévy finance,” written with
the practitioner as well as the student in mind.

The level of mathematical completeness, or of the prerequisites expected of
the reader, is the first choice that the authors had to make. To make the book as
accessible as reasonably possible to practitioners, the authors have (very sensi-
bly) chosen to make no attempt to prove everything. Rather, they aim to “ex-
plain everything,” writing what they need into the record, proving what they
can, and giving detailed references to the literature (they cite 395 references)
otherwise. Chapters end with a summary and further reading.

Part I (Chaps. 2–5) covers on mathematical tools. Here what is needed
on measure theory, probability, and stochastic processes is summarized. Lévy
processes are introduced. There is a whole chapter (Chap. 4) on building new
Lévy models from old ones. Multidimensional models (dependence and copu-
las) are treated in Chapter 5.

Part II (Chaps. 6 and 7) covers simulation and estimation. Chapter 6,
on simulating Lévy processes, includes approximation by compound Poisson
processes and infinite-series representations. Chapter 7, on modeling financial
time series with Lévy processes, includes the stylized facts of financial data, tail
behavior (particularly heavy tails), time aggregation and scaling, and volatility
clustering. I particularly liked Figure 7.6, a Venn diagram depicting the rela-
tionship between Lévy, Gaussian, and self-similar processes.

Part III (Chaps. 8–13), which studies option pricing in jump models, is the
longest, and for the practitioner, the most important part. “Part IIIA” (Chaps.
8 and 9) covers theory, stochastic calculus with jumps (Chap. 8), and change
of measure (Chap. 9). Girsanov’s theorem, on change to an equivalent mea-
sure, is the core of risk-neutral valuation for complete markets (such as the
Black–Scholes model, where one can hedge risk completely). It plays an im-
portant, though less dominant role, in incomplete markets, such as Lévy mod-
els typically give. “Part IIIB,” on applications, begins (Chap. 10) with pricing
and hedging in incomplete markets. It continues (Chap. 11) with risk-neutral
modeling with exponential Lévy processes (the extensions to the Lévy case of
the exponential Brownian motions of the Black–Scholes case). Chapter 12, on
integro-differential equations and numerical methods, covers the extension of
the (parabolic) partial differential equations (PDEs) of the Black–Scholes the-
ory to the partial integro-differential equations (PIDEs) in the Lévy theory (the
new term, the integral term, directly reflects the new feature, the jumps). Top-
ics covered include pseudodifferential operators and their links with Markov
processes, viscosity solutions, and the fast Fourier transform (FFT). Chapter 13,
on inverse problems and model calibration, is the part of the book that a quan-
titative analyst or financial engineer perhaps will refer to most frequently.

Part IV (Chaps. 14 and 15) goes beyond Lévy processes. Chapter 14 looks at
time-inhomogeneous jump processes (with additive processes in place of Lévy
processes). Chapter 15 is on stochastic volatility (SV) models with jumps. It
covers in particular the work of Barndorff-Nielsen and Shephard (2001) on
non-Gaussian Ornstein–Uhlenbeck processes (which depends on the theory of
self-decomposability), and the work of Carr, Geman, Madan, and Yor (2003)
on time-changed Lévy processes.

One of the features of this book that I like most is the illuminating asides,
often (but not always) in the summary or further reading sections at the ends of
chapters. To quote just one (from 10.3.4, p. 330), “. . . pricing by utility max-
imization is more similar to a portfolio allocation problem than to arbitrage
pricing models.” (It would take us too far afield to explore this properly here;
suffice it to say that the need to feed utility or the investor’s attitude to risk into
the picture goes hand-in-glove with the incompleteness that comes with the
jumps.) Another nice feature is the short biographies at chapter ends (Poisson,
Lévy, Bachelier, Meyer).

I loved this book (so too did Peter Carr, in the publisher’s blurb). It will be re-
quired reading for students (mine, at least) entering Lévy finance. My judgment
is that it will be useful both within academia, particularly to people in stochas-
tics, econometrics, and other fields wanting to develop an interest in finance,
and to practitioners. True, they will need a good mathematical background and
a degree of persistence, but in view of the demands of the increasingly complex
financial world we live in, they need these anyway.
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