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Bayesian Statistics
Prior Information

The statistics that you have learned thus far where parameter
estimation and inferences are based only from the sample of
data x,,...,X, IS called classical, frequentist, or non-Bayesian statistics.

Bayesian statistics Is about quantifying any available information

that we might have a priori, before we collect any data, and formally
Incorporating it into our estimation and inferences along with the

data that we subsequently observe.
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Bayesian Statistics
Prior Information

We always know something or have some sort of
information about the variable x we are studying.

Examples:

X IS positive

X IS between 0 and 1

X Is less than Avogadro’s number

X has a mean of around 132

X has a 95" percentile of around 42
X has a normal distribution

efc. ...
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Bayesian Statistics
Prior Information

If we have an expert on variable x, then we can elicit distributional
iInformation by asking a series of questions.

The questions may be about percentiles and we can build up a

C D I: fro m th IS X an d CO nve rt to a P D I:. What is your best guess for the 75t percentile for heights?
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What is your best guess for the 25" percentile for heights?
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Bayesian Statistics
Prior Information

If we have previous data from a similar experiment, then
we can generate an ECDF and/or histogram on the variable
X, to obtain distributional information.

100 observations
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Bayesian Statistics
Bayes’ Rule and Prior Selection

In frequentist MLE, we sort of heuristically turned things around.

We took f(x,,...,X,|#) which was the probability of observing data
X4,...,X, given/knowing the parameter(s) 8 and somehow changed
it into L(6|x,,...,X,), a function of 8 (given the data x,,...,X,).

Why and how did this happen? Have you been lied to?

Truthfully L(8)=f(x s |0) I1s the probability of getting data x,,...,X,
given 4 and not probability of parameter(s) 6 given data x,,...,x!

nl
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Bayesian Statistics
Bayes’ Rule and Prior Selection

How did f(x,,X,,...,X,|6), the probability of getting data
X4,...,X, given 6 change into L(6|x,,...,X,), a function of 8

given the data xg,...,X,?

This Is a major ideal
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Bayesian Statistics
Bayes’ Rule and Prior Selection

What happened to the rules of probability? i.e. Bayes’ Rule

P(AnB) _ P(A|B)P(B)
?(A) P(A)

Did we just through out what we have learned?

P(B|A) =

To be correct, shouldn’t we instead write

distribution of x’s given 6
A B « B -
B A —q 5 / distribution of 6

/ o

distribution of 4 given x’s

A—>X,. . X B—>0

Xp) -

marginal distribution of X’s




Bayesian Statistics
Bayes’ Rule and Prior Selection

We have f(x,,...,X,|0). The distribution of RVs given 6.
We need (0), the (prior) distribution of the parameter(s).
Given f(6), we can get f(x,,...,X,) by integration
f (Xppoons %) = | F (%0 X, 10) F(0)DO

o

(but 1t Is Just a proportionality constant often neglected).

(01X %,) o f (XX, |6) F(6)

This will help us be lazy later.

D.B. Rowe




Bayesian Statistics
Bayes’ Rule and Prior Selection

Although any distribution for the parameter(s) 6 can be used
as a prior distribution f(6), we can obtain a “nice” one called a
natural conjugate prior distribution.

This prior distribution will depend upon its own parameters 6,
Then all we need to do Is assess the new parameter(s) 6,
for this distribution f(6|6,) called hyperparameters.

hyperparameters
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Bayesian Statistics
Bayes’ Rule and Prior Selection

When we are interested in a variable x, we assume that
It arises from a process that has a distribution of values.

We a priori specify a distribution for x, that depends on a
fixed but unknown parameter 8 or parameters (6,,6,).

Given the distribution of x (PMF or PDF), we will quantify
avallable information about the parameter(s) 6 or (6,,6,).

D.B. Rowe



Bayesian Statistics
Bayes’ Rule and Prior Selection

Conjugate prior distributions are paired with particular distributions
that we will be observing data from.

The conjugate prior combines “nicely” with the likelihood of the
observations in such a way that the posterior distribution has a
“friendly” functional form so that simple estimators arise without need
for advanced computational numerical techniques.
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Bayesian Statistics
Conjugate Prior For Binomial RVs

Binomial observation x:
With a binomial distribution for x

We need a prior distribution for p where pe[0,1] to combine
with in order to obtain the posterior pdf

B A

((plx.6)~ LKD) (P10) f(x.p16)= (x| P)F(p|0)
Hx19) f(x10)=] f(xI )T (plO)p

that we can make posterior estimates from, i.e. E(p|x,0).
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Bayesian Statistics
Conjugate Prior For Binomial RVs

Binomial observation x:
Imagine a binomial observation with n, trials, x, successes & y, failures,
XotYo="No.

|
f I p)= LYol pea gy x=01,.n,  pel0]
X, 'Y, !

The conjugate procedure is to switch the roles of x and p
f(p[X)oc p®(@d-p)*
and now “enrich” so that it does not depend on current data

f(p|la,p) < p“‘l(]__ p)ﬁ—l a-1=# virtual successes

B-1=# virtual failures

And we see that the conjugate prior for p is Beta(a,p).
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Bayesian Statistics
Conjugate Prior For Binomial RVs

o-1=# virtual successes

BinOmiaI Observati()n X" [-1=# virtual failures
When we are going to have a binomial likelihood for x

f(x] p) = (Xxjyy!)! p*(L- p)’

The conjugate prior for p is Beta(a,f).

_T(a+p) .a RV X
f(pla,ﬁ)—r(a)r(ﬂ)p 1-p) zeﬂ[oe,lgy

0 =(a, B)

hyperparameters
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Bayesian Statistics
Conjugate Prior For Binomial

Binomial observation x:
With conjugate prior for p

f(plaf) == b priqa— py

['(a)I(5)
and binomial likelihood for x
n!
f — X 1_ N—X
(XIP) =m0 P @ P)

The posterior distribution for p Is
['(a + S +n)
f y y —
e D) = R O (A =%

This is another Beta PDF!

D.B. Rowe

RVs

o-1= # virtual successes
[-1=# virtual failures

p [0,1]
a,feR”

x=0,1.....n
pe[0,]]

pa+x—1 (1 . p),B+n—x—1



Bayesian Statistics
Conjugate Prior For Binomial RVs

p<[0,1]
. . . ao,feR”
Binomial observation Xx:
From this Beta posterior PDF for p,
f(p|xa f) = —\EELEN)  jawcrq_ s e et of g
F(a + X)F(ﬁ 4 n —_ X) successes and 8-1 failures!

we need to compute summary measures.

l.e. mode, mean, median, variance an estimator for p.

Similar to what we do for non-Bayesian methods.
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Bayesian Statistics
Conjugate Prior For Binomial RVs

p<[0.]]

. . . ao,feR”
Binomial observation x:

and upon differentiating f(p|x,a,5) with respect to p

G F(Ol + IB + n) a+Xx-1 L+n—x-1
— f(p| X a,p)= 1—
P or (e P P
we obtain a MAP (maximum a posteriori) estimator for p
ArgM ax + X
f(plxapB)=—"
a+f+n—2

Similar to MLEs. This is the mode of the PDF.
(Take the second derivative to confirm.)
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Bayesian Statistics
Conjugate Prior For Binomial RVs

p<[0]]
B eR”
Binomial observation x: “he
And from this beta posterior PDF for p
f(p|Xa f) = — A EFLIN  paocarg  pypenoc e et of g
F(a + X)F(ﬁ +N-— X) successes and 8-1 failures!
we can obtain the posterior mean for p
E(plxa ) =—2 PO
X,a, 3) =
P a. + f. =L +N—=X
and posterior variance for p
a. f. :
var(p| x,a, ) =
(p| 24 IB) (a*+,8*)2(a*+ﬂ*+1) QUGSUO”S?

or whatever we want.
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Bayesian Statistics
Conjugate Prior For Binomial RVs

Example: Binomial

Plan to observe success/faillure count binomial RV x.
N x=0,1...,n

(x| p)= T p*(1-p)™" p<l0,1]

Before we observe it, we quantify expert opinion about
the probability of success p with a Beta prior

:F(OH‘,B) a1 _ 1 pel0]]
f(pla,p) F(a)F(,B)p 1-p) o B eR’

and assessed hyperparameters o=7 and f=3.
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Bayesian Statistics
Conjugate Prior For Binomial RVs

Example: Binomial
We form the posterior distribution with mean estimate

o+ X a=7 and =3

E(plx,a,ﬁ)=a+ﬂ+n

We now observe x=6 from n=10 so our posterior mean Is

[+0
E(p|{X a,f)= =0.65
(PIx.a.f) 7+3+10
compared to
6
A=—=0.6
P 10

and closer to true p=2/3.
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known o?

Normal observations x, known c2;

With a normal distribution for x

( N2 X, ueR
. eXp<—(X H) > ocecR"

Fxl) == -~

We need a prior distribution for u where peR to combine
with in order to obtain the posterior pdf

B A

Fl0) == 000 Fx10)=[ (x| ) (u] O)dp

that we can make posterior estimates from, I.e. E(l/x,60).
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known 67

Normal observations x, known c2;

Imagine random observation x from N(u,c%) with known ¢°.

f(X| 1) =(27nc?) ™ exps - (X~ p)° -

20°
. J
The conjugate procedure is to switch the roles of x and L
(1—X)°

f(u|x)=2ro®) " expd - -
20°

N

and now “enrich” so that it does not depend on current data

f (,u | :Uo’ I’]O) — (272-0 / no) -1/2 eXp< (:u :uo) > n, = variability factor
25° I n, ] .

And we see that the conjugate prior for p is N(,,0%/n,).
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known o?

Normal observations x, known o?:
When we are going to have a normal likelihood for x

f (Xl""’ X, | ,Ll) = (272'02)_n/2 eXp{— 21 5 Zin—l(xi — ,Ll)z} n, = variability factor
o -
The conjugate prior for pis N(,,6%/ny).
(_ (:u - /uo)2 \

f(u|py,0y) =27’ In,) " exp-

20°In, |

.
hyperparameters

D.B. Rowe



Bayesian Statistics
Conjugate Prior For Normal RVs, Known o?

Normal observations x, known c2;

With conjugate prior forp \
B (1 _:uo)2

f(u|py,n,) = (2zc® I ny) "% exp- 257 /n, |

.

and normal likelihood for x

f (XX, | 1) = (2702) ™ exp{— D IC! —u)Z}

O

The posterior distribution for p Is

f(um,---,xn,uo,no){zﬂ 7 n] exp{—(”0+”)(u—m2}

n, + 20°

This is another Normal PDF!
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known o?

Normal observations x, known c2; e can see that the prir
has the effect of adding n,
From this Normal posterior PDF for L,

) { (N, +n) }
f oxun)=|2x expd — 2 — 0)°
(L] X0 Xy, g, ) ( n0+n) p - Ve

~ —
H = Ny +nN

we need to compute summary measures.

l.e. mode, mean, median, variance an estimator for .

Similar to what we do for non-Bayesian methods.
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known 67

Normal observations x, known o?:
And upon differentiating f(u|x,,...,X,,N,,0%) With respect to

+ 20°

5 -1/2
N N n
f(mxl,---,xn,uono):[zfzn" n] exp{—( o )w—ﬂf}
0

we obtain a MAP (maximum a posteriori) estimator for p.

ArgM ax X -
g f(lulxli---’xn!luOHO):n0ﬂ0+nx — ,[[:noﬂo_l_nx
H Mo +1 N, + N

Similar to MLEs. This is the mode of the PDF.
(Take the second derivative to confirm.)
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Bayesian Statistics
Conjugate Prior For Normal RVs, Known o?

Normal observations x, known o N, + N
And from this normal posterior PDF for u

f(u|x1,---,xn,uono>=(2n o j exp{—(n°+n)(u—ﬁ)2}

Ny + N 20"
we can obtain the posterior mean for
i n + E(ul") = agty + (L= @)X

E ooy Xy oy Ny ) = + X
(1] % Hos M) n0+nﬂo N, +n /

and posterior variance for u
2

O Ng+N
var( | X, ..., Xy thy,Ny) =

(ny +1)

uestions?
or whatever we want. Q
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

Normal observations x, unknown c4;

With a normal distribution for x
‘ 5 X, elR

f (x| i,0%) =(27nc*) ™ exp+ _(xza) | o2 eR"

We need a prior distribution for (u,6%) where peR, c?€R* to
combine with In order to obtain the posterior pdf

B C A A B
f (a0 | x,0) =126 ) F(1,0710)
f(Xle) f(Xlg):jzj f(Xllu’Gz)f(lu’02|9)dlud62
- ),

A

that we can make marginal posterior estimates, I.e. E(l/x,60).
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

Normal observations x, unknown o2
Imagine random observation x from N(u,c2).

f(x|u,o)=2rc") " expd - -

The conjugate procedure is to switch the roles of x and p

(=%

2
20
L Y,

and now “enrich” so that it does not depend on current data

f(u|x,0%)=2rc*)"*exp- -

( 2
f (,U | (72,,110, no) — (272-(;2 / r]o)_ll2 exp+ — (,Ll—z,uo) . n, = variability factor
- 20°/ny |-

And we see that the conjugate prior for p|c? is N(ly,0%/ny).
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

Normal observations x, unknown o2
Imagine random observation x from N(u,c2).

f(x|u,o)=2rc") " expd - -

The conjugate procedure is to switch the roles of x and ¢?

( - 2 M)
f(o® | X u)=2rc") " expd - (u )2() -
. 20 J
and now “enrich” so that it does not depend on current data
h(v—2)/2 (02)—1//2 h
f(c”|h,v)= F(2)20 7 exp{— 202} | h,v>0

And we see that the conjugate prior for ¢? is invGammai(h,v).
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

n, = variability factor

Normal observations x, unknown o?:
When we are going to have a normal likelihood for x

f (XX, | 1,07) = (275°%) ™ exp{— 2; S (% —u>2}

\ parameters
The conjugate prior for p|o? is N(M,,06%/n,)

e - 2\
f(y|c72,,uo,n0):(27zc72/no)_”zexp<—(’u Ho) -

2
\.hyperparameters . . \ 20 /no 7
and the conjugate prior for o2 is inverse Gammai(h,v)

(v-2)/2 —v/2
f (o |hv) (h/2)" " (") exp{—hlz} h,v >0

(%2) o

hyperparameters
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

Normal observations x, unknown o?: Hyperparameters

If we have or imagine that we have a sample of size n,
from a normal distribution, then we use them to assess the
hyperparameters of the prior distributions as

Ho =X, F(u Uziﬂo’no):(ZﬂUZ/no)_ﬂz
v~y -3 E |0 1) =

o] h/2 (v-2)I12 ( _2\-VI2
g+l (v=2)/2+1 f(o”|hv)=

I'(+3)
h= (no _1)Sr?0

exp-

B (1 — /10)2

{ hlz}
expy ——
O

mode (0?) =B a=(v-2)/2

a+1 p=h/2

D.B. Rowe
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

Normal observations x, unknown o?: N, + N
With conjugate prior for (H,62)
f (,U 02 | ) _ r(%)h(V—Z)/Z [(02)(V+1) / r]O]_ll2 . I"]O (:u B :uO)2 T h

ex
2721 (1:2) 2 207
and normal likelihood for x
N 1 n
1, 10 = @) Pexp | =L 37 (% -

_ J
20

The posterior distribution for (4,62) is

l—w(%)h(v—Z)IZ (272_0_2)—n/2 h*
VI2 = f y—2 2\ (v+1) 172 EXPy =5
2 F( 2 )[(U ) /no] 20

h, = (N, +N)(z — 22)? + N +h+nx% — (n, +n) i

f (1, 0% [ Xy Xy, )



Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 67

Normal observations x, unknown o2
And from this normal posterior PDF for (,69)

N 222 ™y {_ h, }
20°

2V/2F(V—£2)(O'2)(V+n+l)/2

h =, +n)(u—4)" +o

f(u,o0°| X yeeey Xy7) €

2 u2 A2
@ =N,y +h+nx>—(n, +n)u

we can obtain MAP parameter estimators. But in general
will use marginal PDFs f(u|xy,...,X,, ) and f(c?Xy,....X,,").
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

. Nytdy + NX
Normal observations x, unknown c=: : Ny + N
And upon differentiating f(u,6%|x,,...,X,ny) with respect to p
___ ¢ (g +n)(u— )+ .
f (1,07 | X,y X, p7) = (7Y exp<k— > j Ho =X,
. . L v=(n,—-1)
we obtain a MAP estimator for . Similar to MLEs,
A h=(n, -1)s
rgM ax N, 44, + NX
f (07 | Xm0 Xy ) =28
7 n, +n

This Is the mode of the PDF.
(Take the second derivative to confirm.)
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

. Nyi, +NX
Normal observations x, unknown c2: A T 1
And upon differentiating f(i,6%|X,,...,X,,ny) with respect to ¢?
C () (u—-L)+o .
f (lu o | Kiyeey Xy ) — (02)(v+n+1)/2 EXPy — > 20_2 . Ho = X”o
k ’ v=(n,-1)

we obtain a MAP estimator for o4. Similar to MLEs
h=(n, —1)s?
Argl\/lax W ’

f(of | =%, Xy ) = |
o’ v+n+1

®=n 4’ +h+nx? —(n, +n) A2
This Is the mode of the PDF.
(Take the second derivative to confirm.)
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 67

Normal observations x, unknown c4;
Upon integrating f(u,6%[X,,...,X,) with respect to ¢ yields

T Vot on_ 12 [ 1 A o 7~ (ve+1)/2 B
Gl ) = e @] (“ “j =%,
F(VEJ V. TT V, T : 3
o - vV no_
n, +n n, +n
Ve=N+V-—-2

2 N + N+ nxE = (n, +n) 22
(n+n,)(n+v-2)
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 62

| Ny +h+nx? —(n, +n)4°
Normal observations x, unknown c?: LT (en)(n+v-2)

And from this Student-t posterior PDF for p|x,...,X,

N noluo +nX

H= "ngm
PRPRRNLICE ol NS TPy
F(VEJ VT | Ve T )
we can obtain the posterior mean for
E (et Xy Xo07) = 5t o + 757 X —  E(u|)=ay, +{1-a)X
and posterior variance for L / & =i
var(u | X;,...,X,,") = ¢
or whatever we Want Questions?
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Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 67

Normal observations x, unknown o2
Upon integrating f(4,62X,,...,X,) with respect to u yields

(v+n—2)/2

V—I-n—2+1

(62)‘( 2 )e 252

(] 2)
[(52)

f (07| Xyeery X ,7) =

2 2 A2
@ =N,y +h+nx"—(n, +n)u

D.B. Rowe



Bayesian Statistics
Conjugate Prior For Normal RVs, UnKnown 67

Normal observations x, unknown o2
And from this inverse Gamma posterior PDF for 62|xy,...,X,

(v+n—-2)/2

a)
+n 2+l @

)= (! 2)

f(o?|X,.... X
(07 1% %, [(v+0-2) (o )
we can obtain the posterior mean for ¢?

2 _ @ _
SCHETEY vin—4 w=nu’ +h+nx>—(n, +n)a’
and posterior variance for u

2
0,
var(c? G X ) =
A Sy |
or whatever we want. Questions?
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Bayesian Statistics

Discussion
Questions?

Summary
Sampling PDF Parameters Conjugate Prior
Binomial 0 Beta(a., /)
Geometric 0 Beta(a., /)
Normal, known o2 I N(H,,0%/n,)
Normal, unknown o2 (U,062) N(H,,06%/ny)-1G(h,Vv)
Poisson A Gamma(a,p)
Exponential A Gamma(a,p)
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Bayesian Statistics
Homework 8

1.With beta(a,p) prior PDF for p

_I(a+p) oa IRV X pe[0,1]
f(pla,ﬂ)—r(a)r(ﬁ) p*" (1~ p) o, BeR*
and binomial likelihood for x,
n! . .. x=0,1....,n
f(XIp)=X!(n_X)!p (1-p) p €[0,1]

prove that the posterior PDF for p Is

_ F(Ol-l-ﬂ-l-n) a+x-1m p+n—x-1
f(plx,a,ﬂ)—F(mx)r(ﬁm_x)p (1-p)

be sure to find
f (x|, B) = jp F(X| P)F(p|a, B)dp .  «— tint Thisis a Beta PO integral

D.B. Rowe



Bayesian Statistics
Homework 8

2. For a binomial experiment, select the beta(«,5) prior for p.
a) Plot f(p|a,p). For 1) a=1 and =1 and i) a=7 and f=3.

b) Generate one observation x from the binomial(n,p) PDF.  Use: n=10, p=2/3

Compute MLE data only based estimators

|5=§ and 62:x(n;x)

n n
c) Compute Bayesian posterior estimators (both a,f sets)
a + X

B B (a+x)(f+Nn—=X)
E(plx’a’ﬁ)_a+lg+n var(p|x.a. f) = (a+ B+n)(a+ L+n+1)

D.B. Rowe



Bayesian Statistics
Homework 8

2. d) Generate 10° observations x from the binomial(n,p) PDF.  Use: n=10, p=2/3

Compute 10°> MLE data only based estimators

pzﬁ and &2 = X(n - X)  then compute means, variances,

N i N and make histograms.
e) Compute Bayesian posterior estimators (both a,f sets)

a+ X (a+X)(B+n—X)

E(P|X,a,ﬂ)=a+ﬁ+n var(p|x,a, fi) = (¢ +B+n)’(a+p+n+1)

for p then compute means, variances, and make histograms.
f) Compare results from d) and e).

g) Repeat with n=100. Comments!
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Bayesian Statistics
Homework 8

3. With N(p,,04%/n,) prior PDF for p, fixed known o2,

( )2 1, eR
f(u| py,n,) = (27?1 ny) ™% exp- 0 Z'UO) - “ /ége]ly
20 /I’]O ) N, c N*

and normal likelihood for x,

60, | 4) =(27%) exp =L 37, (6 - |

2
co XeR
prove that the posterior PDF for 1 is
02 -1/2 { (n n n) } ,LAl _ Nolig+nX
f ey X N ) =1 2 expd —~Y Y Np-+N
(] X0y X0 1N [ﬂno+nj S (1 — 1)

Hint: This is a Normal PDF integral.

e
be sure to find f(X,....X, | 1;,n,) =L F (X, X | 0) (22| 1,00 )d
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Bayesian Statistics
Homework 8

4. With N(u,,06%/n,) prior PDF for p, known ¢°=4.
a) Plot f(u|Hg,np). FOr 1) u,=71, n,=2, and i) p=71, n,=10.

b) Generate n observations X,...,x, from the N(u,62) PDF.  n=10, p =69

c2=4

Compute MLE data only based estimator

=—Z, X to go along with known c2/n=4/n.

c) Compute Bayesian posterior estimators (both u,,n, sets), use ¢°=4.

2
O

(N +1)

E(’Lllxl - n’lLlO’ O)_n0+n:u0 n0+nX Var(ylxj_ ") ni,Llo; 0)—

D.B. Rowe



Bayesian Statistics
Homework 8

4. d) Generate 10~ sets of n=10 observations x,,...,x, from N(u,c?).
Compute 10° MLE data only based estimators
A D 1 n —\ 2
= Z L% and o =ﬁzi:1(xi —X) then compute
means, variances, and make histograms. (both p,,n, sets)

e) Compute Bayesian posterior estimators (both p,,n, sets)

2
O

(g +1)

EQu| X, X g, O)_no+n1u0 moim X var(e | X, ..., Xy, o, N ) =

then compute means, variances, and make histograms.
f) Compare results from d) and e).
g) Repeat with n=100. Comments!

D.B. Rowe



Bayesian Statistics
Homework 8

5% With p|o2/ng~N(l,,6%/ny) & c?~inverse Gammag(h,v) priors
1\ h(v—2)/2 2\ (v+1) _1? % B ) .
f(u,02|") = @ (o) I'ny] (= p2)? +h

2v/21—w(v_£2) eXp< - 202 f
and normal likelihood for x,
n 1 N
PO, % | 1,0°)=2rc*) ™™ EXp{_ 2572 Zizl(xi - /J)z}
prove that the marglnal pOSterlor PDF for u IS / Hint: This is an Inverse Gama PDF integral.

F(V_ﬂj (2.2)—1/2 i V(-1 5 1~ (ve+1)/2
B : — > Notip +NX = . 2
f(,Llle ' n’) F(V_Z*J \/V*7 _1+V*( . j _ U= o | 2 n+v

| Tz_n0y0+h+nx2—(no+n)ﬂ2
* For students in 5790. (n+n,)(n+v-2)
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Bayesian Statistics
Homework 8

6*.With p|o2/ng~N(He,02/n;) & o?~inverse Gammah,v) priors
1Y (=221 ( 52\ (v+D) _1/2 . Y \
f (00| = LN~ 1(o") 7 /] ng(u— i) 4

e
2V (v:2) XPs 25"
and normal likelihood for x,
y 1 <
(X X, | 11,07) = (2767) ™ exp{— LS —u)Z}

S

O
prove that the marginal posterior PDF for ¢ is

(v+n—2)/2

(C()/ 2) —(=+1 —ﬁ
f (02 | xl’ Tt Xn ’ ) - F(‘V+n—_2) ( 2) ( )e M Hint: This is a Normal PDF integral.
2
* For students in 5790. @ =Noty +h+nx" = (g +n)2°

D.B. Rowe



Bayesian Statistics
Homework 8

7. Generate 10° random observations from N(u=67,6°=16).
Assuming H|o>~N(uy,0%/n,) & o°~1G(h,v) priors with
1,=68,n,=10, and g,v not important here.

nOlLlO +NnX

Calculate X, =Y ' x and &, =" fori=1,.....,103
Note /i, =68 .

Assume the observations are coming in one at a time.

Make a plot with observation number on the x-axis
and posterior estimated mean /& on the y-axis.
Start with 1=0. Also Include X, on the graph. Comment.

D.B. Rowe



Bayesian Statistics
Homework 8

8. With p|o?/n,~N(u,,0%/ny) & o>~inverse Gamma(h,v) priors
a) Plot f(u,62|1g,ng,n,v). For i) u,=71, n,=0.1, and ii) p=71, n,=10.

3D surface plot

b) Generate n observations x,,...,x, from the N(u,c%) PDF.

Compute MLE data only based estimators

v _ + ) 1 N . n=10, u=69
X = Z i and 0'2 :Hzizl(xi - X)2 . 02=4, h=45

c) Compute Bayesian posterior estimators (both p,,n, sets)

E(,Lll Xl " n’ )_ Np+N luO n0+n7 L
N+Vv—2n,u +h+nx’—(n,+n)a’
n+v-4 (n+ny,)(n+v-2)

Var(lulxl - n’)

D.B. Rowe
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