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Bayesian Statistics
MLE General Process

In Probability when we have a discrete PMF, we describe P(X=x|6)
as the probability that we observe the specific value x for our random
variable X given (assuming that we know) the PMF parameters 6.

When we have a continuous PDF, we describe f(x|#) as a continuous
function that contains the probability of observing a specific value x

for our random variable X between a and b given the PDF parameter 6.
P(a< x<b|0)
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Bayesian Statistics
MLE General Process

In Statistics, we observe a sample of random observations Xx,,...,X;
from a PMF P(X=x|60) or PDF f(x|#) and wish to estimate the associated
parameters 6.

There Is a general technique called Maximum Likelihood Estimation
that yields estimators 6 for the parameters 6 called MLEs.

Estimator = general formula for calculating the MLE.
Estimate = the numerical value using the formula.
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Bayesian Statistics
MLE General Process

The MLE parameter estimation process is to write down the joint PMF
or PDF for the sample of random observations x,,...,x,, which we will
call the likelihood function L(6) for the parameters.

L(Q) = f (X1 | H) f (Xz | ‘9) oo (Xn | (9) gc;?riep?;r:?ﬁgi independent)
L@)=]]._ f(x16)

The MLEs for 6 are the values that maximize the likelihood

é __ ArgMax L(g) works for any PDF but may
0 need to numerically maximize
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Bayesian Statistics

MLEs for Univariate Normal PDF

As an example, consider the normal PDF for x

_(x=u)
2
5 e % lid=independent and
f(x|u,o) = 2 identically distributed
o

if we have x,,....x, that are iid from f(x|u,c2), our likelihood is

L(w0?) =TT, (x| o)
L(u,0%) = (270°) " exp| ~ 52 37 (x,~4)’ |
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Bayesian Statistics

MLEs for Univariate Normal PDF

The best way to maximize the likelihood L(u,0?) is to take the natural
logarithm, In(L(u,02)), which is a monotonic function, and minimizing

the monotonic log function yields the same maxima.

In(L(1,6%) =—3In(27) ~ §In(0?) - 2= > (X,—41)°
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Bayesian Statistics

MLEs for Univariate Normal PDF

Taking derivatives of the natural logarithm of the Normal likelihood yields

In(L(11,0%)) ==3In(27) ~ 3In(6) = 3 37 (%~

%ln(L(u 62)) =LY (x,-)(2)(-)
a ____l
oo 2 5 =1
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Bayesian Statistics

MLEs for Univariate Normal PDF

and upon setting equal to zero with min values having hats
—5> L (=)D =0

N1 1 -1 < i
26% 2(6%) 2 (Xi—f1)* =0

and solving we get
. 1o
H :HZizlxi

A2 1 n AN\ 2 )
O =— E _ (X : —lu) +<— Note denominator of n not n-1.
n |:1 I
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Bayesian Statistics

MLEs for Univariate Normal PDF

Let’s explore a different approach to maximizing that we will use for
the multivariate normal PDF to avoid vector derivatives or gradients
and other uncomfortable things.

Looking at the log likelihood, we see that there is only one term that
Involves L.

In(L(1,0%)) ==5In(27) = 3In(c™) =52 > (x;=)°

So we want to find the value of u that makes Zinzl(xi—y)2 the smallest.
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Bayesian Statistics

MLEs for Univariate Normal PDF

In(L(,0%)) ==5In27) = 5In(0?) =55 >, (%, —4)*

. 1o
We can define X =Hzi:1xi then add and subtract as

> =)y = Y IGR) + (X =)

= > (X=%X)? = 2(x,=X)(X — p2) + (X — p1)°]
(X=X =2 (R — X — XX + X pt) + (X — p2)’
= > (%=X)" = 2(nX* = NuX =X +NX ) + N(X — 1)’
= > (X;=X)’ +n(X — u)?

and the value of u being iz =X yields the min, therefore MLE!
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Bayesian Statistics

MLEs for Multivariate Normal PDF

This MLE process also works for multivariate PDFs!
Consider the bivariate normal PDF for x

1

f(x|u,X)= (272')_p/2 b |—]jz a 5 (=) 27 (%=p1) X,ucR >0 p=2

If we have Xx,,....x, that are iid from f(x|,X), our likelihood Is

n

L(w,2) =] ], f(x1Z)

(%) = @) ™ |2 exp| = 27 (%~ 10)'5 (- 0

Don’t forget that f() and L() are scalar functions.
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Bayesian Statistics

MLEs for Multivariate Normal PDF

The best way to maximize the likelihood L(l,X) Is to take the natural
logarithm, In(L(t,X)), which is a monotonic function, and minimizing
the monotonic log function yields the same maxima.

IN(L(1,2)) =—2InQ27) - 2In(|Z) =2 > " (X;—1)'=7(X,— )

L(13) = (22) ™2 | 5[ exp{—%Z?l(xi ~)"E (% - u)}
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Bayesian Statistics

MLEs for Multivariate Normal PDF

Taking derivatives of the natural logarithm of the Normal likelihood yields

IN(L(1,%))=-2In27) —=2IN(| =) - 3> " (X;—u)' =7 (X~ 1)

%ln(L(u,Z)) =13 5 (% —p)(2)(-1)
a%ln(uﬂ,z»=—%2‘1—%Z:‘:l<xi—u)<xi—u)'2-1(—1)
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Bayesian Statistics

MLEs for Multivariate Normal PDF

and upon setting equal to zero

—1373 " (x—)(2)(-1) =0

081 (x—A)(%—)'S (-1 =0

and solving we get
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Bayesian Statistics

MLEs for Univariate Normal PDF

Do (K= ) =) =trE (X =1, ) (X =1, )
Let’'s explore a different approach to maximizing that will avoid vector
derivatives and other uncomfortable things.

Looking at the log likelihood, we see that there Is only one term that
Involves L.

IN(L(1,%)) = —2In(27) — 2In( =)~ 337 (x,—22) "= (X, 1)

So we want to find the value of p that makes > " (X;—u)'=™(x;—u)
the smallest.
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Bayesian Statistics

MLEs for Multivariate Normal PDF

It can be shown that

tr()=trace
n i~-—1 . -1 N 1 1
Ziﬂ(XiY_’U), 22)(12 (xﬁxi_;u); _tr§ngx —Yln,u)H(X —Yln,u)} tr(AB) =tr(BA)
1x2 2x1 2xn nx2 if conformable

where X=(x,,...,x,),1.=(1,...,1)", and p=(}4,,UL,)".

nx?2 nxi 2X1
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Bayesian Statistics

MLEs for Multivariate Normal PDF

tr=trace

n

. 1
We can define X =Hzi:1xi then add and subtract as

(X -1, )X -Lu) = [(X-1,X)+@Q,Xx-1,)I(X-1,X")+(@,X"-1, 1]
(X =1 X)'(X =1 X)+(X -1 .X")'(L. X'—1_z")
+(1,X"=1, ) (X =1, X) + (1, X" =1, &)1, X'=1, )

(X -1 X)'(X -1 X))+ X'—1 2)'QA X'—1 1)
+(X'=X1,)@, X" =1, &) + (XTI}, — 227)(X —1,X7)
(X -1 X)'(X -1 X))+ X'—1 £)'QA X'—1 1)
= +X'1X'-X"1 p4'—xU1 X'+ xXU1 u'
+X1U X —XI'1 X'— 2’ X + 21/ X'
= (X =1, X)'(X =1, X") + (X — )LL) (X — 1)’

and the value of u being 4£=X yields the min, therefore MLE!
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Bayesian Statistics
MLEs for Simple Linear Regression

This technigue, can be generalized to linear regression.

5

Lety,=a+bx; + ¢, y
where & ~N(0,6?)

are independent.

Measurement

N
True Line Error

y. =a+Dbx
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Bayesian Statistics
MLEs for Simple Linear Regression

This technigue, can be generalized to linear regression.
Lety,=a+ bx; + ¢ , where ¢ ~N(0,6%) are independent.
Then, the joint PDF or likelihood is

f (Y Y, |a,b,02) =T (y,] a,b,az)... f(y, | a,b,az)

2y _ &XPLY, —a- bx,)*/25°]  exp[—(y, —a—bx,)*/20”]

(272_0 )1/2 (272_0 )1/2

L(a’b’GZ)_eXp[ (y,—a- le)Z/Zo'] eXp[ (y. —a—Dbx )2/20]

(270°)"? (27c%)"?

f(y,.mY,labo
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Bayesian Statistics
MLEs for Simple Linear Regression

This technigue, can be generalized to linear regression.
Lety.=a+ bx; + ¢ , where ¢ ~N(0,62) are independent.

Then, the likelihood is

L(ab,o?) = (2767) 2 exp| ——

Zn:(yi _a_bxi)2

2
20° ‘3

and the log likelihood Is
LL(a.b,o?) = —glog(Zﬂ) —glog(az) ~ 1Sy, —a—bx)’

20°[\T

\ ) |\ ) |\ J
| | |

noaorb noaorb aorb
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Bayesian Statistics
MLEs for Simple Linear Regression

L(a,b,02) is again called the likelihood function.
What we want to do is find the values of (a,b,c?)

that maximize L(a,b,c%). The values (a,b) that maximize

N

L(a,b,0?) are the values (&,b) that minimize D_(y; —a-bx)* .
1=1

The value of 62 that maximizes L(a,b,c?) is .o
d, =y, —a—bx

] n
6—2 p— %Z(yl — é — bxi)2 ] <—— Note denominator of n not n-1. minimiZe Zdiz
— =1

D.B. Rowe



Bayesian Statistics
MLEs for Simple Linear Regression

Differentiate LL(a,b,c%) wrt a, b, and o4, then set =0

LL(a,b,0%) = —glog(Zﬂ) —glog(az) - 2(172 gm —a—bx)’
@b = 57 220~ (D=0

e b,0) = — gz(yi - a-bx)(-x) =0
aLLga(;tZ,az) - - 01 _ 2(;)2 iz”;(yi ~a-bx)? =0
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Bayesian Statistics
MLEs for Simple Linear Regression

Solving for the estimated parameters yields

(Y xy)- (K W)

6 _ =l i=

(YK -
Oy - () %)
é — 1=1 i:ln =1 =1
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Bayesian Statistics
MLEs for Simple Linear Regression

The regression model y; = a + bx; + ¢ where gi ~N(0,69), i=1,....,n,

that we presented, can be equivalently written as

design regression
matrix coefficients

measured
data

measurement

y:f(lg‘ﬁg/ where
/yl\ (1 Xl\ /gl\
1 X a E
y = 20 x| ,,8=(j,8= 2,
nx1i . nx?2 . . 2X%1 b nx1 .
\ Yn \1 Xs ) \ én

and ¢ ~N(0,6°1 ). 1. is an n-dimensional identity matrix.
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Bayesian Statistics
MLEs for Simple Linear Regression

The regression model is y= Xf + ¢ where ¢ ~N(0,62l,).

/yl\ /1 Xl\ /gl\

o) «
: - |\Db :

\ Yn \1 Xi ) \ én /

nx1i nx?2 nx1i

y;=a+bx +¢ fori=1,....n.
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Bayesian Statistics
MLEs for Simple Linear Regression

With y=Xf + & and ¢ ~N(0,6°1 )

nx1l nx1l

The likelihood Is

f (Y ¥, | 2,0, 0%) = (270°) 2exp| —

compare 1o

n

f (y11---1 yn | a1b102) — (272.02)_E eXp o

and the log likelihood Is

LL(ab,o?) = —g log(277) —glog(az) _

D.B. Rowe

1
20+

1
20

2

1 < ]
202 Z(yi _a_bxi)2
=1 _

(y—=XpB)(y-XpB)

(Y=XB)(y-XpB)|.




Bayesian Statistics
MLEs for Simple Linear Regression

L(a,b,02) is again called the likelihood function.

What we want to do is find the values of (5,6%)

that maximize L(f,6°). The value of g that maximizes

L(B,52) is the value S that minimizes (y - XB)'(y - XA).

The value of 62 that maximizes L(8,02) is d =y —4-bx

o 1 A ~
0'2 = —(y — Xﬂ) (y — Xﬂ) «——— Note denominator of n not n-1.
4 minimize (y - X 8)'(y = X B)

We need to find ,B wrt B
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Bayesian Statistics
MLEs for Simple Linear Regression

We don’t need to take the derivative of L(5,6?)

wrt g (although we could). We can write with algebra

(Y= XB) (Y= XB)=(y = XB) (Y= XB)+ (B~ P) (X" X)B~p)
add and subtract X /3 N

where g =(X'X)™X'y. It can be seen that = /3

\ does not depend on

maximizes LL(8,0%) because it makes (y - XB)'(y - XB) smallest

1
20

LL(B.0%) =~ log(2m) - log(e?) == =5 [ (y = X ) (y = X ) + (B = (X X)(B - )
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Bayesian Statistics
MLEs for Simple Linear Regression

More generally, we can have a multiple regression model

y=Xp +¢ where ¢ ~N(0,6°l,) and

nx1l nx1l
g1aet:sured ?ne;ir?: ‘F:G(l)gefﬁeiiisei?]?s gwr(;:;surement
\/ v & /
/yl 1 X, - xlq\ /IBO\ /51\
Y, 1 X, Xy by &)
y=|" X=l. T . g =] . g=|
\yn/ \1 X an ) \IBq/ \ én /
nx1 nx(g+l) (g+1)x1 nx1i
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Bayesian Statistics
MLEs for Simple Linear Regression

The MLESs are the same,

A | B ' A 1 . R
ﬂ:(x X) 1X y and 52 :H(y— Xﬂ)l(y— Xﬁ) «—— Note denominator of n not n-1.

(q+1)x1 1x1
In addition,
&2
B|B,0% X ~ N(,Ba (X'X) ) and n—~ y*(n-q-1) .
(q+1)x 1 @)x1  @1)x(a+D) O
(Y= XP) 'y~ XP)=(y=XB)(y X )+ (= P) (X X}~ f)
o’ z*(n) '\ o’ % (n-g-1) o’ 7% (a+1)

could + & - X,B / A Note:A 5
mdependent , 1 —
E(S| 5.0 X)=p

This means we should use a denominator

of n-g-1 for unbiased estimator of ¢2. COV(IB | ,B, 02’ X) _ 52 (X | X )—1
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Bayesian Statistics
Discussion

Questions?
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Bayesian Statistics
Homework 7

1. Assume that you have a random sample x,,...,x, from each of the
below PDFs. Derive with pencil and paper the MLEs of each of the
below PDFs then generate n=10* observations from each PDF and
compute your MLEs. Pick your own true parameter values and compare.

a) f(x|0)=0"(L-0)* x=01 0<6O<l1

Qe !
X1

b) f(x|6)= X=012,. 0<f<w  f(0]0=1)=1
c) f(x|@)=60x"" 0<x<l O0<O<w

1
d) f(x|6’):5e " D<x<oo 0<B<oo
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Bayesian Statistics
Homework 7

2** With pencil and paper show that
> (X)) =trETH (X =1 ) (X =1, )
3*.With pencil and paper show that

(Y=XB)'(Yy=XB)=(y=XB)'(y—XB)+(B~-P)(X'X)B-p)

** For students that have had 6010 and 6020.
* For students iIn MSSC 5790.
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Bayesian Statistics
Homework 7

4*** With pencil and paper complete the square to show that

(Y= XB)'D(y-XB)=(B-P) (X' DX)(S-p)+Stuff e
3= (X'OX) X '®
which arises from P (weigmedleas?squares y

f (Yo Yy la1D, 0%, @) = (276°) 2| D exp| -

212 (y— X B)'®(y - X §)
G _

*** For students that want to show off.
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