

Discrete Probability Mass Functions

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

Bayesian Statistics

Outline

Probability Rules

Binomial PMF

Expectation of a RV

Discussion

Homework

Properties

For a bivariate probability mass function (PMF) of X and Y, P(X,Y)

1.
$$0 \le P(X,Y) \le 1$$

$$2. \sum_{X} \sum_{Y} P(X,Y) = 1$$

3.
$$P(X) = \sum_{Y} P(X,Y)$$
can swap
X and Y

4.
$$P(X,Y) = P(Y|X)P(X)$$

$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$
can swap X and Y

5.
$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$
 can swap $X \text{ and } Y$

Birth Gender			
x=0 Female			
x=1 Male			

Shirt Size				
y=0 Small				
y=1 Medium				
y=2 Large				
y=3 X-Large				

Example: Bivariate PMF

large shirt (Y=2) is 0.20.

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)			Shirt Size (Y)		
		y=0	<i>y</i> =1	y=2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

The probability of a randomly selected Marquette Undergraduate student being a male (X=1) that wears a

$$P(X = 1, Y = 2) = 0.20$$

Birth Gender			
x=0 Female			
x=1 Male			

Shirt Size				
y=0 Small				
<i>y</i> =1 Medium				
y=2 Large				
y=3 X-Large				

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		<i>y</i> =0	<i>y</i> =1	<i>y</i> =2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	<i>x</i> =1	0.05	0.15	0.20	0.10

1.
$$0 \le P(X,Y) \le 1$$

$$0 \le P(X = x, Y = y) \le 1$$

Birth Gender			
x=0 Female			
x=1 Male			

Shirt Size				
y=0 Small				
y=1 Medium				
y=2 Large				
y=3 X-Large				

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)			Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	y=3	
Birth Gender	x=0	0.10	0.20	0.15	0.05	
(X)	<i>x</i> =1	0.05	0.15	0.20	0.10	

$$2. \quad \sum_{X} \sum_{Y} P(X,Y) = 1$$

Birth Gender			
x=0 Female			
x=1	Male		

Shirt Size				
y=0 Small				
y=1 Medium				
y=2 Large				
y=3 X-Large				

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	y=1	<i>y</i> =2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	<i>x</i> =1	0.05	0.15	0.20	0.10

2.
$$\sum_{X} \sum_{Y} P(X,Y) = 1$$
$$\sum_{x=0}^{1} \sum_{y=0}^{3} P(X = x, Y = y) = 1$$

Birth Gender			
x=0 Female			
x=1 Male			

Shirt Size			
y=0 Small			
y=1 Medium			
y=2 Large			
y=3 X-Large			

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	y=3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

2.
$$\sum_{X} \sum_{Y} P(X,Y) = 1$$
$$\sum_{x=0}^{1} \sum_{y=0}^{3} P(X = x, Y = y) = 1$$
$$\sum_{y=0}^{3} P(X = 0, Y = y) + \sum_{y=0}^{3} P(X = 1, Y = y) = 1$$

Birth Gender			
x=0 Female			
x=1	Male		

Shirt Size		
y=0 Small		
y=1 Medium		
y=2 Large		
y=3 X-Large		

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	<i>χ</i> =1	0.05	0.15	0.20	0.10

$$3. \quad P(Y) = \sum_{X} P(X,Y)$$

	Birth Gender		
x=0 Female			
χ=	=1	Male	

Shirt Size			
y=0 Small			
y=1	Medium		
y=2 Large			
y=3	X-Large		

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

3.
$$P(Y) = \sum_{X} P(X,Y)$$

 $P(Y = y) = \sum_{x=0}^{1} P(X = x, Y = y)$

Birth Gender			
x=0 Female			
x=1	Male		

Shirt Size		
y=0 Small		
<i>y</i> =1	Medium	
y=2 Large		
y=3 X-Large		

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	y=3
Birth Gender	<i>x</i> =0	0.10	0.20	0.15	0.05
(X)	<i>x</i> =1	0.05	0.15	0.20	0.10

3.
$$P(Y) = \sum_{X} P(X, Y)$$

$$P(Y = y) = \sum_{x=0}^{1} P(X = x, Y = y)$$

$$P(Y = 0) = \sum_{x=0}^{1} P(X = x, Y = 0)$$

$$P(Y = 0) = 0.10 + 0.05 = 0.15$$

Shirt Size		
P(y=0)	0.15	
P(y=1)	0.35	
P(y=2)	0.35	
P(y=3) 0.15		

Birth Gender			
P(x=0) 0.50			
P(x=1) 0.50			

Birth Gender		
x=0 Female		
x=1 Male		

Shirt Size		
y=0 Small		
<i>y</i> =1	Medium	
y=2	Large	
y=3	X-Large	

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X = x, Y = y)		Shirt Size (Y)			
$I(\Lambda =$	x, T = y	y=0	<i>y</i> =1	y=2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

4.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Shirt 9	Shirt Size		
P(y=0) 0.15			
P(y=1)	0.35		
P(y=2)	0.35		
P(y=3)	0.15		

Birth Gender			
P(x=0) 0.50			
P(x=1) 0.50			

Birth Gender			
x=0 Female			
x=1 Male			

Shirt Size		
y=0 Small		
<i>y</i> =1	Medium	
y=2	Large	
y=3	X-Large	

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X = x, Y = y)		Shirt Size (Y)			
$I(\Lambda =$	x, T = y	y=0	<i>y</i> =1	y=2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

4.
$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

 $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$

Shirt	Shirt Size		
P(y=0)	0.15		
P(y=1)	0.35		
P(y=2)	0.35		
P(y=3)	0.15		

Birth Gender			
P(x=0) 0.50			
P(x=1) 0.50			

Birth Gender	
x=0	Female
x=1 Male	

Shirt Size		
y=0 Small		
y=1	Medium	
y=2	Large	
y=3 X-Large		

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X = x, Y = y)		Shirt Size (Y)			
$I(\Lambda =$	x, T = y	y=0	<i>y</i> =1	y=2	<i>y</i> =3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

4.
$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

$$P(X=1|Y=2) = \frac{P(X=1,Y=2)}{P(Y=2)}$$

$$P(X=1|Y=2) = \frac{0.20}{0.35} = 0.57$$

Shirt Size		
P(y=0)	0.15	
P(y=1)	0.35	
P(y=2)	0.35	
P(y=3)	0.15	

Birth Gender	
P(x=0)	0.50
P(x=1)	0.50

Birth Gender	
x=0 Female	
x=1	Male

Shirt Size		
y=0 Small		
<i>y</i> =1	Medium	
y=2	Large	
y=3	X-Large	

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

D(V-vV-v)			Shirt Size (Y)			
$I(\Lambda -$	x, Y = y	y=0	y=1	<i>y</i> =2	<i>y</i> =3	
Birth Gender	<i>x</i> =0	0.10	0.20	0.15	0.05	
(X)	x=1	0.05	0.15	0.20	0.10	

5.
$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Shirt 9	Shirt Size	
P(y=0)	0.15	
P(y=1)	0.35	
P(y=2)	0.35	
P(y=3)	0.15	

Birth Gender	
P(x=0)	0.50
P(x=1)	0.50

Birth Gender	
x=0	Female
x=1	Male

Shirt Size		
y=0 Small		
y=1	Medium	
y=2	Large	
y=3	X-Large	

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	y=3
Birth Gender	<i>x</i> =0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

5.
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
$$P(Y=2|X=1) = \frac{P(X=1|Y=2)P(Y=2)}{P(X=1)}$$

Shirt Size				
P(y=0)	0.15			
P(y=1)	0.35			
P(y=2)	0.35			
P(y=3) 0.15				

Birth Gender			
P(x=0)	0.50		
P(x=1)	0.50		

Birth Gender			
x=0	Female		
x=1	Male		

Shirt Size				
y=0 Small				
y=1	Medium			
y=2	Large			
y=3	X-Large			

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, birth gender (X) and shirt size (Y).

P(X=x,Y=y)		Shirt Size (Y)			
		y=0	y=1	<i>y</i> =2	y=3
Birth Gender	<i>x</i> =0	0.10	0.20	0.15	0.05
(X)	<i>x</i> =1	0.05	0.15	0.20	0.10

5.
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y=2|X=1) = \frac{P(X=1|Y=2)P(Y=2)}{P(X=1)}$$

$$P(Y=2|X=1) = \frac{(0.57)(.35)}{0.50} = 0.40$$

Shirt Size				
P(y=0)	0.15			
P(y=1)	0.35			
P(v=2)	0.35			
P(y=3)	0.15			

Birth Gender			
P(x=0)	0.50		
P(x=1)	0.50		

$$P(X=1|Y=2)=0.57$$

Let's assume we have two independent events E_1 and E_2 .

We know that $P(E_1 \text{ and } E_2) = P(E_1)P(E_2)$.

More generally, if we have n independent events E_1, \ldots, E_n .

We know that $P(E_1 \text{ and } E_2 \dots \text{ and } E_n) = P(E_1)P(E_2)\dots P(E_n)$.

Let's assume we are flipping a coin twice.

 E_1 =Head on first flip, E_2 =Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).

Let's assume we are flipping a coin twice.

 E_1 =Head on first flip, E_2 =Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).

Then
$$P(HT)=P(H)P(T)$$
 Similarly $P(TH)=P(T)P(H)$
= $p(1-p)$. = $(1-p)p$.

Let's assume we are flipping a coin twice.

 E_1 =Head on first flip, E_2 =Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).

Then
$$P(HT)=P(H)P(T)$$
 Similarly $P(TH)=P(T)P(H)$
= $p(1-p)$. = $(1-p)p$.

Let x = # of heads in two flips of a coin.

$$P(x=1) = P(HT) + P(TH)$$
 2 ways to get one H and one T 2 ways to get $x=1$ heads
$$= p(1-p) + (1-p)p = 2p(1-p).$$

Bi means two like bicycle

An experiment with only two outcomes is called a Binomial exp.

Call one outcome Success and the other Failure.

Each performance of expt. is called a trial and are independent.

$$P(X = x \mid p) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$\sum_{\substack{\text{Prob of exactly} \\ x \text{ successes}}} \text{num}(x \text{ successes } P(x \text{ successes } and n-x \text{ failures})}$$

$$\sum_{\substack{\text{num}(x \text{ successes } and n-x \text{ failures})}} p^{x} (1-p)^{n-x}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

n = number of trials or times we repeat the experiment.

x = the number of successes out of n trials.

p = the probability of success on an individual trial.

Flip coin three times.

$$p=2/3$$
 $x= # of Heads$

$$n(x)$$
= ways to get x Heads

$$P(x \mid p) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$P(1) = \frac{3!}{1!(3-1)!} (2/3)^{1} (1-2/3)^{3-1}$$

$$P(1) = 6/27$$

The Binomial PMF can equivalently be represented as.

$$P(X_1 = x_1, X_2 = x_2 \mid p_1, p_2) = \frac{n!}{x_1! x_2!} p_1^{x_1} p_2^{x_2}$$

for the probability of exactly x_1 of outcome 1 and x_2 of outcome 2 in n trials where the probability of outcome 1 is p_1 and of outcome 2 is p_2 where $x_1+x_2=n$ and $p_1+p_2=1$.

If we define vectors $x=(x_1,x_2)'$ and $p=(p_1,p_2)'$ then

$$P(x \mid p) = \frac{n!}{x_1! x_2!} p_1^{x_1} p_2^{x_2}$$

A generalization of the binomial PMF is the Multinomial PMF where there are K different possibilities with p_k and x_k being the probability and count for the kth category, k=1,...,K.

$$P(X_1 = x_1, ..., X_K = x_K \mid p_1, p_2, ..., p_K) = \frac{n!}{x_1! x_2! \cdots x_K!} p_1^{x_1} p_2^{x_2} ... p_K^{x_K}$$

Define vectors $x=(x_1,x_2,\ldots,x_K)'$ and $p=(p_1,p_2,\ldots,p_K)'$ then

$$P(x \mid p) = \frac{n!}{\prod_{k=1}^{K} x_k!} \prod_{k=1}^{K} p_k^{x_k}$$

where $x_1+x_2...+x_K=n$ and $p_1+p_2...+p_K=1$.

Expectation of RV

PMF

$$E(Y) = \sum_{Y} YP(Y)$$

$$var(Y) = \sum_{Y} (Y - E(Y))^{2} P(Y)$$

Conditional PMF

$$E(Y \mid X) = \sum_{Y} YP(Y \mid X)$$

$$var(Y | X) = \sum_{Y} (Y - E(Y | X))^{2} P(Y | X)$$

Expectation of RV

PMF

$$E(Y) = \sum_{y=0}^{3} yP(Y = y)$$

$$= 0(0.15) + 1(0.35) + 2(0.35) + 3(0.15)$$

$$= 1.50$$

1.50
$var(Y) = \sum_{y=0}^{3} (y - E(Y))^{2} P(Y = y)$
$var(Y) = (0-1.5)^{2}(0.15) + (1-1.5)^{2}(0.35)$
$+(2-1.5)^2(0.35)+(3-1.5)^2(0.15)$
=0.85

Shirt Size					
P(y=0)	0.15				
P(y=1)	0.35				
P(y=2)	0.35				
P(y=3)	0.15				
·	·				

Expectation of RV

Conditional PMF

=0.52

$$E(Y | X = 1) = \sum_{y=0}^{3} yP(Y = y | X = 1)$$

$$= 0(0.10) + 1(0.30) + 2(0.4) + 3(0.20)$$

$$= 1.70$$

$$var(Y | X = 1) = \sum_{y=0}^{3} (y - E(Y = y | X = 1))^{2} P(Y = y | X = 1)$$

$$= 0(0 - 1.7)^{2} (0.10) + (1 - 1.7)^{2} (0.30)$$

$$+ (2 - 1.7)^{2} (0.4) + (3 - 1.7)^{2} (0.20)$$

$P(Y = y \mid X = x)$		Shirt Size (Y)			
		y=0	<i>y</i> =1	<i>y</i> =2	y=3
Birth Gender	<i>χ</i> =0	0.20	0.40	0.30	0.10
(X)	x=1	0.10	0.30	0.40	0.20

Discussion

Questions?

Homework 2

1. Use Matlab to generate 1000 observations from the Birth

		O		
Gender ((X)	and Shirt Size	Y) bivariate PMF.

P(X = x, Y = y)		Shirt Size (Y)			
$I(\Lambda - \lambda, I)$	(x-y)	y=0	y=1	y=2	y=3
Birth Gender	x=0	0.10	0.20	0.15	0.05
(X)	x=1	0.05	0.15	0.20	0.10

a. Fill in a table of counts.

(V V)		Shirt Size (Y)				
n(X=x,Y=y)		y=0	<i>y</i> =1	y=2	y=3	
Birth Gender	x=0					
(X)	x=1					

b. Estimate the bivariate PMF.

$\hat{P}(X=x,Y=y)$		Shirt Size (Y)			
		y=0	<i>y</i> =1	y=2	y=3
Birth Gender	x=0				
(X)	y=1				

- c. Estimate P(Y=2|X=1).
- d. Estimate E(Y) and E(Y|X=1), y=0,1,2,3.

Homework 2

2. Use Matlab to generate 1000 observations from the Binomial PMF with n=2 and p=2/3.

a. Fill in a table of counts.

x	<i>χ</i> =0	x=1	x=2
n(X=x)			

b. Estimate the univariate PMF.

х	x=0	x=1	x=2
P(X=x)			

c. Estimate E(X).