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Probability Rules

Properties

For a bivariate probability mass function (PMF) of X and Y, P(X,Y) 
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).

The probability of a randomly selected Marquette Undergraduate student 

being a male (X=1) that wears a 

large shirt (Y=2) is 0.20.
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Probability Rules

Example: Bivariate PMF

Consider two random variables of Marquette Undergraduate students, 

birth gender (X) and shirt size (Y).
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Binomial PMF

Let’s assume we have two independent events E1 and E2.

We know that P(E1 and E2)=P(E1)P(E2).  

More generally, if we have n independent events E1,…,En.

We know that P(E1 and E2 … and En) =P(E1)P(E2)…P(En). 
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Binomial PMF

Let’s assume we are flipping a coin twice. 

E1=Head on first flip, E2=Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).
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Binomial PMF

Let’s assume we are flipping a coin twice. 

E1=Head on first flip, E2=Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).

Then  P(HT)=P(H)P(T)  Similarly    P(TH) = P(T)P(H)

                  =p(1-p).                                    = (1-p)p.
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Binomial PMF

Let’s assume we are flipping a coin twice. 

E1=Head on first flip, E2=Tail on second flip.

The probability of heads on any given flip is p = P(H).

The probability of tails (not heads) on any given flip is q = (1-p).

Then  P(HT)=P(H)P(T)  Similarly    P(TH) = P(T)P(H)

                  =p(1-p).                                    = (1-p)p.

Let x = # of heads in two flips of a coin.

P(x=1) = P(HT)+P(TH)

           = p(1-p)+(1-p)p = 2p(1-p).
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2 ways to get one H and one T

2 ways to get x=1 heads



Binomial PMF

An experiment with only two outcomes is called a Binomial exp.

Call one outcome Success and the other Failure. 

Each performance of expt. is called a trial and are independent. 

n = number of trials or times we repeat the experiment.

x = the number of successes out of n trials.

p = the probability of success on an individual trial.
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Bi means two like bicycle
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Binomial PMF

Flip coin three times. 
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Binomial PMF

The Binomial PMF can equivalently be represented as. 

for the probability of exactly x1 of outcome 1 and 

x2 of outcome 2 in n trials where the probability of 

outcome 1 is p1 and of outcome 2 is p2 where x1+x2=n

and p1+p2=1.

If we define vectors x=(x1,x2)ʹ and p=(p1,p2)ʹ then
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Binomial PMF

A generalization of the binomial PMF is the Multinomial PMF

where there are K different possibilities with pk and xk being 

the probability and count for the kth category,  k=1,…,K.  

Define vectors x=(x1,x2,,…,xK)ʹ and p=(p1,p2 ,,…,pK)ʹ then

where x1+x2…+xK=n and p1+p2…+pK=1.
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Expectation of RV

PMF

Conditional PMF
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Expectation of RV

PMF
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Expectation of RV

Conditional PMF
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Discussion

 Questions?
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Homework 2

 1. Use Matlab to generate 1000 observations from the Birth 

 Gender (X) and Shirt Size (Y) bivariate PMF.

a. Fill in a table of counts.

b. Estimate the bivariate PMF.

c. Estimate P(Y=2|X=1).

d. Estimate E(Y) and E(Y|X=1), y=0,1,2,3.
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Homework 2

 2. Use Matlab to generate 1000 observations from the  

Binomial PMF with n=2 and p=2/3.

a. Fill in a table of counts.

b. Estimate the univariate PMF.

c. Estimate E(X).
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