

Introduction to Matlab

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

Outline

Installing Matlab

Using Matlab

Saving/Loading from/into Matlab

Functions in Matlab

Discussion

Homework

Installing Matlab

For Marquette University students, Matlab is available to download without cost using the institutions license.

You will need your Marquette email address for this.

https://techsquad.mu.edu/support/solutions/articles/21001160044-Download-and-Install-MATLAB-and-Simulink-Software

Marquette University

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB Access and Support for Everyone at

Marquette University

Using Matlab

Command Window

You can type directly.

Using Matlab

Type directly into the command window for arithmetic

```
MATLAB R2020b - academic use
   HOME
              PLOTS
                        APPS
                     Tind Files
                Open 📴 Compare
Script Live Script
💠 🕩 🛅 💹 📜 🕨 C: ▶ Users ▶ Dan.Rowe ▶ Doo
  >> [1,2]+[3,4]
  ans =
                 6
  >> [1,2]*[3;4]
  ans =
       11
  >> inv([1,2;3,4])
  ans =
      -2.0000
                    1.0000
       1.5000
                   -0.5000
```

Type directly into the command window for vector and matrix operations.

Using Matlab

Don't type directly into the command window.

Type into a script.

Save and run!

Using Matlab

Using Matlab

Using Matlab

Saving/Loading from/into Matlab

You can save the worksheet from the quadratic surface as

```
save('MySurfData') % saves entire worksheet in MySurfData.mat
```

or save only the variables we want

```
save('Myfxy','fxy','X','Y') % saves fxy, X, Y in file Myfxy.mat
```

or save into a text file

Saving/Loading from/into Matlab

```
load cardata.txt
[n,p]=size(cardata);
nx=sqrt(n);, ny=nx;
fxy=reshape(cardata,[ny,nx])';
x = (1:nx); y = (1:ny);
[X,Y] = meshgrid(x,y);
figure;
surf(X,Y,fliplr(fxy)), colormap(gray)
set(gca, 'xtick', [0:20:nx])
set(gca, 'ytick', [0:20:ny])
az=140;, el=60;, view(az,el)
print(gcf,'-dtiffn','-r100',['CarScene3D'])
figure;
imagesc(fxy)
axis image, colormap(gray)
set(gca, 'xtick', [0:20:nx])
set(gca, 'ytick', [0:20:ny])
print(gcf,'-dtiffn','-r100',['CarScene'])
```


An image is a discrete digital representation of a continuous analog function f(x,y).

colorbar Saving/Loading from/into Matlab 200 120 car=fxy(93:104,27:64);figure; imagesc(car) axis image, colormap(gray), axis off print(gcf,'-dtiffn','-r100',['car']) filename = 'cardata.xlsx'; Save into an excel spreadsheet! writematrix(car,filename,'Sheet',1,'Range','A1')

There are many built in functions in Matlab to make your life easier. You can do statistics, math, image analysis,

```
n=10^6;
mu=100; sigma2=25;
x=sqrt(sigma2)*randn(n,1)+mu;

xbar=mean(x)
s2=var(x)
figure;
histogram(x,100)
print(gcf,'-dtiffn','-r100',['demoHist'])
```


https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf

There are many built in functions in Matlab to make your life easier.

You can do statistics, math, image analysis.

```
[x,y,z] = sphere;
figure;
for t=1:.1:10
    surf(x+t,y+t,z+t)
    axis square
    xlim([0,10]),ylim([0,10]), zlim([0,10])
    pause(.1)
end
```


https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf

You can create your own functions.

```
% logarithm of x base b
% usage is y=log(x,b)

function y=logb(x,b);

y=log(x)./log(b);
```


The built in functions may come as part of an add-on library

- Statistics and Machine Learning Toolbox™ (Statistics and Machine Learning Toolbox)
- Curve Fitting Toolbox[™] (Curve Fitting Toolbox)
- Control System Toolbox™ (Control System Toolbox)
- Signal Processing Toolbox™ (Signal Processing Toolbox)
- Mapping Toolbox[™] (Mapping Toolbox)
- System Identification Toolbox™ (System Identification Toolbox)
- Deep Learning Toolbox™ (Deep Learning Toolbox)
- DSP System Toolbox™ (DSP System Toolbox)
- Datafeed Toolbox™ (Datafeed Toolbox)
- Financial Toolbox™ (Financial Toolbox)
- Image Processing Toolbox™ (Image Processing Toolbox)
- Text Analytics Toolbox™ (Text Analytics Toolbox)
- Predictive Maintenance Toolbox™

for the most part we will only use low level functions so we learn how things work.

Discussion

Questions?

The best way to get better at this material is to do.

You don't get better at it by reading about it, you have to do it for yourself.

Homework 1a

- 1. Write a for loop to add the numbers 1,2,3,4,5,6,7,8,9,10.
- 2. Make a surface plot of the function

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)}$$

3. Run code, change colormap to copper, hot...


```
A = imread('FrMarquette.jpg');
figure;
imagesc(A)
axis image, axis off

I = rgb2gray(A);
figure;
imagesc(I)
axis image, axis off
colormap(gray)
imwrite(I,'GrayMarquette.jpg');
```


Homework 1a

- 4. Read your own image into Matlab.
 - a) Convert to grayscale.
 - b) Look at the pixel values of a distinctive feature in your image.
 - c) load another image of the same size (same device).
 - d) average the two images together.
 - e) display an image of the average.
 - f) Bonus: Repeat for multiple sequential images.
- 5) Generate $n=10^6$ random undergraduate heights with mean $\mu=69$ in and standard deviation $\sigma=2$ in. Make a histogram. Change μ to 65 and σ to 4. Calculate new mean and standard deviation. Make a new histogram and compare to the original.