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Filters

 Designing a filter is both a science and an art.

 The first characteristic of filters is the determination of filter size.

 General heuristics:

 The larger the image, the larger the filter.

 -Detail not as critical.

 The more homogeneous the image, the larger the filter.

 -Average over a larger region to reduce noise.
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Filters

 There are many within image filters that we can apply.

 Each has its own properties and scenarios when it should be applied.

 As we’ve seen, there are two basic types.

 Smoothing (Local Averaging-Integration). Low pass.

 Sharpening (Local differences-Differentiation). High pass.

 Combinations of Smoothing and Sharpening. High boost, band pass.
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Smoothing Filters

 Gaussian filters can be designed by specifying the area over which 

 the filter is to operate over. 

 We create Gaussian filters using the bivariate Gaussian (normal)

 distribution. We need to specify variance σ2, standard deviation σ, 

 or full-width-at-half-max (FWHM), σ2=8*ln(2)*(fwhm)2.

 The filter can be radially symmetric if we have no knowledge of

 the image, or have a preferential direction if we want to average

 more in one direction than the other.

 

 
5D.B. Rowe

Statistical Machine Vision



Smoothing Filters

 The zero mean Gaussian distribution with common variance σ2 is 

 

                         . 

 We can form a 55 Gaussian filter with σ2=0.5.

 Calculate the unnormalized weights.

 Divide all the values by the corners value.

 Round to the nearest integer.

 Divide by the sum of the integers.
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Smoothing Filters

 Matlab code for generating a Gaussian Kernel 
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% set the kernel array size

k=5;

% set the spread of the kernel

sigma2=0.5

%sigma2=8*log(2)*fwhm^2;

 

% form the unweighted kernel

x=(-(k-1)/2:(k-1)/2);

y=(-(k-1)/2:(k-1)/2);

[X,Y]=meshgrid(x,y);

gk=exp(-X.^2/(2*sigma2)).*exp(-Y.^2/(2*sigma2))

 

% form unweighted integerized kernel

gk=round(gk/gk(1,1))

 

% integer normalizing constant

c=sum(sum(gk))

 

% normalized final kernel

gk=gk/c



Smoothing Filters

 Note that we could have used different variances for differential L-R/U-D

 or incorporated correlation for an oblique angle

                       .
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Smoothing Filters

 Quite often the Gaussian filter is approximated with a Binomial filter. 

                                                              with px=py=p=1/2.

 We can form a 55 Binomial filter with p=1/2.

 Calculate the normalized weights.

 Divide all the values by the corners value.

 Round to the nearest integer.

 Divide by the sum of the integers.
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Smoothing Filters

 Matlab code for generating a Binomial Kernel 

 

 

10D.B. Rowe

Statistical Machine Vision

% set the kernel array size

k=5;

% set the probabilities of the kernel

p=0.5 % note that sigma2=n*p*(1-p);

 

% form the unweighted kernel

n=k-1; m=n;

x=(0:n);

y=(0:n);

[X,Y]=meshgrid(x,y);

% form weighted kernel

gk=(p.^X).*((1-p).^(n-X)).*(factorial(n)./(factorial(n-X).

.*(p.^Y.*(1-p).^(m-Y)).*(factorial(m)./(factorial(m-Y).*factorial(Y)))

 

% form unweighted integerized kernel

gk=round(gk/gk(1,1))

% integer normalizing constant

c=sum(sum(gk))

% normalized final kernel

gk=gk/c



Image Smoothing

 Apply to whole image and examine the difference
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Image Smoothing

 Apply to whole image and examine the difference
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Sharpening Filters

 The discrete version of the first derivatives                and  

 are Dx=f(x,y)-f(x-1,y) and Dy=f(x,y)-f(x,y-1) which in terms of kernels are

              and    

 but may also be expressed as 

              and             

 or even with larger kernels.
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Sharpening Filters

 Another version of the first derivatives are                 and                , 

 called Sobel operators, which in terms of kernels are

              and              .

 

 These derivative operators are also said to have a small

 smoothing effect. 
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Sharpening Filters

 Implementing the gradient f(x,y) is a little more complicated because

 
                                    is a vector-valued 21 quantity. 

 So typically its magnitude is computed

 or approximated by

                                                   .
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Sharpening Filters

 The gradient is implemented by applying the x and y derivative kernels,

 squaring the resulting x and y derivative images, 

 summing the squared resulting x and y derivative images,

 taking the square root of the summed squared derivative images.

 This is the magnitude of the gradient.
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Sharpening Filters
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Sharpening Filters
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Sharpening Filters
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Sharpening Filters
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Sharpening Filters

 The second derivative or Laplacian of an image 2f(x,y) is 

 

                                                      a  scalar.

 Similarly
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Sharpening Filters

 Combining the two second derivatives 

 

 leads to

 

 

Sometimes more weight is given to 
the center pixel and the Laplacian is 
approximated by

                                       .
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Sharpening Filters

 Example of Laplacian filter applied.
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Sharpening Filters

 Another common filter applied is the Laplacian of the Gaussian.

                                                   where                            .

 

 

 The result is zero in homogeneous regions.

24D.B. Rowe

Statistical Machine Vision

2 2
2

2 2
( , ) ( , ) ( , )g x y g x y g x y

x y

 
 = +

 

2 2

22
2

1
( , )

2

x y

g x y e 



+
−

=

2 2

2

2 2
2 2

4 2

1
( , ) 1

2

x y
x y

g x y e 

 

+
− +

 = − − 
 



Hybrid Filters

 Example of Laplacian of Gaussian filter applied.
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Hybrid Filters

 We can enhance the edges or high frequencies.

 We do this by subtracting the low from increased the original 

 to boost the high frequency edges.

 

 High Boost=A*(Original)-(Low)

 

 or alternatively

 High Boost = (A-1)*(Original) + (High)
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Hybrid Filters

 We can boost the edges in an image with a “high boost” filter. 

 This can be thought of as subtracting the low fom the original image.
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Hybrid Filters

 We add back part of the high to the original to boost the high.

 

 HighBoost=A*(Original)-(Low)
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=2
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-

High Boost Original Low



Hybrid Filters

 We add back part of the high to the original to boost the high.

 

 HighBoost=A*(Original)-(Low)
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Discussion

 Each of the filters, accentuates a different aspect of the image.

 Smoothing filters compute local averages to decrease noise in the image.

 Derivative filters compute rates of change in the image.

 Gradient filter computes magnitude of change at a pixel.

 Laplacian filter computes sum of x-y second derivatives.

 High Boost can accentuate edges and detail.
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Discussion

 Questions?
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Homework 3

 1. Use the described process to make an 1111 Gaussian Filter with σ2=2. 

Show YOUR steps, apply to your own image, compare to the 55 Gaussian 

filter with σ2=0.5. 

 2. Apply the Laplace 33 kernel to your image to produce a filtered image.

 3. Apply one smoothing, one sharpening, and another filter to test image.

 4*.Describe the effects of 5 different filters in the test image.

 *For students in MSSC 5770. 
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I = imread('MyTest.tif');

I=double(I);

 

figure;

imagesc(I,[0,255])

axis image, axis off

colormap(gray)

J = imread('MyTest.jpg');

J=double(J);

 

figure;

imagesc(J,[0,255])

axis image, axis off

colormap(gray)

*Note difference between I and J.



Homework 3

 Submit one document with all your results (no Matlab code) and 

 some discussion of thoughts or commentary. 

 Separately also submit executable Matlab code and any needed files.
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Homework 3
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