Machine Vision Review

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Outline

Lecture 01: Matlab Lecture 02: Within Image Processing Lecture 03: Image Filter Design **Lecture 04: Statistical Implications Lecture 05: The Correlation Coefficient** Lecture 06: Pixel Statistics & Template Matching Lecture 07: Through Image Processing Lecture 08: The Discrete Fourier Transform Lecture 09: Convolution via the DFT Lecture 10: Fast Object Tracking Lecture 11: Peaks, Valleys, and Ridges Discussion

Introduction to Matlab

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Using Matlab

Some students were using Matlab for the first time.

Installing Matlab

Using Matlab

 $10000 \\ 8000 \\ 6000 \\ 4000 \\ 2000 \\ 0 \\ 128 \\ 112 \\ 96 \\ 80 \\ 64 \\ 48 \\ 32 \\ 16 \\ 0 \\ 16 \\ 32 \\ 48 \\ 64 \\ 80 \\ 96 \\ 112 \\ 128 \\ 12$

Saving/Loading from/into Matlab

Functions in Matlab


```
filename = 'cardata.xlsx';
writematrix(car,filename,'Sheet',1,'Range','A1')
```

Save into an excel spreadsheet!

D.B. Rowe

Within Image Processing

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

There are different sizes and weightings to perform different functions.

w ₁	w ₂	w ₃	w ₄	w ₅	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	20	55	20	1
w ₆	w ₇	w ₈	w ₉	w ₁₀	1	1	1	1	1	0	0	1/5	0	0	0	1/16	1/8	1/16	0	20	403	1097	403	20
w ₁₁	w ₁₂	w ₁₃	w ₁₄	w ₁₅	1	1	1	1	1	0	1/5	1/5	1/5	0	0	1/8	1/4	1/8	0	55	1097	2981	1097	55
w ₁₆	w ₁₇	w ₁₈	w ₁₉	w ₂₀	1	1	1	1	1	0	0	1/5	0	0	0	1/16	1/8	1/16	0	20	403	1097	403	20
w ₂₁	w ₂₂	w ₂₃	w ₂₄	w ₂₅	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	20	55	20	1
									/25		•					•		•			•		/9	365
	W	eigh	ts		ľ	5x5 (aver	age			4 n	eigh	bor			Biı	าот	ial			Ga	ussia	an	

Smoothing.

There are different sizes and weightings to perform different functions.

w ₁	w ₂	w ₃	w ₄	w ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w ₆	w ₇	w ₈	w ₉	w ₁₀	0	-1	-1	-1	0	0	-1	0	1	0	0	0	1	0	0	0	0	-1	-1	0
w ₁₁	W ₁₂	w ₁₃	w ₁₄	w ₁₅	0	0	0	0	0	0	-2	0	2	0	0	1	-4	1	0	0	1	0	-1	0
w ₁₆	w ₁₇	w ₁₈	w ₁₉	w ₂₀	0	1	1	1	0	0	-1	0	1	0	0	0	1	0	0	0	1	1	0	0
w ₂₁	w ₂₂	w ₂₃	w ₂₄	w ₂₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

weights Gradient Sobel Laplacian **Oblique Gradient**

Sharpening.

Image Smoothing

D.B. Rowe

200

33	50	70	42	45	44	43	45	38
40	61	74	60	59	54	47	32	26
48	61	68	53	47	40	40	24	32
66	68	63	46	32	31	40	27	27
193	189	183	169	154	141	127	84	50
139	136	130	133	132	125	91	68	60
		Contract of the local division of the						
69	72	77	82	72	73	87	58	63
69 64	72 44	77 29	82 57	72 83	73 135	87 123	58 45	63 43
69 64 113	72 44 74	77 29 37	82 57 29	72 83 35	73 135 84	87 123 100	58 45 51	63 43 43
69 64 113 113	72 44 74 90	77 29 37 74	82 57 29 22	72 83 35 24	73 135 84 56	87 123 100 69	58 45 51 78	63 43 43 92
69 64 113 113 113	72 44 74 90 140	777 299 377 744 884	82 57 29 22 15	72 83 35 24 46	73 135 84 56 135	87 123 100 69 154	58 45 51 78 178	 63 43 92 169

Within Image Processing

0	1/5	0
1/5	1/5	1/5
0	1/5	0

4 neighbor

Image Filter Design

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Smoothing Filters

The zero mean Gaussian distribution with common variance σ^2 is

 $g(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$

D.B. Rowe

(Note that we have neglected the normalizing constant.)

We can form a 5×5 Gaussian filter with $\sigma^2=0.5$.

Calculate the unnormalized weights.

Divide all the values by the corners value.

Round to the nearest integer.

Divide by the sum of the integers.

.0067 .0183 .0067 .0003 .0003 .0067 .1353 .3679 .1353 .0067 .0183 .3679 1.0000 .3679 .0183 .0067 .1353 .3679 .1353 .0067 .0003 .0067 .0183 .0067 .0003

	_	_	_		-
1	20	55	20	1	
20	403	1097	403	20	
55	1097	2981	1097	55	/9365
20	403	1097	403	20	
1	20	55	20	1	

Image Smoothing

Apply to whole image and examine the difference

Original

D.B. Rowe

Smoothed

0	55	20	1	
3	1097	403	20	
97	2981	1097	55	
3	1097	403	20	
0	55	20	1	/

2 1

20

55

20

Gaussian

/9365

200,20

0,-20

Sharpening Filters

The discrete version of the first derivatives $\frac{\partial}{\partial x} f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$

are $D_x = f(x,y) - f(x-1,y)$ and $D_y = f(x,y) - f(x,y-1)$ which in terms of kernels are

and

but may also be expressed as

or even with larger kernels.

Prewitt's 3×3 derivative kernels are

0

Roberts cross gradient at 45° are

-1

Sharpening Filters

Derivative at center pixel.

Original

D.B. Rowe

U-D Gradient

-1	-1
0	0
1	1

200, 100,100

Difference

0, -100,-300

Sharpening Filters

Derivative at center pixel.

Original

D.B. Rowe

L-R Gradient

0	1
0	1
0	1

200, 100,100

Difference

0, -100,-300

We can boost the edges in an image with a "high boost" filter.

Original

Smoothed

This can be thought of as subtracting the low fom the original image.

D.B. Rowe

High image.

We add back part of the high to the original to boost the high.

High Boost

Original

HighBoost=A*(Original)-(Low)

HighBoost =255(HighBoost) /max(max(HighBoost)); %renormalize

D.B. Rowe

Low

Statistical Implications

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Introduction

If we were to smooth the time series (row of pixels) with say a 3 point binomial kernel, then what is the effect? Weighted average.

Reduced variance but induced temporal correlation.

Introduction

We can calculate the temporal autocorrelation and see induced correlation.

Let's examine how and why does this happen? This also happens in a 2D image!

D.B. Rowe

Make a copy of time series shifted by lag L with wrap around, then calculate The correlation between the two time

L	corx	corw
0	1.0000	1.0000
1	-0.0382	0.6707
2	0.0344	0.1757 🛖 $\frac{1}{6}$
3	-0.0049	-0.0162
4	-0.0210	-0.0768
5	-0.0791	-0.1179
6	-0.0147	-0.1125
7	-0.0577	-0.0785
8	0.0072	-0.0151
9	0.0022	0.0800
10	0.1061	0.1681
11	0.0519	0.1997
12	0.1088	0.1384
13	-0.0220	0.0073
14	-0.0805	-0.0661
15	0.0098	-0.0304
16	0.0428	-0.0082
17	-0.0609	-0.0446
18	-0.0187	-0.0516
19	0.0025	-0.0211
20	0.0056	-0.0209

Time Series Statistics

3

Because there is a two step correlation between pixels in the time series (row), we can determine the weights in the kernel used for convolution.

$$\begin{bmatrix} b & a & 0 & \cdots & \cdots & 0 & a \\ a & b & a & 0 & \cdots & \cdots & 0 \\ 0 & a & b & a & 0 & \cdots & 0 \\ 0 & a & b & a & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & 0 & a & b & a & 0 \\ 0 & \vdots & \vdots & 0 & a & b & a \\ a & 0 & 0 & \cdots & 0 & a & b \end{bmatrix} \times \begin{bmatrix} b & a & 0 & \cdots & 0 & a \\ a & b & a & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & 0 & a & b & a & 0 \\ 0 & \vdots & \vdots & 0 & a & b & a \\ a & 0 & 0 & \cdots & 0 & a & b \end{bmatrix} = \begin{bmatrix} b^2 + 2a^2 & 2ab & a^2 & 0 \\ 2ab & b^2 + 2a^2 & 2ab & a^2 \\ a^2 & 2ab & b^2 + 2a^2 & 2ab \\ 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \vdots & a^2 & 2ab \\ a^2 & \vdots & \vdots & a^2 \\ 2ab & a^2 & 0 & \cdots \\ AA' = cor(ab)$$

D.B. Rowe

This slide assumes $\sigma^2=1$.

(W)

Form $B = A^{-1}$ and deconvolve!

Time Series Statistics

Unsmoothing a time series with a deconvolution filter can be written as a matrix multiplication.

Imagine we have the below 8×8 noisy image and smooth with kernel.

Then perform convolution via a convolution matrix. wrap around

D.B. Rowe

0	1/8	0
1/8	1/2	1/8
0	1/8	0

Х

We can calculate theoretically what the induced correlation is. .05 .40 1

 \leftarrow

R correlation

D.B. Rowe

A convolution matrix

Х

0	1/8	0
1/8	1/2	1/8
0	1/8	0

-1,-5/16

convolution matrix'

If we had the induced correlation, we could calculate convolution matrix.

Correlation between (5,5) pixel and all others. Reshaped 37th row of R.

R correlation

D.B. Rowe

0	1/8	0
1/8	1/2	1/8
0	1/8	0

-1,-5/16

D.B. Rowe

Image Statistics

Calculate inverse of convolution matrix for a deconvolution matrix.

deconvolution matrix

A convolution matrix

0	1/8	0
1/8	1/2	1/8
0	1/8	0

-1

Then perform deconvolution via a deconvolution matrix.

D.B. Rowe

0	1/8	0
1/8	1/2	1/8
0	1/8	0

Х

The Correlation Coefficient

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

The Correlation Distribution

From the variances s_1^2 , s_2^2 , and covariance s_{12} we can perform a transformation of variable to obtain the correlation coefficient $r = \frac{S_{12}}{r}$.

It has been shown that the alternative hypothesis ($\rho \neq 0$) PDF is

$$f(r) = \frac{n-2}{\sqrt{2\pi}} \frac{\Gamma(n-1)}{\Gamma(n-\frac{1}{2})} \frac{(1-\rho^2)^{\frac{n-1}{2}}(1-r^2)^{\frac{n-4}{2}}}{(1-\rho r)^{n-\frac{3}{2}}} \sum_{P_1} F_1(\frac{1}{2},\frac{1}{2},n-\frac{1}{2},\frac{1}{2},1+\rho r)$$

$$F_1(\frac{1}{2},\frac{1}{2},n-\frac{1}{2},\frac{1}{2},1+\rho r)$$

which under the null hypothesis ($\rho=0$) becomes

$$f(r | H_0) = \frac{\Gamma(\frac{n-1}{2})}{\pi^{\frac{1}{2}} \Gamma(\frac{n-2}{2})} (1 - r^2)^{\frac{n-4}{2}}$$

https://en.wikipedia.org/wiki/Pearson correlation coefficient

Hotelling: New Light on the Correlation Coefficient and its Transforms. JRSS-B, 15(2), 193-232, 1953. 31

The Correlation Distribution

Example: Using the same $S_{(1)}, \ldots, S_{(L)}$ calculated $r_{(1)}, \ldots, r_{(L)}$.

Of note is that E(r) is biased. $E(r) = \int_{-1}^{1} rf(r) dr$ $f(r) = \frac{n-2}{\sqrt{2\pi}} \frac{\Gamma(n-1)}{\Gamma(n-\frac{1}{2})} \frac{(1-\rho^2)^{\frac{n-1}{2}}(1-r^2)^{\frac{n-4}{2}}}{(1-\rho^2)^{n-\frac{3}{2}}} {}_2F_1\left(\frac{1}{2},\frac{1}{2},n-\frac{1}{2},\frac{1}{2}(1+\rho r)\right)$ $E(r) = \rho + (1 - \rho^2) \left(-\frac{\rho}{2n} - \frac{\rho - 9\rho^3}{8n^2} + \frac{\rho + 42\rho^3 - 75\rho^5}{16n^3} + \cdots \right)$ $E(r) \approx \rho - \frac{\rho(1-\rho^2)}{2n} \quad \longrightarrow \quad r_{adj} \approx r \left| 1 + \frac{1-r^2}{2n} \right|$

D.B. Rowe

$\sum_{\substack{2 \times 2 \\ 2 \times 2}} \begin{pmatrix} 4 & 2 \\ 2 & 16 \end{pmatrix}$ $\rho = 0.25$

The Correlation Distribution

Example: Using the same $S_{(1)}, \ldots, S_{(L)}$ calculated $r_{(1)}, \ldots, r_{(L)}$.

Of note is that E(r) is biased. $E(r) = \int_{-1}^{1} rf(r) dr$ $f(r) = \frac{n-2}{\sqrt{2\pi}} \frac{\Gamma(n-1)}{\Gamma(n-\frac{1}{2})} \frac{(1-\rho^2)^{\frac{n-1}{2}}(1-r^2)^{\frac{n-4}{2}}}{(1-\rho^2)^{n-\frac{3}{2}}} {}_2F_1\left(\frac{1}{2},\frac{1}{2},n-\frac{1}{2},\frac{1}{2}(1+\rho r)\right)$ $E(r) = \rho + (1 - \rho^2) \left(-\frac{\rho}{2n} - \frac{\rho - 9\rho^3}{8n^2} + \frac{\rho + 42\rho^3 - 75\rho^5}{16n^3} + \cdots \right)$ $E(r) \approx \rho - \frac{\rho(1-\rho^2)}{2n} \quad \longrightarrow \quad r_{adj} \approx r \left| 1 + \frac{1-r^2}{2n} \right|$

D.B. Rowe

$\sum_{\substack{2 \times 2 \\ 2 \times 2}} \begin{pmatrix} 4 & 2 \\ 2 & 16 \end{pmatrix}$ $\rho = 0.25$

Pixel Statistics & Template Matching

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Pixel Statistics

We can use convolution to compute a local sum image.

D.B. Rowe

D.B. Rowe

Pixel Statistics

We can square every pixel value and compute a sum of squares.

D.B. Rowe

Pixel Statistics

$$s^2 =$$

We can use sum and sum of squares to compute usual the local variance.

Pixel Statistics

The variance is low in homogeneous and high in heterogeneous areas.

Variance

Original

Perhaps we could smooth more in low variance areas?

D.B. Rowe

Mean

Template Matching

We want to perform computations as fast as possible.

For our object template we can pre-compute

Then as we loop through our image, compute $\sum p_i^2 = \sum p_i^2 p_i^2$

$$r = \frac{\sum p_i o_i - \frac{1}{n} \left(\sum p_i\right) \left(\sum o_i\right)}{\sqrt{\sum p_i^2 - \frac{1}{n} \left(\sum p_i\right)^2} \sqrt{\sum o_i^2 - \frac{1}{n} \left(\sum o_i\right)^2}}$$

Template Matching

=40120 \sum

=4781080 \sum

Here are our statistic images.

Template Matching

The correlation process of our object template with our scene is:

Through Image Processing

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Videos in Matlab

Original Images

D.B. Rowe Play Video

General Properties: Name: 'Cat.mp4' Path: 'C:MATH4931 Duration: 24.8686 CurrentTime: 24.8686 NumFrames: 373

Video Properties: Width: 1280 Height: 720 FrameRate: 15.0282 BitsPerPixel: 24 VideoFormat: 'RGB24'

Videos in Matlab

Image Mean

Image Variance

D.B. Rowe

255,1750

0,0

D.B. Rowe

t=101

1/16 3/16 5/16 7/16

Pixel Temporal Convolution

View the time series of a particular pixel.

D.B. Rowe Play Video

Toggle Backward

The Discrete Fourier Transform

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

47

1D Discrete Fourier Transform

Example: Let's sample the continuous time series (1D function)

$$y(t) = 10\cos\left(2\pi\frac{0}{240}t\right) + \cos\left(2\pi\frac{4}{240}t\right) + 3\sin\left(2\pi\frac{8}{240}t\right) + \sin\left(2\pi\frac{1}{240}t\right) + \sin\left(2\pi\frac{1}{240}$$

at $t=1\Delta t, 2\Delta t, 3\Delta t, ..., n\Delta t$, where n=96 and $\Delta t=2.5$ s for a total time of 240s.

$\frac{32}{240}t$

 $1\sin(2\pi 32/240t)$

1D Discrete Fourier Transform

D.B. Rowe

Amplitude Coefficients

*coefficients divided by n/2 for display

49

When we performed convolution of a time series with a kernel, we moved the kernel, multiplied, and created a new time point. This was repeated to create an entirely new time series.

D.B. Rowe

wrap

We can take the Fourier transform of the smoothed time series and compare it to the Fourier transform of the original input time series to see how the high frequency amplitude coefficients were attenuated.

D.B. Rowe

*coefficients divided by n/2 for display

51

2D Discrete Fourier Transform

Example: Let's sample the continuous image scene (2D function)

D.B. Rowe

cosines

Convolution via the DFT

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Example: Let's sample the continuous time series (1D function)

$$y(t) = 10\cos\left(2\pi\frac{0}{240}t\right) + \cos\left(2\pi\frac{4}{240}t\right) + 3\sin\left(2\pi\frac{8}{240}t\right) + \sin\left(2\pi\frac{1}{240}t\right) + \sin\left(2\pi\frac{1}{240}$$

at $t=1\Delta t, 2\Delta t, 3\Delta t, ..., n\Delta t$, where n=96 and $\Delta t=2.5$ s for a total time of 240s.

$\frac{32}{240}t$

 $1\sin(2\pi 32/240t)$

When we performed convolution of a time series with a kernel, we moved the kernel, multiplied, and created a new time point. This was repeated to create an entirely new time series.

D.B. Rowe

wrap

We can take the Fourier transform of the smoothed time series and compare it to the Fourier transform of the original input time series to see how the high frequency amplitude coefficients were attenuated.

D.B. Rowe

*coefficients divided by n/2 for display

57

Time Series Convolution via the DFT

To demonstrate the convolution theorem, we take the discrete Forward Fourier transform of the centered kernel ...

... and the forward discrete Fourier transform of the original input time series ...

D.B. Rowe

*coefficients divided by n/2 for display

59

Time Series Convolution via the DFT

 $y(t) = 10\cos\left(2\pi\frac{0}{240}t\right) + 1\cos\left(2\pi\frac{4}{240}t\right) + 3\sin\left(2\pi\frac{8}{240}t\right) + 1\sin\left(2\pi\frac{32}{240}t\right)$

... then multiply the two forward discrete Fourier transforms ...

D.B. Rowe

= direct product, element -wise complex multiplication ".*" in Matlab

 \oplus

and inverse discrete Fourier transform to obtain the smoothed time series. . . .

D.B. Rowe

*coefficients divided by n/2 for display

61

Image Convolution Example

We can use convolution in image space to compute a local weighted mean. $\frac{200}{200}$

 \overline{x}_5

Image Convolution Example

We can Fourier transform of the smoothed image and compare it to that of the original input image to see high frequency coefficient attenuation.

D.B. Rowe

120×120 image

*coefficients divided by $n_n/2 \& \log(abs(f)+1)$ for display

Image Convolution Example

... then multiply the two forward discrete Fourier transform together ...

D.B. Rowe

direct product, element -wise complex multiplication decreased 3.1 decreased

Image Convolution Example

... and inverse discrete Fourier transform to get our smoothed image.

This process yields the same result as convolution of the image with a kernel in image assuming wrap around!

Fast Object Tracking

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Template Matching via DFT

We are going to use the DFT property to track cars with template matching.

For our object template we can pre-compute

pre-compute once compute each frame for all neighborhoods Then using the DFT compute

$$r = \frac{\sum p_i o_i - \frac{1}{n} \left(\sum p_i\right) \left(\sum o_i\right)}{\sqrt{\sum p_i^2 - \frac{1}{n} \left(\sum p_i\right)^2} \sqrt{\sum o_i^2 - \frac{1}{n} \left(\sum o_i\right)^2}}$$

Template Matching via DFT

We now have all the pieces that we need.

$$r = \frac{\sum p_i o_i - \frac{1}{n} \left(\sum p_i\right) \left(\sum o_i\right)}{\sqrt{\sum p_i^2 - \frac{1}{n} \left(\sum p_i\right)^2} \sqrt{\sum o_i^2 - \frac{1}{n} \left(\sum o_i\right)^2}}$$

Template Matching via DFT

Image 1

D.B. Rowe

-1

Template Matching via DFT

Image 1

Peaks, Valleys, and Ridges

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

71

Introduction

A recent Marquette University graduate just landed their first job to develop an image recognition system to place eggs in an egg carton.

In the same way that we can find critical points for a function, we can find critical points in an image.

We can calculate all of the necessary discrete derivatives using kernels.

D.B. Rowe

1	0	-1	
0	0	0	
-1	0	1	/16
	γтО		

Returning to the graduate's new project, the DFTs of kernel times image

I=

D.B. Rowe

Continuing with the graduate's new project,

Derivative images using Calculus.

D.B. Rowe

Image Critical Points

This process can be applied to other images

76

This process can be applied to other images

D.B. Rowe

Ι

 I_{D}

Discussion

We've taken a long journey through many topics.

We are able to load and process images in Matlab.

Convolution via the DFT can accomplish: image smoothing image sharpening image frequency decomposition image template matching image cartography

In this course you have learned a foundation for a lifetime of imaging.

Statistical Machine Vision

Discussion

Thank You!

