Introduction to Matlab

Daniel B. Rowe, PhD Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Outline

Installing Matlab

Using Matlab

Saving/Loading from/into Matlab

Functions in Matlab

Discussion

Homework

Installing Matlab

For Marquette University students, Matlab is available to download without cost using the institutions license. You will need your Marquette email address for this. https://www.mathworks.com/academia/tah-portal/marquette-university-365291.html

MATLAB Access and Support for Everyone at

Marguette University

Using Matlab

- D X							
HOME PLOTS APPS 🔚 🖓 🖓 🖓 🕞 🕞 💿 Search Documentation 🔎	Sign In						
Import Save Import Save <td< td=""><td>oport AB</td></td<>	oport AB						
Image: Structure Image: Structure <td></td>							

Command Window

You can type directly.

Using Matlab

📣 MATLAB R2020b - academic use

Type directly into the command window for arithmetic

📣 MATLAB R20	20b - academic	use	
HOME	PLOTS	APPS	
New New Script Live Scri	New Oper	G Find Files	lmpc Data
<→⊓⊾∞	FILE	ers 🕨 Dan Rowe	► Dor
>> [1,	2]+[3,4]		, Dor
ans =			
4	6		
>> [1,	2]*[3;4]]	
ans =			
11	-		
>> inv	r([1,2;3	,4])	
ans =			
-2. 1.	0000 5000	1.0000 -0.5000	
<i>fx</i> >>			

D.B. Rowe

Type directly into the command window for vector and matrix operations.

Using Matlab

Z Editor - C:\Users\Dan.Rowe\Documents\M. MATLAB R2020b - academic use 📣 MATLAB R2020b - academic use Don't type directly PLOTS APPS EDITOR PUBLISH HOME HOME PLOTS into the command **-** \Leftrightarrow **I** Find Files ÷ 2 🛅 📮 Find Files 🛅 🗔 Find window. [🔄 Compare 🔻 New Open Save Open Open [Compare New Con New New New New New Q F Script Live Script Script Live Script • 🚔 Print 🔻 FILE FILE NAV FILE 💠 🔁 🔁 🔁 🕨 🕨 C: 🕨 Users 🕨 Dar Untitled.m 🗶 🕇 🗢 🔶 🔂 🔁 📕 🕨 C: 🕨 Users 🕨 Dan.Rowe 🕨 >> Untitled $f_{x} >>$ 1 2 x=1; 3y=2; Type into a script. 4 z=x+y 3 u=x/y 5-6 Save and run! 7 v = [1, 2]u = w = [3, 4]8 9 vwt=v*w' 0.5000 10 R Run Section 11-A=[1,2;3,4] 🛃 Advance Run and Run 12-B=[5,6;7,8] Advance RUN 13 AB=A*B AinvB=A*inv(B) 14-1 2 AdivB=A./B 15 16 17 18 19 3 4 20 **.** Ready

D.B. Rowe

...

Using Matlab

D.B. Rowe

-	MATL	AB R2020	b - aca	demic us
	HON	/IE	PLO	TS
		-	÷	
Ne	ew .	New	New	Open
Scr	ipt L	ive Script.	FILE	•
41	• 🗄		► C	: 🕨 Users
	>>	Unti	tle	d3
	A			
		2		3
		3		4
C				
ţx,	>>			

Using Matlab

Z Editor - C:\Users\Dan.Rowe\Documents\MATLAB\Untitled4.m

EDITOR		PUBLISH	VIEW					
		🞝 Find Files	$\Leftrightarrow \Rightarrow$	Insert 🖡				
New Open S	ave	📕 Compare 🔻	斜 Go To 🔻	Comment §				
▼ ▼	✓ ✓ ➡ Print ✓ Q Find ▼							
	FILE		NAVIGATE	E				
Untitled4.m	× (Untitled3.m 🛛 🗙	Untitled2.m	× Untitled				
1— T =	=128	;						
2- t=	= (1:	T);						
3- A=	=5 ;							
4 – y=	=A*s	in(2*pi,	/T*t);					
5								
6- fi	lqur	e;						
7– p]	ot (t.v.'b'))					
8- x1	im([1.T]).	vlim([-	-A.Al)				
θ- se	x = x = x = x = x = x = x = x = x = x =							
10- 50	9 = set(gca, xtick, [0:16:1])							
IU Se	J = set(gca,'ytick',[-A:I:A])							

D.B. Rowe

Using Matlab

Z Editor - C:\Users\Dan.Rowe\Documents\MATLAB\Untitled5.m

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
New Open Save Compare Indent % % Bree FILE Find Indent % Bree BREA Untitled5.m Untitled4.m Untitled3.m Untitled2.m Untitled. 1 n=128; m=128; m=128; m=128;						
✓ ✓ Print ✓ Q Find ✓ Indent) Indent						
FILENAVIGATEEDITBRE.Untitled5.mVIntitled4.mUntitled3.mUntitled2.mUntitled.1n=128;m=128;						
Untitled5.m × Untitled4.m × Untitled3.m × Untitled2.m × Untitled. 1 - n=128; m=128;						
1— n=128; m=128;						
2 – fxy=zeros(n,m);						
3- $=$ for i=1:n						
4 - for j=1:m						
5 - $fxy(i,j) = (i-n/2)^2 + (j-m/2)^2$						
6— – end						
7 - end						
8						
9 — $x=(1:n); y=(1:m);$						
10^{-} [X,Y] = meshgrid(x,y);						
11 figure;						
12— surf(X,Y,fxy)						
13 - set(gca, 'xtick', [0:16:128])						
set(gca,'ytick',[0:16:128])						
15						
16— figure;						
imagesc(fxy)						
18— colormap(jet)						
set(gca, 'xtick', [0:16:128])						
20 - set(gca, 'ytick', [0:16:128])						
21 - axis image						

D.B. Rowe

pseudocolor

Saving/Loading from/into Matlab

You can save the worksheet from the quadratic surface as

save('MySurfData') % saves entire worksheet in MySurfData.mat

or save only the variables we want

save('Myfxy','fxy','X','Y') % saves fxy, X, Y in file Myfxy.mat

or save into a text file

<pre>vecfxy=reshape(fxy,[n*m,1]);</pre>	% array to vector
<pre>dlmwrite('MyVecfxy.txt',vecfxy,'\t')</pre>	% save
load MyVecfxy.txt	% load txt file
<pre>Newfxy=reshape(MyVecfxy,[n,m]);</pre>	% vector to array
figure;	% make image
<pre>imagesc(Newfxy), colormap(jet), axis</pre>	off, axis image

16

32

48

64

80

96

112

Saving/Loading from/into Matlab

```
load cardata.txt
[n,p]=size(cardata);
nx=sqrt(n);, ny=nx;
fxy=reshape(cardata,[ny,nx])';
```

```
x=(1:nx); y=(1:ny);
[X,Y]=meshgrid(x,y);
figure;
surf(X,Y,fliplr(fxy)), colormap(gray)
set(gca,'xtick',[0:20:nx])
set(gca,'ytick',[0:20:ny])
az=140;, el=60;, view(az,el)
print(gcf,'-dtiffn','-r100',['CarScene3D'])
```

```
figure;
imagesc(fxy)
axis image, colormap(gray)
set(gca,'xtick',[0:20:nx])
set(gca,'ytick',[0:20:ny])
print(gcf,'-dtiffn','-r100',['CarScene'])
```


An image is a discrete digital representation of a continuous analog function f(x,y).

Saving/Loading from/into Matlab

car=fxy(93:104,27:64);

25 14 43 127 172 165 143 139 92 91 99 131 119 92 83 96 123 122 66 72 55 56 116 174 183 147 122 129 106 121 126 136 157 149 138 135 137 145 162 126 190 189 180 182 180 185 186 182 92 116 122 101 123 105 112 114 116 133 147 128 124 142 139 124 123 111 121 123 122 109 131 172 177 150 133 124 119 12 50 45 47 51 56 51 32 146 13 121 122 124 122 122 121 128 135 135 133 124 9 21 75 121 122 124 122 122 121 128 135 135 133 124 117 99 146 137 27

13 35 126 174 194 200 200 200 199 197 194 180

21 16 86 157 171 186 168 170 181 193 196 188 162 161 141

```
imagesc(car)
axis image, colormap(gray), axis off
print(gcf,'-dtiffn','-r100',['car'])
```

```
filename = 'cardata.xlsx';
writematrix(car,filename,'Sheet',1,'Range','A1')
```

38

33

26 28

Save into an excel spreadsheet!

77 66 53

D.B. Rowe

figure;

										-
0	70	42	45	44	43	45	38	51	47	59
1	74	60	59	54	47	32	26	43	45	38
1	68	53	47	40	40	24	32	47	32	26
8	63	46	32	31	40	27	27	40	24	32
9	183	169	154	141	127	84	50	40	27	27
6	130	133	132	125	91	68	60	127	84	50
2	77	82	72	73	87	58	63	91	68	60
4	29	57	83	135	123	45	43	87	58	63
4	37	29	35	84	100	51	43	123	45	43
0	74	22	24	56	69	78	92	100	51	43
0	84	15	46	135	154	178	169	69	78	92
4	17	15	70	94	91	100	107	154	178	169
4	17	15	70	94	91	100	107	91	100	107

colorbar	

200

Ω

Functions in Matlab

There are many built in functions in Matlab to make your life easier. You can do statistics, math, image analysis,

https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf

Functions in Matlab

There are many built in functions in Matlab to make your life easier. You can do statistics, math, image analysis.

```
[x, y, z] = sphere;
figure;
for t=1:.1:10
   surf(x+t,y+t,z+t)
   axis square
   xlim([0,10]),ylim([0,10]), zlim([0,10])
   pause(.1)
end
```


https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf

D.B. Rowe

Functions in Matlab

You can create your own functions.

% logarithm of x base b
% usage is y=log(x,b)

function y=logb(x,b);

 $y=\log(x)./\log(b);$

Functions in Matlab

The built in functions may come as part of an add-on library

- Statistics and Machine Learning Toolbox[™] (Statistics and Machine Learning Toolbox)
- Curve Fitting Toolbox[™] (Curve Fitting Toolbox)
- Control System Toolbox[™] (Control System Toolbox)
- Signal Processing Toolbox[™] (Signal Processing Toolbox)
- Mapping Toolbox[™] (Mapping Toolbox)
- System Identification Toolbox[™] (System Identification Toolbox)
- Deep Learning Toolbox[™] (Deep Learning Toolbox)
- DSP System Toolbox[™] (DSP System Toolbox)
- Datafeed Toolbox[™] (Datafeed Toolbox)
- Financial Toolbox[™] (Financial Toolbox)
- Image Processing Toolbox[™] (Image Processing Toolbox)
- Text Analytics Toolbox[™] (Text Analytics Toolbox)
- Predictive Maintenance Toolbox™

for the most part we will only use low level functions so we learn how things work.

Discussion

Questions?

The best way to get better at this material is to do.

You don't get better at it by reading about it, you have to do it for yourself.

Homework 1

- 1. Write a for loop to add the numbers 1,2,3,4,5,6,7,8,9,10.
- 2. Make a surface plot of the function

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)}$$
A = imp

3. Run code, change colormap to copper, hot...

figure; imagesc(A)

I = rgb2gray(A);

figure; imagesc(I) axis image, axis off colormap(gray)

D.B. Rowe

imwrite(I, 'GrayMarquette.jpg');

- axis image, axis off
- read('FrMarquette.jpg');

Homework 1

- 4. Read your own image into Matlab.
 - a) Convert to grayscale.
 - b) Look at the pixel values of a distinctive feature in your image.
 - c) load another image of the same size (same device).
 - d) average the two images together.
 - e) display an image of the average.
 - f) Bonus: Repeat for multiple sequential images.

