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5.6 Probability Models – Normal Distribution

The normal distribution is often used for continuous outcomes.

You may know it as the bell curve or Gaussian distribution.

Its functional form is

Symmetric about the mean.

mean = median = mode.

mean μ & variance σ2 
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

Its functional form is

Symmetric about the mean.

mean = median = mode.

mean μ & variance σ2 

3D.B. Rowe

Biostatistical Methods

 BMI

( )P BMI

Total Area Under Curve = 1

2

2

( 29)

2(6)1
( )

6 2

x

P x e


−
−

=

μ  μ+σμ-2σ μ-σ μ+2σ

14%14% 2%2%

     

34% 34%

68%
95%
99%

μ-3σ μ+3σ



5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

Normally in math we do something

called an integral. x=BMI

But we are not doing Calculus and even if 

we know Calculus, we can’t integrate P(x)! 
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Sampling Distributions

One major thing is to take a random sample x1,…,xn, and average,   .

The Sampling Distribution says, if x1,…,xn, is from a population with 

mean µ and standard deviation σ, then     has            and                  . 

So by averaging, we’ve reduced our standard deviation!

Above the Sampling Distribution is the Central Limit Theorem (CLT).

The CLT says, that if n is large, i.e. n>30, then     has an approximately 

normal distribution with             and                   no matter what original 

distribution the data x1,…,xn came from.

This is HUGE, meaning we can use our old friend the normal distribution.
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5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, selecting increasing n with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

          

X from n=1 distribution

Figure from Johnson & Kuby, 2012.
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5.6 Probability Models – Normal Distribution 

Now that we know that     has a normal distribution when n is large, 

we can find probabilities (areas) for finding a random mean by

converting to a z and using the tables.
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of n=16 heights is greater than 70” when µ =67 and σ =4?
X



6.1 Introduction to Estimation 

A Point Estimate for a population parameter is a single-valued estimate 

of that parameter. i.e.      for µ or s2 for σ2.

A Confidence Interval (CI) estimate is a range of values for a population

parameter with a confidence attached (i.e., 95%).

 A CI starts with the Point Estimate and builds in what is called the 

Margin of Error. The margin of error incorporates probabilities.

        that depends on a probability
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6.2 Confidence Intervals for One Sample, 

Continuous Outcome 

Example: Find the value of          .

The (critical) value of t that has an area

of 0.025 larger than it when we have 10

degrees of freedom is 2.228.

This is the value we use for a 95% CI

when α=0.05 and n=11.

Book says n≥30 use bottom z value.
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6.2 Confidence Intervals for One Sample, 

Continuous Outcome 

Example: Suppose we wish to compute a 95% CI for true systolic BP.

A random sample of n=10 is take with sample mean    =121.2 mm Hg 

and sample standard deviation s=11.1 mm Hg.

The equation (when σ unknown) is                   , df=n-1. 

We find the critical t value in the table.

Down to row df=9 and over to column 

CI=95% (or two side-test α=0.05,

               or one side-test α=0.025).
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6.4 Confidence Intervals for Two Independent Samples, 

Continuous Outcome 

Example: A sample of n=10 males and females had systolic blood pressure 

measured. The data are: males: n1=6,     =117.5 mm Hg s1=9.7 mm Hg and 

females n2=4,     =126.8 mm Hg, s2=12 mm Hg. 

Generate a 95% CI for µ1-µ2.

                                   ,                     ,
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6.4 Confidence Intervals for Two Independent Samples, 

Continuous Outcome 

Example:  Difference in Systolic

blood pressure between two visits. 

                          Compute a 95% CI.  
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6.6 Confidence Intervals for Two Independent Samples, 

Dichotomous Outcome 

The CI for the natural log of relative risk, ln(RR) is:

CI for relative risk (RR) is: 

We go through the same process.
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6.6 Confidence Intervals for Two Independent Samples, 

Dichotomous Outcome 

CI for the natural log of odds ratio, ln(OR) is:

CI for odds ratio, OR is:

We go through the same process.
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6.7 Summary 
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Hypothesis Testing

We make decisions every day in our lives.

Should I believe A or should I believe B (not A)? 

Two Competing Hypotheses. A and B.

Null Hypothesis (H0): No difference, no association, or no effect.

Alternative Hypothesis (H1): Investigators belief.

The Alternative Hypothesis is always set up to be what you want to 

build up evidence to prove.
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7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

State the null and the alternative hypotheses.

H0: Null Hypothesis (no change, no difference) 

vs. 

H1: Research Hypothesis (investigators belief, what we want to prove)

Select a level of significance α. α=0.05
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7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

There are three possible pairs. α=0.05

H0: μ = μ0 vs. H1: μ > μ0 (prove greater than, upper tailed test)

         ≤ reject for “large"    or z’s

H0: μ = μ0 vs. H1: μ < μ0 (prove less than, lower tailed test)

         ≥ reject for “small”    or z’s

H0: μ = μ0 vs. H1: μ ≠μ0 (prove not equal to, two-tailed test)

  reject for “large” or “small”    or z’s
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7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

Use the test statistic that depends on data and null hypothesis with a critical 

value za (or ta,df) that depends on significance level α to make decision.

We will test hypotheses on various parameters with various test statistics.
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7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

  H0: μ = μ0 vs. H1: μ > μ0 H0: μ = μ0 vs. H1: μ < μ0 H0: μ = μ0 vs. H1: μ ≠ μ0

Reject H0 if z≥zα Reject H0 if z≤-zα        Reject H0 z≤-zα/2 or z≥zα/2 
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7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data x1,…,xn and hypothesized value μ0 to compute z (or t).

Compare test statistic z (or t) to critical value(s) zα/2 (or tα/2,df) with rule. 

Step 5: Conclusion.

Make a decision, reject H0 or not to reject H0.

Interpret the results.
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7.3 Tests with One Sample, Dichotomous Outcome

Example: Is proportion of children using dental service different from 0.86?

Step 1: Null and Alternative Hypotheses. 

 H0: p = 0.86 vs. H1: p ≠ 0.86

Step 2: Test Statistic.

Step 3: Decision Rule. α=0.05 

Reject H0 if z ≤ -1.960 or z ≥ 1.960.

Step 4: Compute test statistic. n=125, x=64,                         . 

Step 5: Conclusion

Because z ≤ -1.96, reject and conclude proportion different from 0.86.
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7.4 Tests with One Sample, Categorical and Ordinal Outcomes

Example: Health Survey. 

Step 1: Set up the hypotheses and determine the level of significance.

   H0: p1 = 0.60, p2 = 0.25, p3 = 0.15 vs. H1: H0: false      (only one pair)

Step 2: Select the appropriate test statistic.

  

Step 3: Set-up the decision rule.

 Reject H0 if χ2 ≥ χ2
0.05,2=5.99.

Step 4: Compute the test statistic.

Step 5: Conclusion.

Since χ2=8.46 ≥ χ2
0.05,2 =5.99, reject H0 conclude p’s not what we hypothesize.
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 Questions?

 Bring pencil/eraser, calculator, caffeinated beverage.

 Will hand out exam and formula sheet/tables.
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