Chapter 10: Nonparametric Tests B

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Nonparametric Testing

The hypothesis tests that we learned assume the data (observations) come from a statistical distribution such as the normal distribution or we assume a large sample size. These hypothesis tests are called *parametric tests.* Distributions have parameters such as μ and σ .

However, sometimes our data does not come from the normal distribution or we have a small sample size and we need to resort to alternative distribution free tests called *nonparametric tests*.

7.6 Tests with Matched Samples, Continuous Outcome

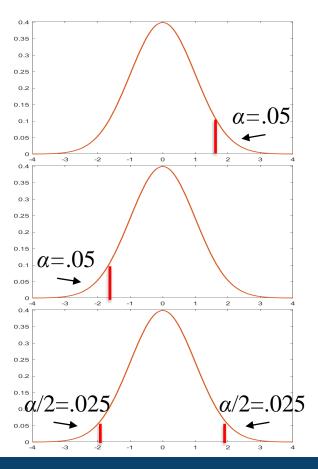
The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d > 0$ (prove greater than) reject for "large" \overline{X}_{d} or z's <

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$ (prove less than) reject for "small" \overline{X}_d or z's

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d \neq 0$ (prove not equal to) reject for "large" or "small" \bar{X}_{d}



Or *z*'**s**

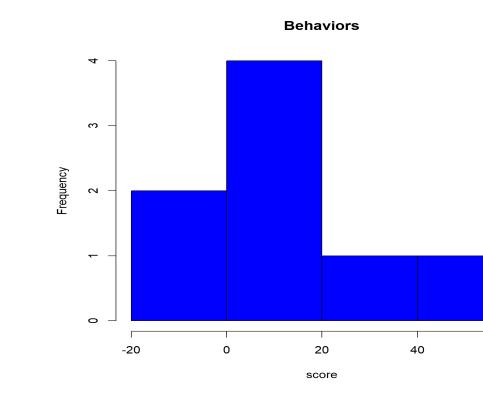
We can test if matched samples are likely from the same distribution. Some interpret this as comparing the medians between two populations.

H₀: The median difference is zero (H₀: $\delta = 0$) H₁: The median difference is positive (H₁: $\delta > 0$)

If the median difference of the matched pairs is zero, then half of the time they should be positive and half of the time negative. If the median difference is greater than zero, then there should be more positives than negatives. Sign Test.

 δ is population version of $d=x_2-x_1$.

Example: Effectiveness of new drug designed to reduce repetitive behavior. A total of *n*=8 children in the study. Observed for 3 hours before and after treatment. Test at the α =0.05 level whether the median difference in repetitive behaviors is positive.



D.B. Rowe

d -10 -5

10.3 Tests with Matched Samples – Sign Test

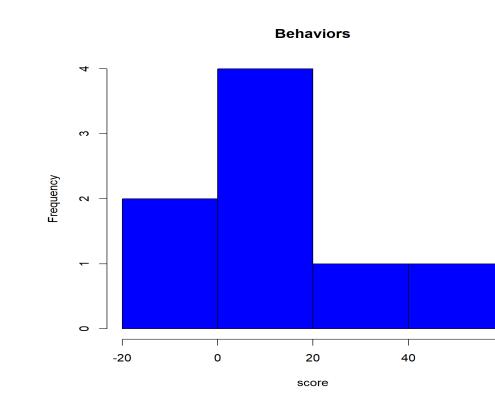
The first thing you should do is to test if the data is consistent with a normal distribution. Test at the α =0.05 level.

```
install.packages('nortest')
library(nortest)
```

```
before <- c(85,70,40,65,80,75,55,20)
after <- c(75,50,50,40,20,65,40,25)
difference <- before - after
hist(difference,col='blue',main='Behaviors',xlab='score'))
ad.test(dfference)
# if p-value < 0.05 data not normal</pre>
```

Anderson-Darling normality test data: difference A = 0.39956, p-value = 0.2744

Because *p*-value > 0.05, normal. But let's use nonparametric.



D.B. Rowe

b	а	d
85	75	10
70	50	20
40	50	-10
65	40	25
80	20	60
75	65	10
55	40	15
20	25	-5

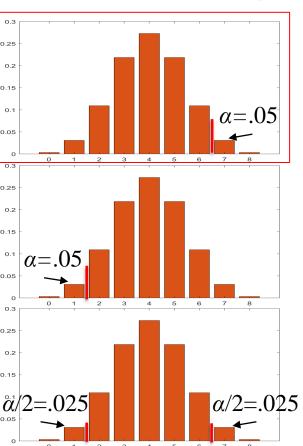
Sign Test for median difference (δ), nonparametric version of *t*-test.

Step 1: Set up the hypotheses and determine the level of significance. There are three possible pairs.

 $H_0: \delta = 0 vs. H_1: \delta > 0$ (prove greater than, upper tailed test) reject for "large" median differences <

 $H_0: \delta = 0$ vs. $H_1: \delta < 0$ (prove less than, lower tailed test) reject for "small" median differences >

 $H_0: \delta = 0$ vs. $H_1: \delta \neq 0$ (prove not equal to, two tailed test) reject for "large" or "small" median differences



We compare each difference with the conjectured median difference 0.

If a difference is larger than the hypothesized difference 0, replace with a + .

If a difference is smaller than the hypothesized difference 0, replace with a -.

If the difference is equal to the hypothesized difference 0, replace with a 0.

The test statistic is x the number of +'s.

Reject H₀ based on binomial probabilities, p=1/2.

$H_0: \delta \leq 0$ vs. $H_1: \delta > 0$

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number. $H_0: \delta \leq 0 \text{ vs. } H_1: \delta > 0$

x = (the number of differences > 0)

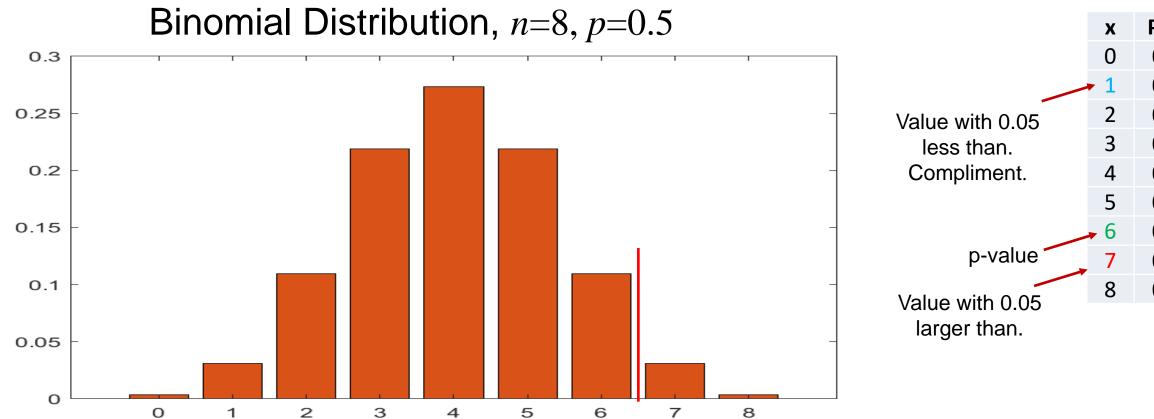
When using Table 6, "the test statistic for the Sign test is the number of positive signs or the number of negative signs, whichever is smaller." Page 240 of Sullivan.

So it would be # d's <0 using Table 6.

Use the test statistic x that depends on data and null hypothesis with a critical x_a value from a cumulative binomial distribution p=1/2.

 $x_a = x$ value with cumulative probability a larger than it from binomial, n, p=1/2. $a=\alpha$ or $\alpha/2$

10.3 Tests with Matched Samples – Sign Test



$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

Here $H_1: \delta > 0$ is the problem, reject for large # *d*'s.

When using Table 6, the test statistic for the Sign test is the number of positive signs or the number of negative signs, **whichever is smaller**. Page 240 of Sullivan.

D.B. Rowe

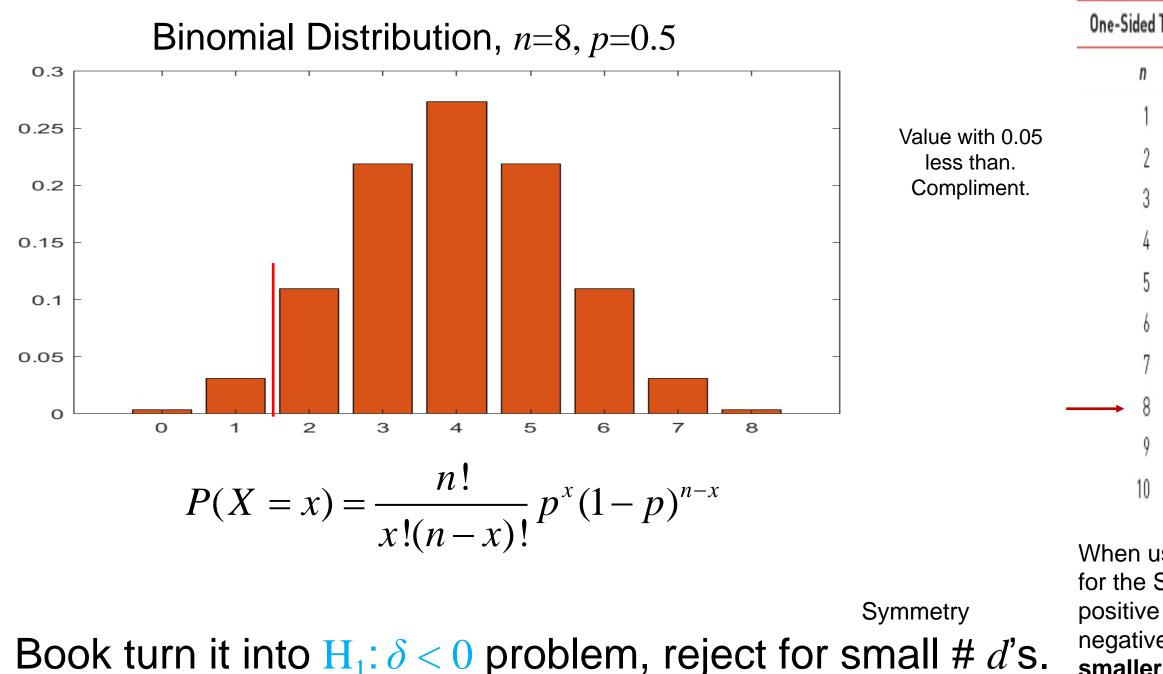
Toggle Forward

$H_0: \delta \leq 0 \text{ vs. } H_1: \delta > 0$

P(X=x)	CumSum	CumSumR
0.004	0.004	1.000
0.031	0.035	0.996
0.109	0.145	0.965
0.219	0.363	0.856
0.273	0.637	0.637
0.219	0.856	0.363
0.109	0.965	0.145
0.031	0.996	0.035
0.004	1.000	0.004

See also Table 6

10.3 Tests with Matched Samples – Sign Test



D.B. Rowe

Toggle Backward

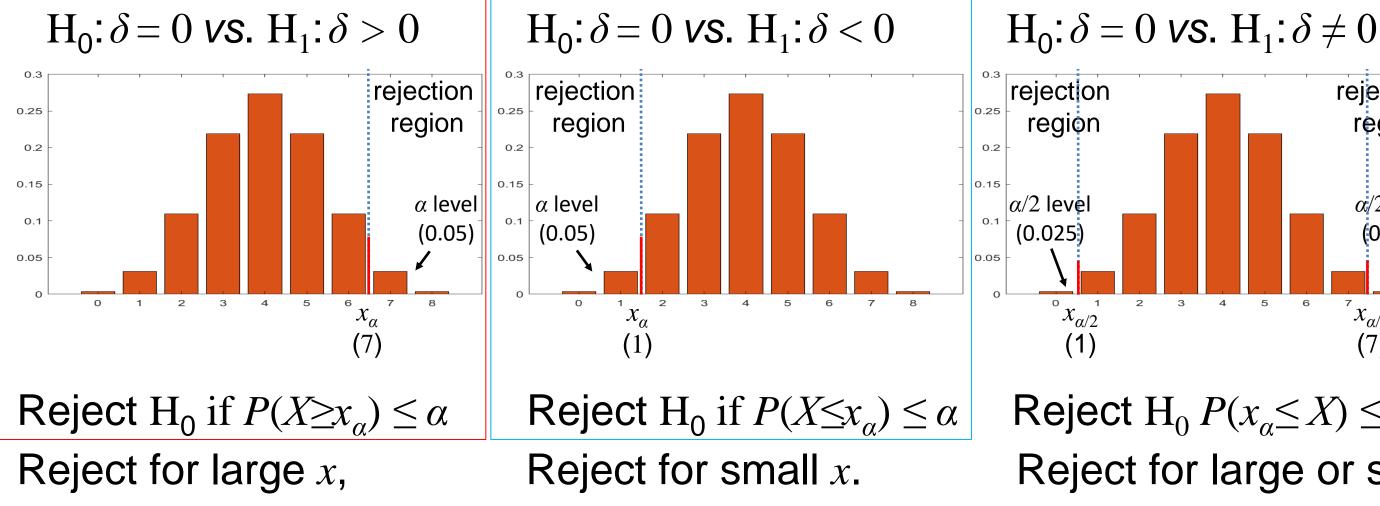
Table 6	+			
Two-Sided Test α	.10	.0	.02	2
One-Sided Test α	.05	.0	25 .01	.005
n		х	P(X=x)	CumSum
1		0	0.004	0.004
2		1	0.031	0.035
3				
4				
5	0			
6	0	()	
7	0	() ()	
→ 8	(1)	(0 0	0
9	1		1 0	0
10	1		1 0	0

When using Table 6, the test statistic for the Sign test is the number of positive signs or the number of negative signs, **whichever is smaller**. Page 240 of Sullivan.

10.3 Tests with Matched Samples – Sign Test

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.



D.B. Rowe

12

region $\alpha/2$ level (0.025)2 3 4 5 6 $x_{\alpha/2}$ α Reject $H_0 P(x_a \le X) \le \frac{1}{2}$ Reject for large or small.

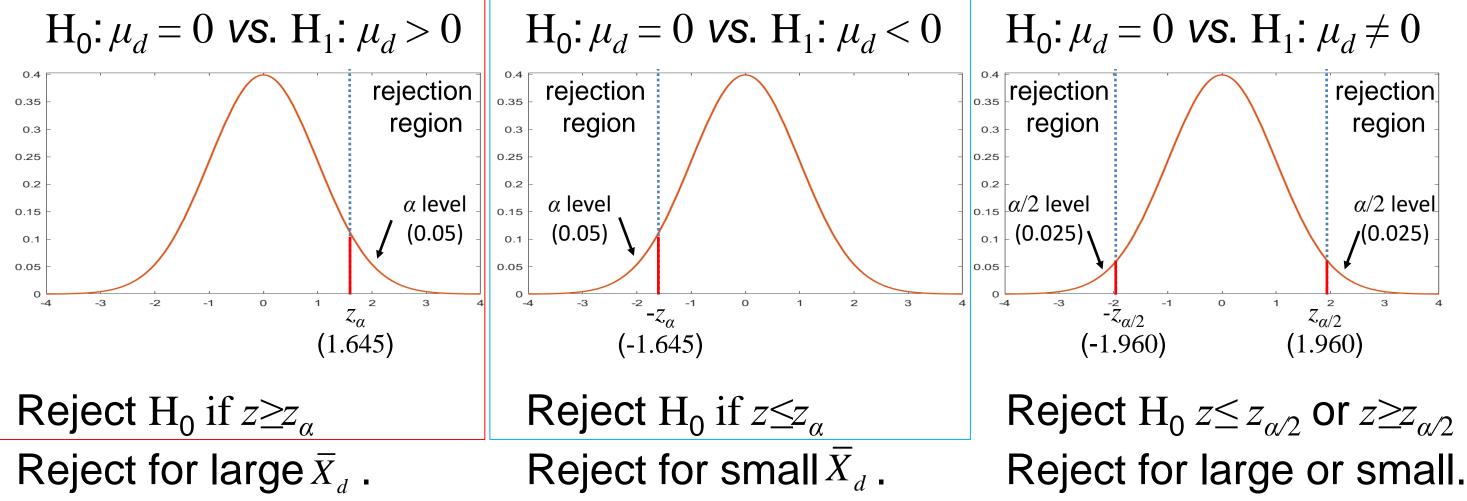
Toggle Forward

rejection

7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.



D.B. Rowe

10.3 Tests with Matched Samples – Sign Test

Step 4: Compute the test statistic.

x = (the number of differences > 0)x=6 (8-6=2 if we're going to use the table.)

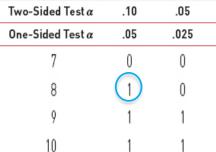
Step 5: Because $x=6 \le x_{\alpha}=7$ or p-value=0.145 > $\alpha=0.05$. $(x=2 > x_a=1$ when using Table 6)

Note:

If we used normal, we would not reject H_0 , $t=1.533 < t_{0.05,7}=1.895$.

D.B. Rowe

P(X=x) CumSum CumSumR Х 0.109 0.965 0.145 0.035 0.031 0.996 8 0.004 0.004 1.000 See also Table 6 \longrightarrow



If diff $< MD_0$ If diff = MDIf diff > MD_0

~ —	b	а	d	sorted	sign
0 ,	85	75	10	-10	-1
$P_0, 0.$	70	50	20	-5	-1
0,	40	50	-10	10	+1
₀ , +.	65	40	25	10	+1
	80	20	60	15	+1
	75	65	10	20	+1
	55	40	15	25	+1
	20	25	-5	60	+1

do not reject H_0

.02	.01	Table 6			
.01	.005	TUN			
0		х	P(X=x)	CumSum	
į.		0	0.004	0.004	
0	0	1	0.031	0.035	
0	0			2 2)	
0	0	<i>x</i> =	min(+	(S,-S)	

 $t = \frac{X - \mu_0}{c \sqrt{n}}$ $d_{f=n-1}$ $\bar{X} = 15.6250$ s = 21.4539

10.3 Tests with Matched Samples – Wilcoxon Signed Rank Test

An alternative for the test for population median difference is the Wilcoxon Signed Rank test.

Step 1: $H_0: \delta \leq 0$ vs. $H_1: \delta > 0$ δ is population version of *d*.

 H_0 : The median difference is zero (H_0 : $\delta=0$)

H₁: The median difference is positive (H₁: $\delta > 0$)

We will calculate a test statistic W the smaller of W+ and W_- .

- W^+ = sum of positive ranks
- $W_{-} =$ sum of negative ranks

$$\rightarrow W=\min(W+, W_{-})$$

If the median difference of the matched pairs is zero, then the sum of the positive ranks should be the same as the sum of the negative ranks. **D.B.** Rowe

10.3 Tests with Matched Samples – Wilcoxon Signed Rank Test $H_0: \delta \leq 0$ vs. $H_1: \delta > 0$

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number summarizing information.

$$W_+ = \text{sum of positive ranks} = 32$$

 W_{-} = sum of negative ranks = 4

$$W = \min(W_1, W_2) = \min(4, 32) = 4$$

b	а	d	sorted	sign	rank	SgnRnk
85	75	10	-10	-1	3	-3
70	50	20	-5	-1	1	-1
40	50	-10	10	+1	3	3
65	40	25	10	+1	3	3
80	20	60	15	+1	5	5
75	65	10	20	+1	6	6
55	40	15	25	+1	7	7
20	25	-5	60	+1	8	8
	<i>n</i> =8		-			

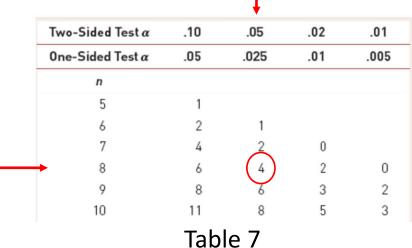
	Signed	Ranks	
SgnRnk	SgnRnk	SgnRnk	SgnRnk
1	-4	-7	-8
2	-3	-5	-7
3	-2	-3	-6
4	-1	-1	-5
5	5	2	2
6	6	4	4
7	7	6	6
8	8	8	8

IF

Reject H_0 for small W.

	Signed Ranks					
ık	SgnRnk	SgnRnk	SgnRnk			
	-4	-7	-8			
	-3	-5	-7			
	-2	-3	-6			
	-1	-1	-5			
	5	2	2			
	6	4	4			
	7	6	6			
	8	8	8			

10.3 Tests with Matched Samples – Wilcoxon Signed Rank Test

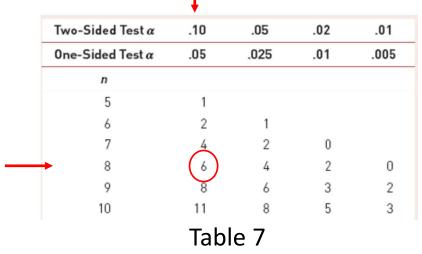


Step 4: Compute test statistic. Already done, *W*=4.

Step 5: Conclusion. Reject H_0 because $W=4 \le W_{0.05,8}=4$. Interpret.

D.B. Rowe

10.3 Tests with Matched Samples – Wilcoxon Signed Rank Test



Step 4: Compute test statistic. Already done, *W*=4.

Step 5: Conclusion. Reject H_0 because $W=4 \le W_{0.05,8}=6$. Interpret.

D.B. Rowe

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

Step 1:

We can test if three or more population medians are different.

H₀: The *k* population medians are equal H₁: The *k* population medians are not all equal

We will go through the same 5 hypothesis steps

ruskal-Wallis Test

- --

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)** The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α .

 $H_0: \mu_1 = \mu_2 \dots = \mu_k$ vs. $H_1:$ at least two μ 's different reject for "large" disparities or F=MSB/MSE.

We will assume the means are equal and calculate two different variances. If the means are truly equal, the two different variances will be the same. If the means are noy equal, the two different variances will be different.

D.B. Rowe

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

A clinical study is designed to assess differences in albumin levels.

5% Protein	10% Protein	15% Protein
3.1	3.8	4.0
2.6	4.1	5.5
2.9	2.9	5.0
	3.4	4.8
	4.2	

The question of interest is whether there is a difference in albumin levels among the three different diets.

The data is not normally distributed with same variance for ANOVA.

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α .

 $H_0: MD_1 = MD_2 \dots = MD_k$ vs. $H_1:$ at least two MD's different reject for "large" disparities H.

We will assume the medians are equal and see how different from equal.

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number.

$$H = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right) - 3(N+1)$$

 R_i is sum of ranks for sample *j*.

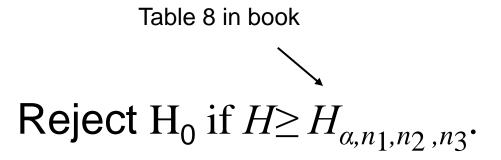
Use the test statistic that depends on data and null hypothesis with a critical value H_{α,n_1,n_2,n_3}) that depends on significance level α to make decision. ➤ Table 8 in book We will test a single hypotheses on medians with the test statistic.

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule. $H_0: MD_1 = MD_2 \dots = MD_k vs. H_1$: at least two different

Select a level of significance α .



Sample size order doesn't matter.

D.B. Rowe

			163
	Tab	ole 8	
ee groups		\checkmark	
n ₂	n ₃	<i>α</i> = .05	α = .01
2	2		
2	1		
2	2	4.714	
3	1	5.143	
3	2	5.361	
3	3	5.600	7.200
2	1		
2	2	5.333	
3	1	5.208	
3	2	5.444	6.444
3	3	5.791	6.745
4	1	4.967	6.667
4	2	5.455	7.036
4	3	5.598	7.144
4	4	5.692	7.654
2	1	5.000	
2	2	5.160	6.533
3	1	4.960	
3	2	5.251	6.909
3	3	5.648	7.079
4	1	4.985	6.955
4	2	5.273	7.205
4	3	5.656	7.445

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic. Use sample data n_1 from population 1 and n_2 from population 2 and n_3 from population 3 to compute test statistic H. Compare test statistic *H* to critical value(s) H_{α,n_1,n_2,n_3} with rule. Table 8 in book

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

Test

 $H = \left(\frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_{j}^{2}}{n_{i}}\right) - 3(N+1)$

 $N=n_1+n_2+n_3$.

10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

Example: Statistical difference in albumin for 3 diets?

Step 1: Null and Alternative Hypotheses.

 $H_0: MD_1 = MD_2 = MD_3$ vs. $H_1:$ at least two different

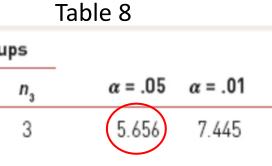
Step 2: Test Statistic. $N=n_1+n_2+n_3$.

$$H = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right) - 3(N+1)$$

Step 3: Decision Rule. $\alpha = 0.05, n_1 = 3, n_2 = 5, n_3 = 4$ Reject H₀ if $H \ge H_{\alpha, n_1, n_2, n_3} = 5.656$.

Th	ree grou
n ₁	n ₂
5	4

D.B. Rowe



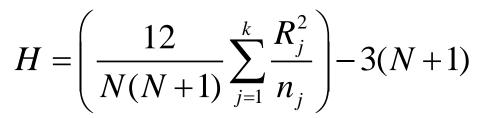
Sample size order doesn't matter.

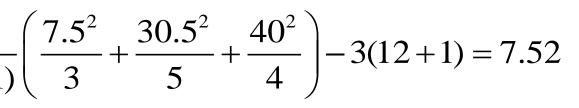
10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

Example: Statistical difference in albumin for 3 diets? **Step 4:** Compute test statistic.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total Sample (Ordere to Largest)			Ranks		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5% Protein								15% Protein
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1	3.8	4.0	2.6			1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6	4.1	5.5	2.9	2.9		2.5	2.5	
4.2 3.8 6 4.0 7 4.1 8 4.2 9 4.8 10 5.0 11 5.5 12 $R_1 = 7.5 R_3 = 4$ $R_2 = 30.5$	2.9	2.9	5.0	3.1			4		
4.0 7 4.1 8 4.2 9 4.8 10 5.0 11 5.5 $R_1 = 7.5 R_3 = 4$ $R_2 = 30.5$		3.4	4.8		3.4			5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.2			3.8			6	
4.2 9 4.8 10 5.0 11 5.5 $R_1 = 7.5$ $R_3 = 4$ $R_2 = 30.5$						4.0			7
4.8 10 5.0 11 5.5 $R_1 = 7.5$ $R_3 = 4$ $R_2 = 30.5$					4.1			8	
5.0 11 5.5 $R_1 = 7.5$ $R_3 = 4$ $R_2 = 30.5$					4.2			9	
5.5 $R_1 = 7.5$ $R_3 = 4$ $R_2 = 30.5$						4.8			10
$R_1 = 7.5$ $R_3 = 4$ $R_2 = 30.5$						5.0			11
						5.5			12
							$R_1 = 7.5$	5	$R_{3} = 40$
							· 1	$R_2 = 30.5$	5
77								TT	
11 =								H	$=\frac{12}{12}$

D.B. Rowe





10.4 Tests with More than Two Independent Samples – Kruskal-Wallis

Example: Statistical difference in albumin for 3 diets?

Step 1: Null and Alternative Hypotheses.

- $H_0: MD_1 = MD_2 = MD_3$ vs. $H_1:$ at least two different
- Step 2: Test Statistic.

$$H = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right) - 3(N+1)$$

Step 3: Decision Rule. $\alpha = 0.05, n_1 = 3, n_2 = 5, n_3 = 4$

Reject H_0 if $H \ge 5.656$.

Step 4: Compute test statistic.

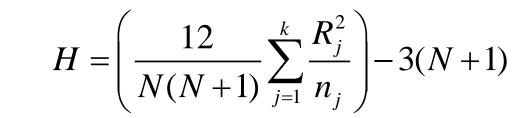
H = 7.52

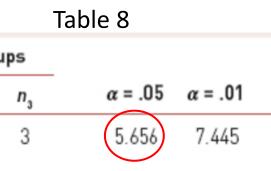
Step 5: Conclusion

Reject H_0 because 7.52 > 5.656, and conclude difference in median albumin.

Ľ	Thr	ee grou
L	n ₁	n ₂
	5	4

Sample size order doesn't matter.





10.5 Summary

Sign Test (one sample) x = number of observations > MD_0

<

<

Mann-Whitney U Test

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1}$$
$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2}$$

 $U = \min(U_1, U_2)$

Sign Test (two sample) x = number of differences > 0

Wilcoxon Signed Rank Test

 $W = \min(W+,W-)$ W+ = sum of positive ranks W = sum of negative ranks

Kruskal-Wallis Test

$$H = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right)$$

 R_i = sum of ranks for sample *j*.

D.B. Rowe

(two sample)

(three or more samples) -3(N+1)

Questions?

Homework 10

Read Chapter 10.

Problems # 6 (Sign Test), 7 (Wilcoxon Signed Rank Test), 8 (Kruskal-Wallis Test) the $n_1 = n_2 = n_3 = n_4 = 5$ critical value is 7.377.

