Chapter 10: Nonparametric Tests A

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe

Nonparametric Testing

The hypothesis tests that we learned assume the data (observations) come from a statistical distribution such as the normal distribution or we assume a large sample size. These hypothesis tests are called *parametric tests.* Distributions have parameters such as μ and σ .

However, sometimes our data does not come from the normal distribution or we have a small sample size and we need to resort to alternative distribution free tests called *nonparametric tests*.

Nonparametric Testing

The cost of fewer assumptions and not assuming a distribution is that nonparametric tests are generally less powerful than parametric tests.

When the alternative hypothesis H_1 is true, they may be less likely to reject H_0 . When your data is normal or large, use parametric tests.

There are several hypothesis tests to see if your data comes from a normal distribution. Possible tests are the Kolmogorov-Smirnov test, the Anderson-Darling test, the Shapiro-Wilks test, and the Lilliefors test.

If I knew the median MD_0 of a population (distribution) that observations or data was sampled from, then half of the time the observations are above the median and half the time below.

This means that the probability an observation is above the median MD_0 is p=1/2 and the probability below the median MD_0 is p=1/2.

So I should be able to count x, how many above MD₀ and see how likely I am to get that number or more from a binomial distribution. $P(X \ge x)$ from Binomial with *n* and p=1/2.

7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps. **Step 1:** Set up the hypotheses and determine the level of significance.

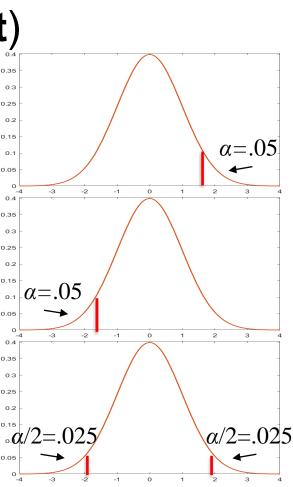
There are three possible pairs.

 $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$ (prove greater than, upper tailed test) reject for "large" X or z's

H₀: $\mu = \mu_0$ vs. H₁: $\mu < \mu_0$ (prove less than, **lower tailed test**) reject for "small" \overline{X} or z's

H₀: $\mu = \mu_0$ vs. H₁: $\mu \neq \mu_0$ (prove not equal to, two tailed test) reject for "large" or "small" \overline{X} or z's

 $t = \frac{X - \mu_0}{\overline{\Sigma}}$



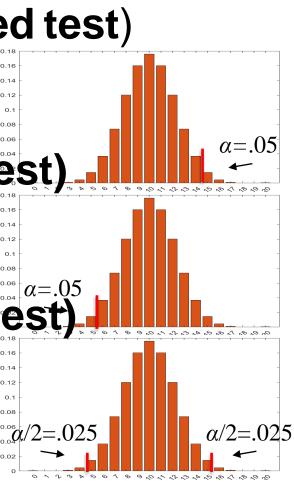
10.1 Introduction to Nonparametric Testing – Sign Test Sign Test for median (*MD*), nonparametric version of *t*-test.

Step 1: Set up the hypotheses and determine the level of significance. There are three possible pairs.

 $H_0: MD = MD_0$ vs. $H_1: MD > MD_0$ (prove greater than, upper tailed test) reject for "large" MD's <

 $H_0: MD = MD_0 vs. H_1: MD < MD_0$ (prove less than, lower tailed test) reject for "small" MD's >

 $H_0: MD = MD_0$ vs. $H_1: MD \neq MD_0$ (prove not equal to, two tailed test) reject for "large" or "small" MD's



We compare each value with the conjectured median MD_0 .

If a data value is larger than the hypothesized median, replace with a + .

If a data value is smaller than the hypothesized median, replace with a - .

If the data value is equal to the hypothesized median, replace with a 0.

The test statistic is x the number of +'s.

Reject H₀ based on binomial probabilities, p=1/2.

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number.

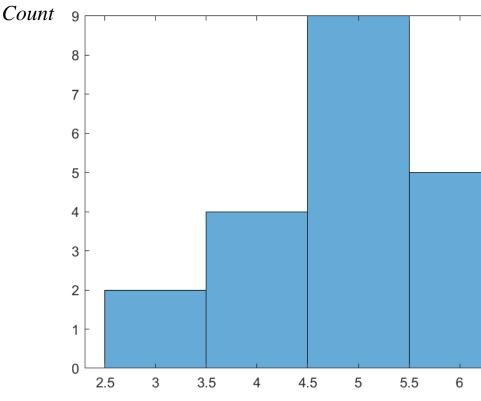
 $x = (\text{the number of observations} > MD_0)$

Use the test statistic x that depends on data and null hypothesis with a critical x_a value from a binomial distribution with probability of success p=1/2.

 $x_a = x$ value with area a larger than it from binomial, n, p=1/2. $a = \alpha \text{ or } \alpha/2$

Example: Mark is training for a 10K run. The last 20 days he recorded the number of miles he ran each day. A friend of his advised him that he should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data should be averaging more than 4 miles per day. Test at the α =0.05 data sh

D.B. Rowe



data 5 6 6 6 6.5 Miles 6

10.1 Introduction to Nonparametric Testing – Sign Test

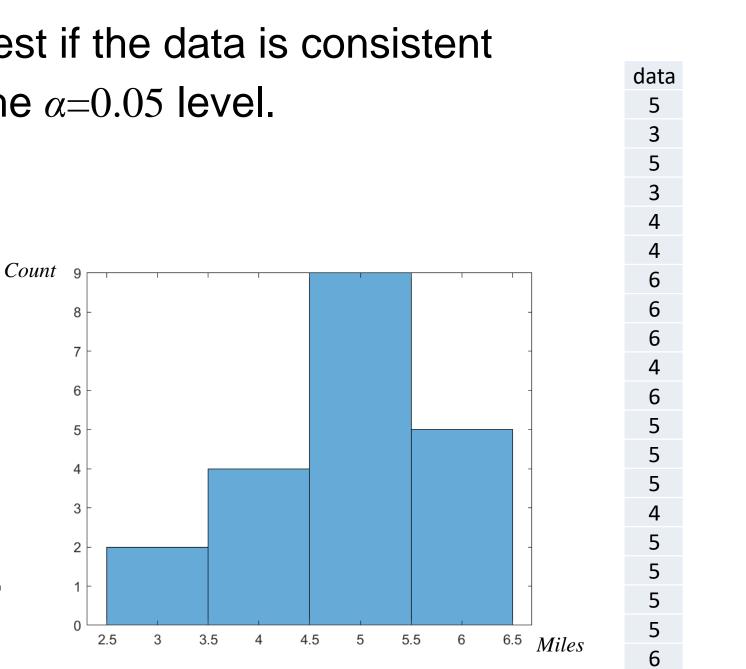
The first thing you should do is to test if the data is consistent with a normal distribution. Test at the α =0.05 level.

install.packages('nortest')
library(nortest)

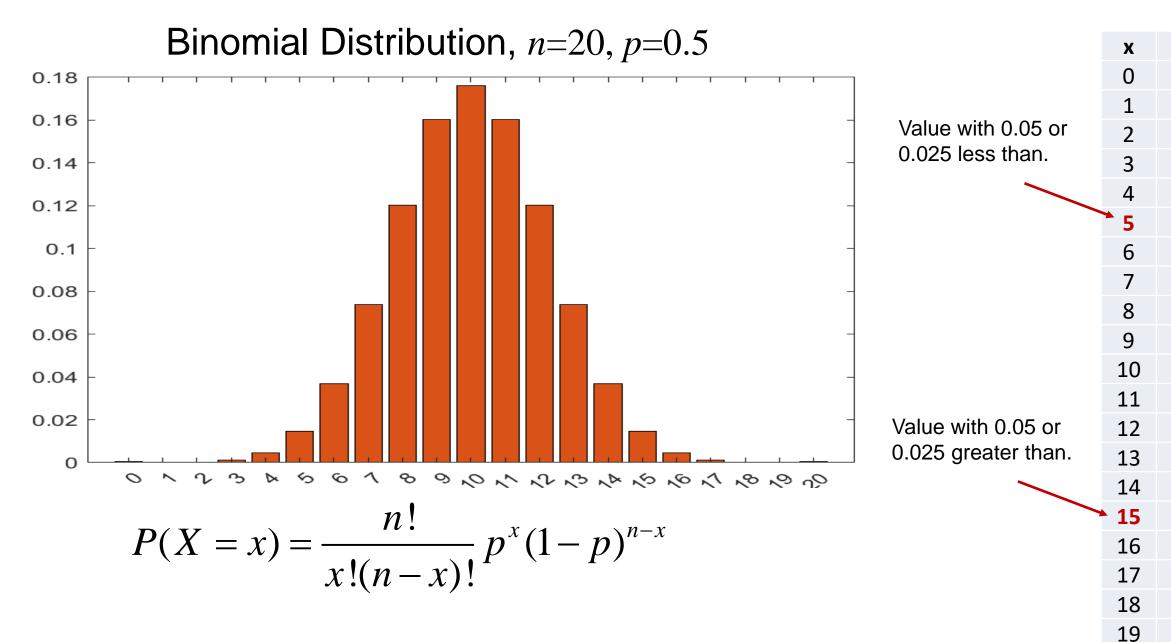
data <- c(5,3,5,3,4,4,6,6,6,4,6,5,5,5,4,5,5,5,6) ad.test(data) # if p-value < 0.05 data not normal

Anderson-Darling normality test data: data A = 1.1415, p-value = 0.00418

Because *p*-value < 0.05, not normal. Can't use parametric *t*-test.



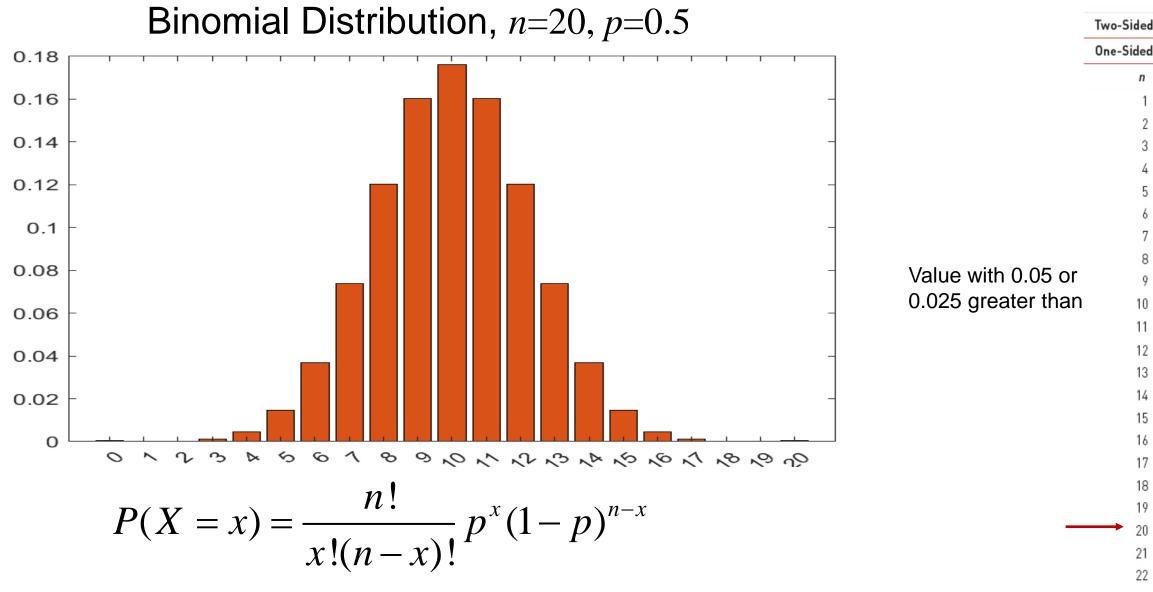
10.1 Introduction to Nonparametric Testing – Sign Test



D.B. Rowe

P(X=x)	CumSum	CumSumR
0.000	0.000	1.000
0.000	0.000	1.000
0.000	0.000	1.000
0.001	0.001	1.000
0.005	0.006	0.999
0.015	0.021	0.994
0.037	0.058	0.979
0.074	0.132	0.942
0.120	0.252	0.868
0.160	0.412	0.748
0.176	0.588	0.588
0.160	0.748	0.412
0.120	0.868	0.252
0.074	0.942	0.132
0.037	0.979	0.058
0.015	0.994	0.021
0.005	0.999	0.006
0.001	1.000	0.001
0.000	1.000	0.000
0.000	1.000	0.000
0.000	1.000	0.000
See al	so Table	6

10.1 Introduction to Nonparametric Testing – Sign Test



23 24 25

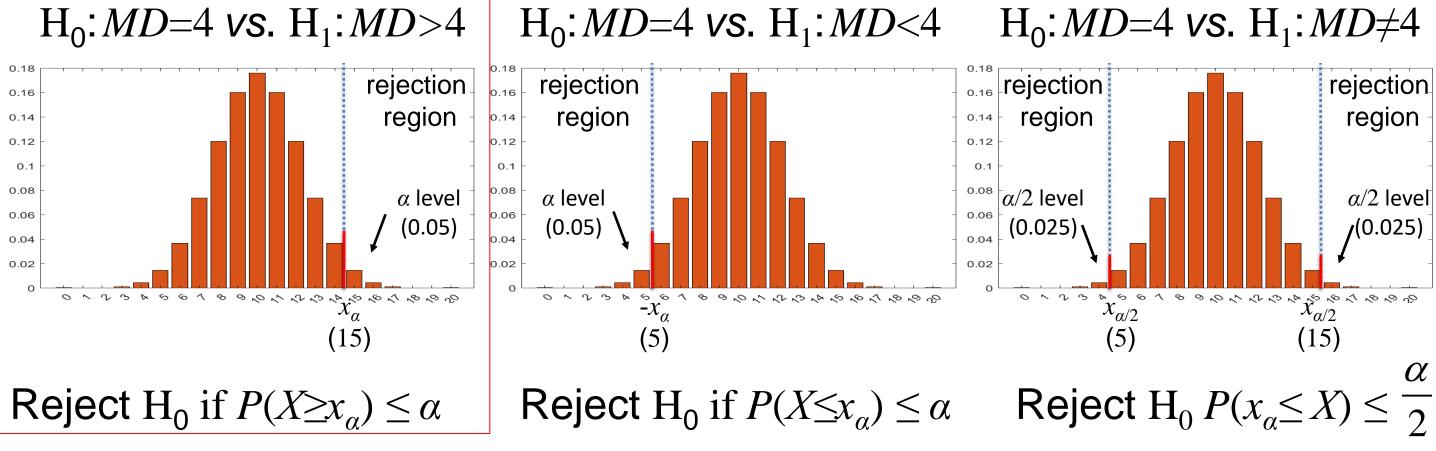
	ļ			
d Test α	.10	.05	.02	.01
d Test α	.05	.025	.01	.005

0			
0	0		
0	0	0	
1	0	0	0
1	1	0	0
1	1	0	0
2	1	1	0
2	2	1	1
3	2	1	1
3	2	2	1
3	3	2	2
4	3	2	2
4	4	3	2
5	4	3	3
5	4	4	3
5	5	4	3
6	5	4	4
6 6	5	5	4
7	6	5	4
7	6	5	5
7	7	6	5
	Table	6	

10.1 Introduction to Nonparametric Testing – Sign Test

The hypothesis testing process consists of 5 Steps.

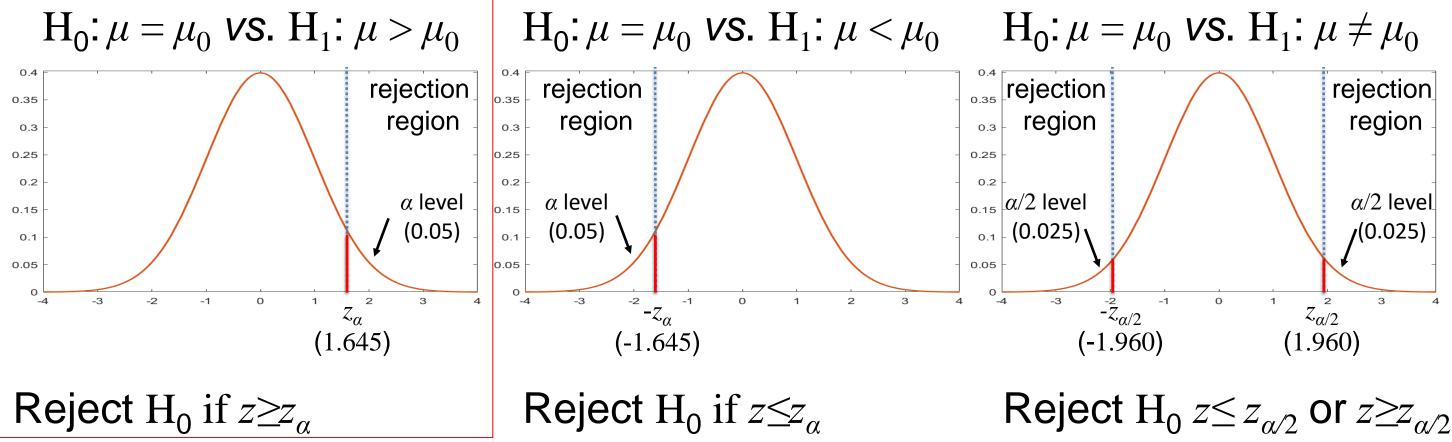
Step 3: Set-up the decision rule.



7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.



10.1 Introduction to Nonparametric Testing – Sign Test

Step 4: Compute the test statistic.

 $x = (\text{the number of observations} > MD_0 = 4)$ x = 14 If value <

If value =

If value >

Step 5: Because $x=14 < x_{\alpha}=15$, do not reject H_0 .

х	P(X=x)	CumSum	CumSumR
5	0.015	0.021	0.994
6	0.037	0.058	0.979
14	0.037	0.979	0.058
15	0.015	0.994	0.021
	See also	Table 6	

.10	.05
.05	.025
5	4
5	5
6	5
	.05 5 5

Table 6

If we used normal, we would reject H₀, $t=4.07>t_{0.05,19}=2.093$. $t=\frac{\bar{X}-\mu_0}{s/\sqrt{n}} d_{f=n-1} \bar{X}=4.8500 s=0.9333$

D.B. Rowe

Note:

: <i>MD</i> ₀ , –.
$= MD_0, 0.$
• <i>MD</i> ₀ , +.

.02	.01
.01	.005
4	3
4	3
4	4

data	sorted	sign
5	3	-1
3	3	-1
5	4	0
3	4	0
4	4	0
4	4	0
6	5	+1
6	5	+1
6	5	+1
4	5	+ 1
6	5	+1
5	5	+1
5	5	+1
5	5	+1
4	5	+1
5	6	+1
5	6	+1
5	6	+1
5	6	+1
6	6	+1

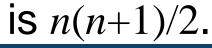
10.1 Introduction to Nonparametric Testing

In nonparametric hypothesis testing, we often focus on the order of data and use ranks, not the actual data values.

Data:	023579		Mean:	\bar{X} = 3.5
Ranks:	123456		Sum:	sum=21
	0 2 3 7 7 9 1 2 3 4.5 4.5 6	$\frac{4+5}{2} = 4.5$		\bar{X} = 4.33 sum=21
Data:	023777	$\frac{4+5+6}{3} = 5$	Mean:	<i>X</i> = 3.5
Ranks:	123555	3	Sum:	sum=21

In all cases the means are different but the sum of the ranks is n(n+1)/2.

D.B. Rowe



10.2 Tests with Two Independent Samples – Mann-Whitney U Test

We can test if two samples are likely from the same distribution. Some interpret this as comparing he medians between two populations.

 H_0 : The two populations are equal

H₁: The two populations are not equal

We will go through the same 5 hypothesis steps

10.2 Tests with Two Independent Samples – Mann-Whitney U Test

Example: Phase II clinical trial, *n*=10 children. Difference in episodes?

Step 1: Set up the hypotheses and determine α .

 H_0 : The two populations are equal

 $\alpha = 0.05$ VS.

H₁: The two populations are not equal

Some interpret this as comparing the medians between two populations. This test can be two sided or one sided. i.e. $H_0:MD_1=MD_2$ vs. $H_1:MD_1 \neq MD_2$ or $H_0:MD_1=MD_2$ vs. $H_1:MD_1 > MD_2$.

Group 1	Group 2
Placebo	NewDrug
7	3
5	6
6	4
4	2
12	10
$n_1 = 5$	$n_2 = 5$

10.2 Tests with Two Independent Samples – Mann-Whitney U Test

Step 2: Select the appropriate test statistic.

Pool data and assign ranks. Test statistic based on ranks.

		(Ordered	Sample Smallest to rgest)	R	anks	Ra	anks
Placebo	New Drug	Placebo	New Drug	Placebo	New Drug	Placebo	New Drug
7	3		1		1		1
5	6		2		2		2
6	4		3		3		3
4	2	4	4	4.5	4.5	4.5	4.5
12	1	5		6		6	
		6	6	7.5	7.5	7.5	7.5
		7		9		9	
		12		10		10	
If H_0 is	true, we e	xpect R_1 =	=R ₂ .	<i>R</i> ₁ =37	<i>R</i> ₂ =18	$R = \frac{n(r)}{r}$	$\frac{n+1}{2} = 55$

10.2 Tests with Two Independent Samples – Mann-Whitney U Test

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number summarizing information.

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1} = (5)(5) + \frac{5(5+1)}{2} - 37 = 3$$

$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2} = (5)(5) + \frac{5(5+1)}{2} - 18 = 22$$

$$U = \min(U_{1}, U_{2}) = \min(3, 22) = 3$$

Reject H_0 for small U.

complete separation

D.B. Rowe

Rankings

oup 1	Group 2	Group 1	Group 2
	1		1
	2	2	
	3		3
	4	4	
	5		5
6		6	
7			7
8		8	
9			9
10		10	
U =	= 0	U =	25

complete alternating

10.2 Tests with Two Independent Samples – Mann-Whitney U Test

Step 3: Set-up the decision rule. $n_1=5, n_2=5$ If we did Two Sided Test Reject H₀ if $U \le U_{0.05,n_1,n_2}$.

Step 4: Compute test statistic. Already done, U=3.

Step 5: Conclusion. Do not reject H_0 because $U=3>U_{0.05,5,5}=2$. Interpret.

	Sided	Test	u — 1	0.00	_	1	$\leq n$	2												
										n	1									
n ₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2
2								0	0	0	0	1	1	1	1	1	2	2	2	
3					0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	
4				0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	1
5			0	1	(2)	3	5	6	7	8	9	11	12	13	14	15	17	18	19	2
6			1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	2
7			1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	
8		0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	4
9		0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	4
10		0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	í
11		0	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	(
12		1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	ł
13		1	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	1
14		1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	8
15		1	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	9
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	9
17		2	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	10
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	11
19		2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	11
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	12

10.2 Tests with Two Independent Samples – Mann-Whitney U Test

Step 3: Set-up the decision rule.
$n_1 = 5, n_2 = 5$
If we did One Sided Test
Reject H_0 if $U \le U_{0.05,n_1,n_2}$.

Step 4: Compute test statistic. Already done, U=3.

Step 5: Conclusion. Reject H_0 because $U=3 < U_{0.05,5,5}=4$. Interpret.

One-S	Sided	Test	α=0	0.05	1	n_1	$\leq n$	2												
										n	2 ₁									
n ₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2					0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	
3			0	0	1	2	2	3	3	4	5	5	6	7	7	8	9	9	10	1
4			0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
5		0	1	2	(4)	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
6		0	2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
7		0	2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
8		1	3	5	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
9		1	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
10		1	4	7	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
11		1	5	8	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
12		2	5	9	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
13		2	6	10	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
14		2	7	11	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
15		3	7	12	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
16		3	8	14	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
17		3	9	15	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
18		4	9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
9	0	4	10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
20	0	4	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

10.5 Summary

Sign Test (one sample) x = number of observations $> MD_0$

Mann-Whitney U Test

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1}$$
$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2}$$
$$U = \min(U_{1}, U_{2})$$

Sign Test (two sample) x = number of observations > 0 Wilcoxon Signed Rank Test $W = \min(W+, W-)$ W+ = sum of positive ranks

W = sum of negative ranks

Kruskal-Wallis Test

$$H = \left(\frac{12}{N(N+1)}\sum_{j=1}^{k}\frac{R_j^2}{n_j}\right)$$

D.B. Rowe

-3(N+1)

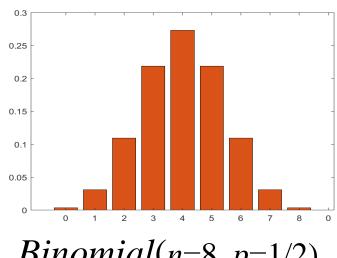
Questions?

Homework 10

Read Chapter 10.

Problems * (below), 3 (Mann-Whitney U Test)

* A basketball team has played 8 games with scores 82, 78, 89, 84, 74, 91, 80, 77 Test H₀: MD=85 vs. H₁: MD<85 at the $\alpha=0.10$ level. One sample Sign Test. Go through the 5 steps.



sinor	niai(r	<i>n</i> =8, <i>p</i> =	=1/2)
X	P(X=x)	P(X<=x)	P(X>=x)
0	0.0039	0.0039	1
1	0.0313	0.0352	0.9961
2	0.1094	0.1445	0.9648
3	0.2188	0.3633	0.8555
4	0.2734	0.6367	0.6367
5	0.2188	0.8555	0.3633
6	0.1094	0.9648	0.1445
7	0.0313	0.9961	0.0352
8	0.0039	1	0.0039

