

Chapter 7: Hypothesis Testing Procedures B

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

Hypothesis Testing

We make decisions every day in our lives.

Should I believe A or should I believe B (not A)?

Two Competing Hypotheses. A and B.

Null Hypothesis (H_0): No difference, no association, or no effect.

Alternative Hypothesis (H₁): Investigators belief.

The Alternative Hypothesis is always set up to be what you want to build up evidence to prove.

7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

Step 2: Select the appropriate test statistic.

Step 3: Set-up the decision rule.

Step 4: Compute the test statistic.

Step 5: Conclusion.

We often have two populations that we are studying.

We may be interested in knowing if the mean μ_1 of population 1 is different (while accounting for random statistical variation) from the mean μ_1 of population 2.

When we have independent random sample from each population

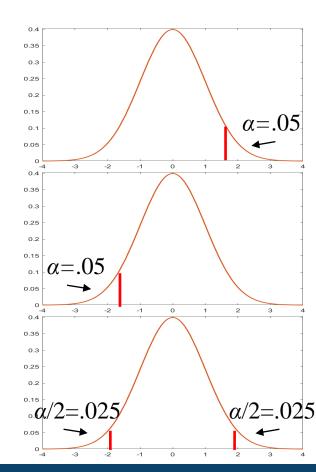
The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

$$H_0$$
: $\mu_1 = \mu_2$ vs. H_1 : $\mu_1 > \mu_2$ (prove greater than)
 \leq reject for "large" $\overline{X}_1 - \overline{X}_2$ or z 's

$$\begin{array}{ll} \text{H}_0: \mu_1 = \mu_2 \text{ vs. H}_1: \mu_1 < \mu_2 \text{ (prove less than)} \\ \geq & \text{reject for "small" $\bar{X}_1 - \bar{X}_2$ or z's} \end{array}$$

$$H_0$$
: μ_1 = μ_2 v s. H_1 : μ_1 /= μ_2 (prove not equal to) reject for "large" or "small" $\overline{X}_1 - \overline{X}_2$ or z 's



The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$z = \frac{(\bar{X}_{1} - \bar{X}_{2}) - 0}{S_{P} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

n large
$$z = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad t = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad df = n_1 + n_2 - 2$$

$$\overline{X}_i = \frac{1}{n} \sum X \qquad i=1,2$$

$$S_P = \sqrt{\frac{(n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2}{n_1 + n_2 - 2}}$$

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a,df}$) that depends on significance level α to make decision. $a = \alpha \text{ or } \alpha/2$

We will test hypotheses on various parameters with various test statistics.

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

Reject H_0 if $z \ge z_{\alpha}$ (or $t \ge t_{\alpha,df}$) Reject H_0 if $z \le z_{\alpha}$ (or $t \le t_{\alpha,df}$) Reject H_0 $z \le z_{\alpha/2}$ or $z \ge z_{\alpha/2}$ (or $t \le t_{\alpha/2,df}$ or $t \ge t_{\alpha/2,df}$)

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data n_1 from population 1 and n_2 from population 2 to compute z (or t).

Compare test statistic z (or t) to critical value(s) $z_{\alpha/2}$ (or $t_{\alpha/2,df}$) with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$df = n_1 + n_2 - 2$$

	Sample Size	Mean	Deviation 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
New drug	15	195.9	28.7
Placebo	15	227.4	30.3

Example: Is the mean cholesterol of new drug < mean of placebo?

Step 1: Null and Alternative Hypotheses.

$$H_0: \mu_1 \ge \mu_2$$
 vs. $H_1: \mu_1 < \mu_2$

Step 2: Test Statistic.

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{S_P \sqrt{1/n_1 + 1/n_2}} \qquad df = n_1 + n_2 - 2$$

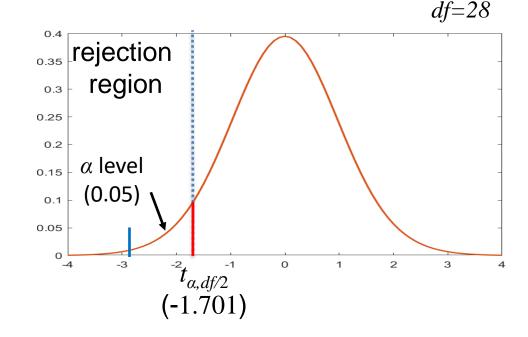
Step 3: Decision Rule. α =0.05 , df=15+15-2=28

Reject H_0 if $t \le -1.701$.

Step 4: Compute test statistic.

$$t = (195.9 - 227.4)/(29.5\sqrt{1/15 + 1/15}) = -2.92$$

Step 5: Conclusion



$$\overline{X}_i = \frac{1}{n} \sum X$$
 $i=1,2$
$$S_P = \sqrt{\frac{(15-1)(28.7)^2 + (15-1)(30.3)^2}{15+15-2}} = 29.5$$

Because $-2.92 \le -1.701$, reject and conclude mean of drug less than placebo.

We often encounter two samples where there are matched pairs. This is often the case for before vs. after, twins, couples, etc. We subtract x_1 from sample 1 and x_2 from sample 2 for each pair.

The differences are labeled generically $d=x_1-x_2$ and so the sample of differences is d_1,\ldots,d_n .

Once we have these differences we treat them exactly the same as we did in Section 7.2 Tests with One Sample, Continuous Outcome.

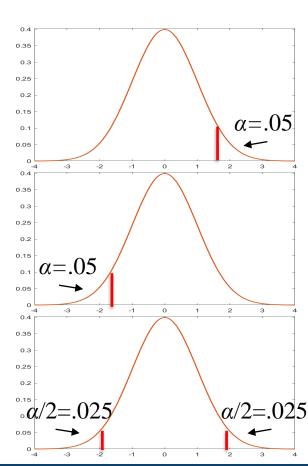
The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

$$H_0$$
: μ_d =0 v s. H_1 : μ_d >0 (prove greater than) \leq reject for "large" \overline{X}_d or z 's

$$H_0$$
: μ_d =0 vs. H_1 : μ_d <0 (prove less than) \geq reject for "small" \overline{X}_d or z 's

$$H_0$$
: μ_d =0 vs. H_1 : μ_d ≠0 (prove not equal to) reject for "large" or "small" \overline{X}_d or z '



The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$z = \frac{\overline{X}_d - 0}{s_d / \sqrt{n}}$$

$$t = \frac{\overline{X}_d - 0}{s_d / \sqrt{n}}$$

$$\overline{X}_{d} = \frac{1}{n} \sum d$$

$$S_{d} = \sqrt{\frac{1}{n-1} \left[\sum X^{2} - \frac{1}{n} \left(\sum X \right)^{2} \right]}$$

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a,df}$) that depends on significance level α to make decision.

df=n-1

We will test hypotheses on various parameters with various test statistics.

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

Reject H_0 if $z \ge z_\alpha$ (or $t \ge t_{\alpha,df}$) Reject H_0 if $z \le z_\alpha$ (or $t \le t_{\alpha,df}$) Reject H_0 $z \le z_{\alpha/2}$ or $z \ge z_{\alpha/2}$ (or $t \le t_{\alpha/2,df}$ or $t \ge t_{\alpha/2,df}$)

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data n_1 from population 1 and n_2 from population 2 to compute z (or t).

Compare test statistic z (or t) to critical value(s) $z_{\alpha/2}$ (or $t_{\alpha/2,df}$) with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

$$t = \frac{\overline{X}_d - 0}{s_d / \sqrt{n}}$$

Example: Is there a difference in mean of new drug from baseline?

Step 1: Null and Alternative Hypotheses.

$$H_0$$
: $\mu_d = 0$ vs. H_1 : $\mu_d \neq 0$

Step 2: Test Statistic.

$$t = \frac{\overline{X}_d}{s_d / \sqrt{n}} \qquad df = n-1$$

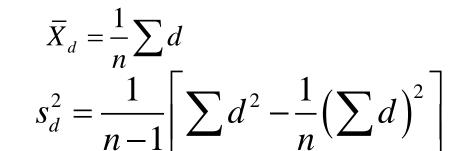
Step 3: Decision Rule. α =0.05 , df=15-1=14

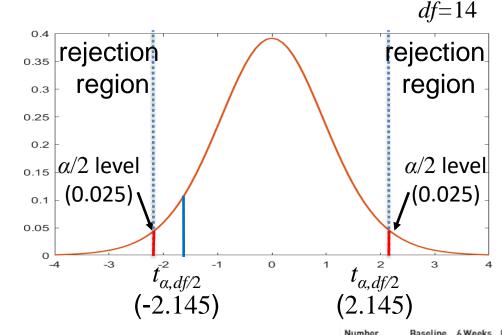
Reject H₀ if $t \le -2.145$ or $t \ge 2.145$.

Step 4: Compute test statistic.

$$t = -5.3/(12.8/\sqrt{15}) = -1.60$$

Step 5: Conclusion





Number	Baseline	6 Weeks	Difference
1	215	205	10
2	190	156	34
3	230	190	40
4	220	180	40
5	214	201	13
6	240	227	13
7	210	197	13
8	193	173	20
9	210	204	6
10	230	217	13
11	180	142	38
12	260	262	-2
13	210	207	3
14	190	184	6
15	200	193	7
	-	$\overline{X}_d = -$	-5.30

Because $-2.145 \le -1.60$, do not reject H₀ and conclude no reduction.

We often have two populations that we are studying.

We may be interested in knowing if the proportion p_1 of population 1 is different (while accounting for random statistical variation) from the proportion p_1 of population 2.

When we have independent random sample from each population and the sample sizes are large.

The hypothesis testing process consists of 5 Steps.

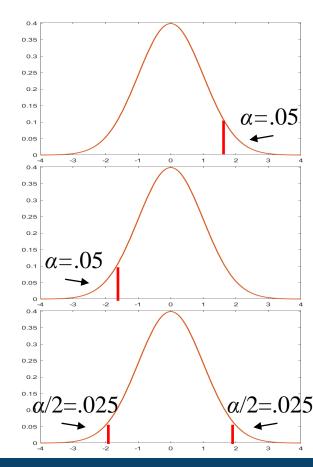
Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

$$H_0$$
: $p_1 = p_2$ vs. H_1 : $p_1 \neq p_2$ (prove not equal to)

risk difference RD

reject for "large" or "small" $\hat{p}_1 - \hat{p}_2$

or z 's



The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

n large
$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad \hat{p}_1 = \frac{x_1}{n_1} \qquad \hat{p}_2 = \frac{x_2}{n_2} \qquad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Use the test statistic that depends on data and null hypothesis with a critical value z_a that depends on significance level α to make decision.

$$a = \alpha \text{ or } \alpha/2$$

We will test hypotheses on various parameters with various test statistics.

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

$$H_0: p_1 = p_2$$
 VS. $H_1: p_1 > p_2$ $H_0: p_1 = p_2$ VS. $H_1: p_1 < p_2$ $H_0: p_1 = p_2$ VS. $H_1: p_1 \neq p_2$ rejection region region $\frac{\alpha}{\alpha}$ rejection region $\frac{\alpha}{\alpha}$ rejection $\frac{\alpha}{\alpha}$ rejection

Reject H_0 if $z \ge z_\alpha$

Reject H_0 if $z \le z_\alpha$

Reject $H_0 z \le z_{\alpha/2}$ or $z \ge z_{\alpha/2}$

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data n_1 from population 1 and n_2 from population 2 to compute z.

Compare test statistic z to critical value(s) $z_{\alpha/2}$ with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

The hypothesis test on risk difference

$$H_0: p_1=p_2 \text{ vs. } H_1: p_1\neq p_2$$

$$H_0$$
: $RD=0$ vs. H_1 : $RD\neq 0$

Is equivalent to the two hypothesis tests

Risk Ratio RR

$$H_0$$
: $RR = 1$ vs. H_1 : $RR \neq 1$

and

Odds Ratio OR

$$H_0: OR = 1 \text{ vs. } H_1: OR \neq 1$$

We often have more than two populations that we are studying.

We may be interested in knowing if the mean μ_1 of population 1 is different (while accounting for random statistical variation) from the mean μ_1 of population 2, and the mean μ_k of population k.

When we have independent random sample from each population

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α .

 H_0 : $\mu_1 = \mu_2 \dots = \mu_k$ vs. H_1 : at least two μ 's different reject for "large" disparities or F = MSB/MSE.

We will assume the means are equal and calculate two different variances. If the means are truly equal, the two different variances will be the same. If the means are noy equal, the two different variances will be different.

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$F = \frac{MSB}{MSE} \qquad MSB = \frac{\sum n_j (\bar{X}_j - \bar{X})^2}{k - 1} \qquad MSE = \frac{\sum \sum n_j (X - \bar{X}_j)^2}{N - k} \qquad \frac{df_1 = k - 1}{df_2 = N - k}$$

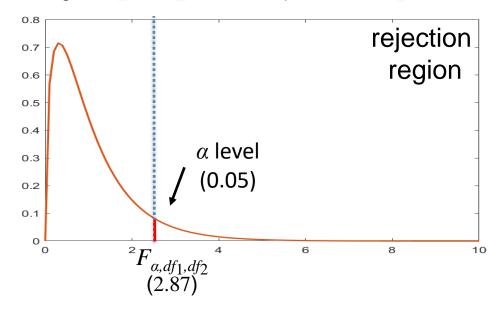
Use the test statistic that depends on data and null hypothesis with a critical value F_{α,df_1,df_2}) that depends on significance level α to make decision.

We will test a single hypotheses on means with the test statistic.

The hypothesis testing process consists of 5 Steps.

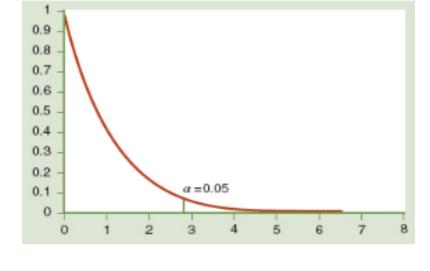
Step 3: Set-up the decision rule.

 $H_0: \mu_1 = \mu_2 \dots = \mu_k vs. H_1$: at least two different



$$df_1 = k-1=3$$

$$df_2 = N - k = 36$$



book has wrong graph

Reject H_0 if $F \ge F_{\alpha,df_1,df_2}$.

Table 4 in book

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data n_1 from population 1 and n_2 from population 2 to compute test statistic F.

Compare test statistic F to critical value(s) F_{α,df_1,df_2} with rule.

Table 4 in book

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 .

Interpret the results.

$$F = \frac{MSB}{MSE}$$

7.8 Tests with More than Two Independent Samples,

Continuous Outcome (ANOVA)

Example: Find the value of $F_{0.05,3,16}$. $\alpha \qquad \uparrow \qquad \uparrow \qquad df_2 = n_2 - 1$ $df_1 = n_1 - 1$

The (critical) value of F that has an area of 0.05 larger than it when we have $df_1=3$ (numerator) and $df_2=16$ (denominator) degrees of freedom is 3.24.

						P(<i>F_{of,}</i> e.g., P(<i>F</i>	$\frac{df_2}{df_2} > F$)	= 0.05, 10) = 0.	.05					
			V				df_1							
df ₂	1	2	3	4	5	6	7	8	9	10	20	30	40	50
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	248.0	250.1	251.1	251.8
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.46	19.47	19.48
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.62	8.59	8.58
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.75	5.72	5.70
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.56	4.50	4.46	4.44
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.87	3.81	3.77	3.75
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.44	3.38	3.34	3.32
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.15	3.08	3.04	3.02
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	2.94	2.86	2.83	2.80
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.77	2.70	2.66	2.64
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.65	2.57	2.53	2.51
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.54	2.47	2.43	2.40
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.46	2.38	2.34	2.31
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.39	2.31	2.27	2.24
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.33	2.25	2.20	2.18
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.28	2.19	2.15	2.12
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.23	2.15	2.10	2.08
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.19	2.11	2.06	2.04
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.16	2.07	2.03	2.00
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.12	2.04	1.99	1.9

This is the value we use for a 95% HT when α =0.05, n_1 =6, and n_2 =11.

The book only has α =0.05, but would have another page for each α value.

28

L	ow-Calorie	Low-Fat	Low-Carbohydrate	Control
	8	2	3	2
	9	4	5	2
	6	3	4	-1
	7	5	2	0
	3	1	3	3
	6.6	3.0	3.4	1.2

Example: Statistical difference in weight loss among 4 diets?

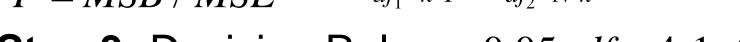
Step 1: Null and Alternative Hypotheses.

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ vs. H_1 : at least two different

Step 2: Test Statistic.

$$F = MSB / MSE$$
 $df_1=k-1$ $df_2=N-k$

$$df_1 = k-1$$
 $df_2 = N$



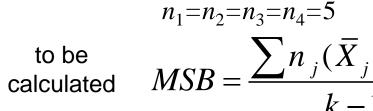
Step 3: Decision Rule. α =0.05, df_1 =4-1=3, df_2 =20-4=16

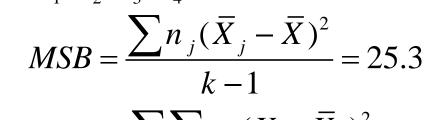
Reject H_0 if $F \ge 3.24$.

Step 4: Compute test statistic.

$$F = 25.3 / 3.0 = 8.43$$

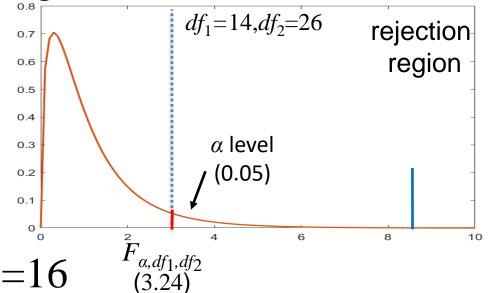
Step 5: Conclusion





$$MSE = \frac{\sum \sum n_{j} (X - \overline{X}_{j})^{2}}{N - k} = 3.0$$

Because 8.43 > 3.24, reject H₀ and conclude diets mean weight loss different.



7.9 Tests for Two or More Independent Samples, **Categorical and Ordinal Outcomes**

Hypothesis test follows similar to Section 7.4 one sample.

Biostatistical Methods

7.10 Summary

TABLE 7-50 Summary of Key Formulas for Tests of Hypothesis

Outcome Variable, Number of Groups: Null Hypothesis	Test Statistic*
Continuous outcome, two independent samples: H_0 : $\mu_1 = \mu_2$	$Z = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{1/n_1 + 1/n_2}}$
Continuous outcome, two matched samples: H_0 : $\mu_d = 0$	$Z = \frac{\overline{X}_d - \mu_d}{s_d / \sqrt{n}}$
Continuous outcome, more than two independent samples: H_0 : $\mu_1 = \mu_2 = = \mu_k$	$F = \frac{\sum n_{j} (\overline{X}_{j} - \overline{X})^{2} / (k-1)}{\sum \sum (X - \overline{X}_{j})^{2} / (N - K)}$
Dichotomous outcome, one sample: H_0 : $p = p_0$	$z = \frac{\hat{\rho} - \rho_0}{\sqrt{\frac{\rho_0 \left(1 - \rho_0\right)}{n}}}$
Dichotomous outcome, two independent samples: H_0 : $p_1 = p_2$, $RD = 0$, $RR = 1$, $OR = 1$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$
Categorical or ordinal outcome, one sample: $H_0: p_1 = p_{10}, p_2 = p_{20},, p_k = p_{k0}$	$\chi^2 = \Sigma \frac{\left(O - E\right)^2}{E}, df = k - 1$
Categorical or ordinal outcome, two or more independent samples: H ₀ : Outcome and groups are independent	$\chi^2 = \sum \frac{(0-E)^2}{E}, df = (r-1)(c-1)$

Questions?

Homework 7 Part II

Read Chapter 7.

Problems # 12, 18, 10, 19, 11