Chapter 7: Hypothesis Testing Procedures A

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Hypothesis Testing

We make decisions every day in our lives.

- Should I believe A or should I believe B (not A)?
- Two Competing Hypotheses. A and B.
- Null Hypothesis (H_{n}): No difference, no association, or no effect.
- Alternative Hypothesis (H_1) : Investigators belief.

The Alternative Hypothesis is always set up to be what you want to build up evidence to prove.

Example: Friend's Party. H_0 : The party will be boring. VS.

 H_1 : The party will be fun.

I wish that every time I had to make a decision, I could calculate a measure and use this measure (test statistic) to decide what to do.

Maybe use \hat{p} the sample proportion of fun parties friend has had? I might believe the party will be fun if \hat{P} is "large."

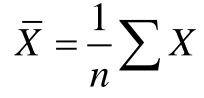
 $\hat{p} = \frac{x}{-}$ n

 $^{\leq}$ **Example:** Men's Weight. H₀: The mean weight of men is equal to 191 lbs. $\mu = 191$ lbs VS.

H₁: The mean weight of men is greater than 191 lbs. $\mu > 191$ lbs

I wish that every time I had to make a decision, I could calculate a measure and use this measure (test statistic) to decide what to do.

Maybe use X the sample mean weight of men? I might believe men's mean weight ≥ 191 if \overline{X} is "large."



Example: H_0 : $\mu = 191$ lbs vs. H_1 : $\mu \ge 191$ lbs

To test the hypothesis, take a sample of n=100 men's weights.

Suppose n=100, X = 197.1 lbs, and s=25.6 lbs.

Is 197.1 statistically larger than 191?

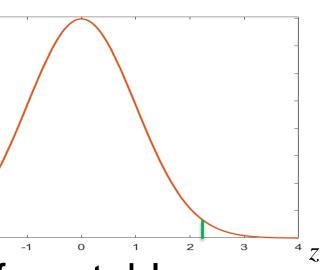
In hypothesis testing we assume H_0 is true, then see how likely \overline{X} is.

$$P(\bar{X} > 197.1) = P\left(\frac{\bar{X} - 191}{25.6 / \sqrt{100}} > \frac{197.1 - 191}{25.6 / \sqrt{100}}\right)$$

very unlikely P(z > 2.38) = 1 - 0.9913 = 0.0087

Assumed that X was normal and used z because n>30. 2.38 from table

D.B. Rowe



0.1

0.05

Example: H_0 : $\mu = 191$ lbs vs. H_1 : $\mu \ge 191$ lbs

To test the hypothesis, take a sample of n=100 men's weights.

Suppose n=100, X = 192.1 lbs, and s=25.6 lbs.

Is 192.1 statistically larger than 191?

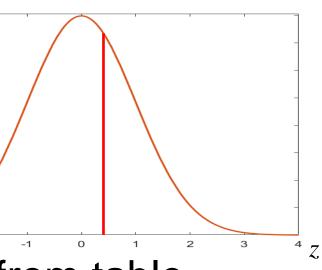
In hypothesis testing we assume H_0 is true, then see how likely \overline{X} is.

$$P(\bar{X} > 192.1) = P\left(\frac{\bar{X} - 191}{25.6 / \sqrt{100}} > \frac{192.1 - 191}{25.6 / \sqrt{100}}\right)$$

somewhat unlikely P(z > 0.43) = 1 - 0.6664 = 0.3336

Assumed that X was normal and used z because n>30. 0.43 from table

D.B. Rowe



0.1

0.05

Biostatistical Methods

7.1 Introduction to Hypothesis Testing

Where do we draw the line?

Suppose n=100, $\bar{X} = 197.1$ lbs, and s=25.6 lbs.

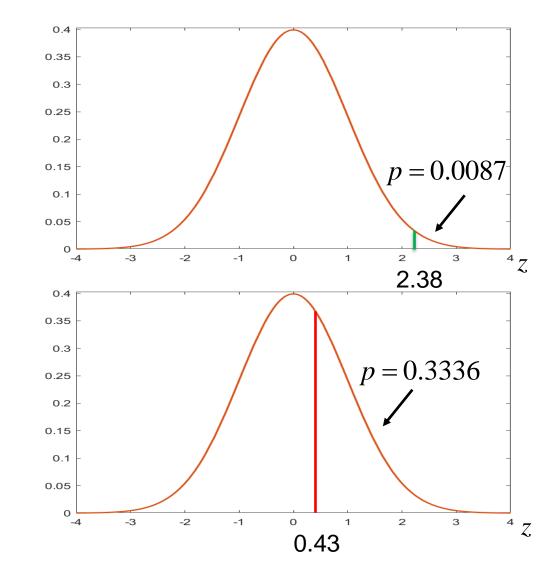
P(z > 2.38) = 1 - 0.9913 = 0.0087 very unlikely

Suppose n=100, $\bar{X} = 192.1$ lbs, and s=25.6 lbs.

P(z > 0.43) = 1 - 0.6664 = 0.3336 somewhat unlikely

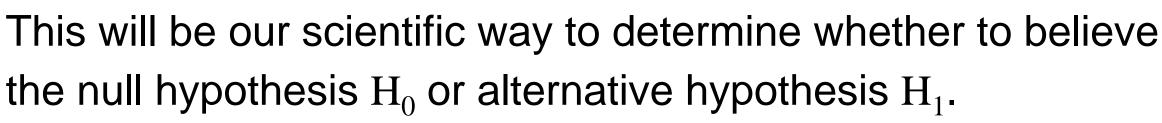
We need a scientific way to select a cut-off α (probability) or *z*-value (critical value).

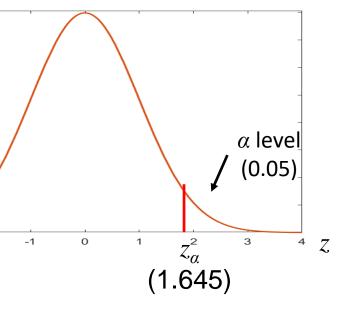
cut-off(s) called **critical value(s)** and depend on significance level α



We will select a **Level of Significance** α . $\alpha = P(Reject H_0 | H_0 is true)$ Find *z*-value, z_{α} that corresponds to this α level.

Reject the Null Hypothesis H_0 in favor of the Alternative Hypothesis H₁ When *z*-value > z_{α} or *p*-value < α .





0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

-3

-2

8

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

Step 2: Select the appropriate test statistic.

Step 3: Set-up the decision rule.

Step 4: Compute the test statistic.

Step 5: Conclusion.

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance. State the null and the alternative hypotheses.

 H_0 : Null Hypothesis (no change, no difference)

VS.

 H_1 : Research Hypothesis (investigators belief, what we want to prove)

Select a level of significance α . $\alpha = 0.05$

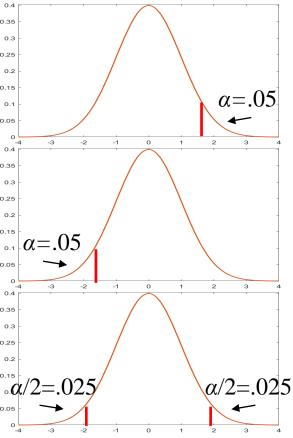
The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance. There are three possible pairs.

 $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$ (prove greater than, upper tailed test.) reject for "large" \overline{X} or z's <

 $H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$ (prove less than, lower tailed test) reject for "small" X or z's

 $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ (prove not equal to, two-tailed test) reject for "large" or "small" \overline{X} or z's



11

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number.

n large n small $z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ $t = \frac{X - \mu_0}{s / \sqrt{n}} \quad df = n - 1$

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a.df}$) that depends on significance level α to make decision. $a = \alpha \text{ or } \alpha/2$

We will test hypotheses on various parameters with various test statistics.

Biostatistical Methods

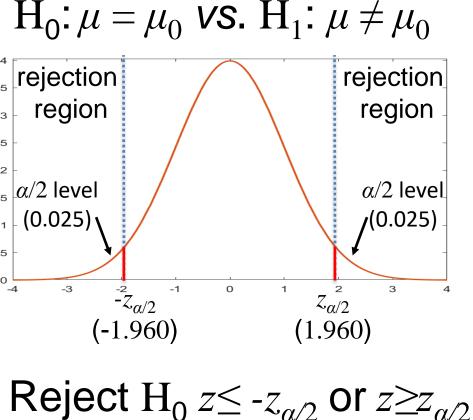
7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

 $H_0: \mu = \mu_0 \text{ VS. } H_1: \mu > \mu_0 \qquad H_0: \mu = \mu_0 \text{ VS. } H_1: \mu < \mu_0$ 0.4 o.35 rejection rejection rejection 0.35 0.35 region region region 0.3 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 $_{0.15}$ $\alpha/2$ level α level α level 0.15 0.15 (0.05) (0.05)(0.025)0.1 0.1 0.1 0.05 0.05 0.05 0 0 └ -4 З -2 -Ζ_{α/2} -3 -2 -1 0 1 2 _4 -3 -2 -1 0 1 2 З 4 -3 Z_{α} $-z_{\alpha}$ (1.645)(-1.645)(-1.960)

Reject H₀ if $z \ge z_{\alpha}$ Reject H₀ if $z \leq z_{\alpha}$



13

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic. Use sample data x_1, \ldots, x_n and hypothesized value μ_0 to compute z (or t). Compare test statistic z (or t) to critical value(s) $z_{\alpha/2}$ (or $t_{\alpha/2,df}$) with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

There are two types of error we can make. Type I error rate.

 $\alpha = P(\text{Type I Error}) = P(\text{Reject H}_0|\text{H}_0 \text{ is true})$ Sometimes called the false positive rate.

Type II error rate.

 $\beta = P(\text{Type II Error}) = P(\text{Do Not Reject H}_0|\text{H}_0 \text{ is false})$

Sometimes called the false negative rate.

	H ₀ True	H_0 False
Fail to Reject <i>H</i> ₀	Correct Decision (1-α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision $(1-\beta)$

Biostatistical Methods

7.2 tests with One Sample, Continuous Outcome

Covers same material as Section 7.1 but additional small sample test with *t* statistic.

TABLE 7-4Test Statistic for Testing H_0:
$$\mu = \mu_0$$
 $n \ge 30$ $z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$ (Find critical value in
Table 1C) $n < 30$ $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$ (Find critical value in
Table 2, $df = n - 1$)

7.3 Tests with One Sample, Dichotomous Outcome

To test hypothesis on a proportion, we follow the same 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance. $H_0: p = p_0 \text{ VS. } H_1: p > p_0, H_0: p = p_0 \text{ VS. } H_1: p < p_0, H_0: p = p_0 \text{ VS. } H_1: p \neq p_0$ **Step 2:** Select the appropriate test statistic.

Assume *n* is large. $z = (\hat{p} - p_0) / \sqrt{p_0(1 - p_0) / n}$

Step 3: Set-up the decision rule.

Reject H₀ if $z \ge z_a$, Reject H₀ if $z \le z_a$, Reject H₀ $z \ge z_{a/2}$ or $z \le z_{a/2}$

Step 4: Compute the test statistic.

z = a number

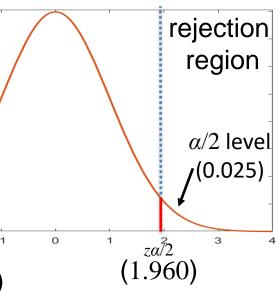
Step 5: Conclusion.

Compare test statistic to critical value(s). Make a decision.

 $\hat{p} = \frac{x}{-}$ n

7.3 Tests with One Sample, Dichotomous Outcome

Example: Is proportion of children using dental service different from 0.86? **Step 1:** Null and Alternative Hypotheses. rejection 0.35 H_0 : p = 0.86 vs. H_1 : $p \neq 0.86$ region 0.3 0.25 Step 2: Test Statistic. 0.2 $\alpha/2$ level 0.15 $z = (\hat{p} - p_0) / \sqrt{p_0 (1 - p_0) / n}$ (0.025)0.1 0.05 **Step 3:** Decision Rule. α =0.05 -3 $-2^{-2} \alpha/2$ -1 (-1.960)Reject H₀ if $z \le -1.960$ or $z \ge 1.960$. **Step 4:** Compute test statistic. n=125, x=64, $\hat{p} = x / n = 0.512$. $z = (0.512 - 0.86) / \sqrt{0.86(1 - 0.86) / 125} = -11.21$ **Step 5:** Conclusion Because $z \leq -1.96$, reject and conclude proportion different from 0.86.



D.B. Rowe

7.4 Tests with One Sample, Categorical and Ordinal Outcomes

There are cases with more than two Yes/No categories. Binomial

Assume that we have *n* items classified into one of k categories.

We have a hypothesis about the true proportions for each category.

We want to test to see if our hypothesis is correct, or something different.

We can do this with a scientific statistical hypothesis test.

7.4 Tests with One Sample, Categorical and Ordinal Outcomes

To test hypothesis on a proportion, we follow the same 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance. $H_0: p_1 = p_{01}, ..., p_k = p_{0k}$ vs. $H_1: H_0$ false (only one pair) **Step 2:** Select the appropriate test statistic.

$$\chi^2 = \sum \left(O - E \right)^2 / E \qquad df = k-1$$

Step 3: Set-up the decision rule.

Reject
$$H_0$$
 if $\chi^2 \ge \chi^2_{\alpha,df}$.

Step 4: Compute the test statistic.

Step 5: Conclusion. $\chi^2 = a$ number

Compare test statistic to critical value. Make a decision.

D.B. Rowe

 $E_i = np_{0i}$

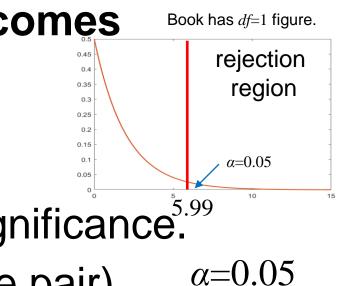
7.4 Tests with One Sample, Categorical and Ordinal Outcomes

Example: Health Survey. n = 470

Step 1: Set up the hypotheses and determine the level of significance^{5.99} $H_0: p_1 = 0.60, p_2 = 0.25, p_3 = 0.15 vs. H_1: H_0: false (only one pair)$ **Step 2:** Select the appropriate test statistic.

$$\chi^2 = \sum (O - E)^2 / E \qquad df = k-1 \qquad E_i =$$

Step 3: Set-up the decision rule. No Regular Exercise Sporadic Exe Reject H₀ if $\chi^2 \ge \chi^2_{0.05,2} = 5.99$. Table 3 (0)255 125 470(0.60) = 282470(0.25) =**Step 4:** Compute the test statistic. $\chi^{2} = \frac{\left(255 - 282\right)^{2}}{282} + \frac{\left(125 - 177.5\right)^{2}}{177.5} + \frac{\left(90 - 70.5\right)^{2}}{70.5} = 8.46$ Step 5: Conclusion. Since $\chi^2 = 8.46 \ge \chi^2_{0.05,2} = 5.99$, reject H₀ conclude p's not what we hypothesize. **D.B.** Rowe



 $= np_{0i}$

ercise	Regular Exercise	Total		
	90	470		
117.5	470(0.15) = 70.5	470		

Biostatistical Methods

7.4 Tests with One Sample, Categorical and Ordinal Outcomes

TABLE 3. Critical Values of the χ2 Distribution

Table entries represent values from χ^2 distribution with upper tail area equal to α . P[$\chi^2_{df} > \chi^2$] = α , e.g., P[$\chi^2_3 > 7.81$] = 0.05

α

u											
df	.10	.05	.025	.01	.005	df	.10	.05	.025	.01	.005
1	2.71	3.84	5.02	6.63	7.88	11	17.28	19.68	21.92	24.72	26.76
2	4.61	5.99	7.38	9.21	10.60	12	18.55	21.03	23.34	26.22	28.30
3	6.25	7.81	9.35	11.34	12.84	13	19.81	22.36	24.74	27.69	29.82
4	7.78	9.49	11.14	13.28	14.86	14	21.06	23.68	26.12	29.14	31.32
5	9.24	11.07	12.83	15.09	16.75	15	22.31	25.00	27.49	30.58	32.80
L	10.64	12.59	14.45	16.81	18.55	16	23.54	26.30	28.85	32.00	34.27
6 7						17	24.77	27.59	30.19	33.41	35.72
7	12.02	14.07	16.01	18.48	20.28	18	25.99	28.87	31.53	34.81	37.16
8	13.36	15.51	17.53	20.09	21.95	19	27.20	30.14	32.85	36.19	38.58
9	14.68	16.92	19.02	21.67	23.59	20	28.41	31.41	34.17	37.57	40.00
10	15.99	18.31	20.48	23.21	25.19	21	29.62	32.67	35.48	38.93	41.40
						22	30.81	33.92	36.78	40.29	42.80
						23	32.01	35.17	38.08	41.64	44.18
						24	33.20	36.42	39.36	42.98	45.56

Questions?

Homework 7

Read Chapter 7.

Problems # 4, *, 9

* A doctor believes that less than 20% of patients have a certain disease. In a random sample of n=100 patients, x=17 had the disease. Test the hypotheses H₀: $p \ge 0.20$ vs. H₁: p < 0.20 at $\alpha = 0.025$.

