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5.6 Probability Models – Normal Distribution 

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

Demonstrate the build up of normal

distribution from individual 

observations.
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5.6 Probability Models – Normal Distribution

The normal distribution is often used for continuous outcomes.

You may know it as the bell curve or Gaussian distribution.

Its functional form is

Symmetric about the mean.

mean = median = mode.

mean μ & variance σ2 
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

Its functional form is

Symmetric about the mean.

mean = median = mode.

mean μ & variance σ2 
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

What is the probability that a male 

has a BMI<29? 

P(BMI<29)=0.5
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

What is the probability that a male 

has a BMI<35? 

P(BMI<35)=?

Larger than 0.5 but less than 1.
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

What is the probability that a male 

has a BMI>35? 

P(35<BMI)=?

Less than 0.5.
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

What is the probability that a male 

has a 23<BMI<35? 

P(23<BMI<35)=?

Less than 1.

8D.B. Rowe

Biostatistical Methods

BMI

( )P BMI

Total Area Under Curve = 1



5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

What is the probability that a male 

has a 23<BMI<35? 

P(23<BMI<35)=?

Less than 1.

Twice area rectangle and triangle?

We slightly undercounted, it’s around 0.68. 
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).

Normally in math we do something

called an integral. x=BMI

But we are not doing Calculus and even if 

we know Calculus, we can’t integrate P(x)! 
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

Now we have the z axis, we look up the area in a table.

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

Now we have the z axis, we look up the area in a table.

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

We need to convert from the BMI (x) axis to a new “z” axis,               .

Area under curve on z axis same as area under curve on x axis.
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5.6 Probability Models – Normal Distribution

The mean BMI for males aged 60 is µ=29 kg/m2 with 

standard deviation σ=6 kg/m2 (with a normal distribution).
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5.6 Probability Models – Sampling Distributions

In science one major thing that we do is to take a random sample of 

data x1,…,xn, and average the observations,   .

Is something called the Sampling Distribution (of the sample means).

The Sampling Distribution says, if we take a random sample x1,…,xn, 

from a population with mean    and standard deviation     and average 

the observations    , then     has a mean            and standard deviation

               . So by averaging, we’ve reduced our standard deviation!
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5.6 Probability Models – Sampling Distributions

In science one major thing that we do is to take a random sample of 

data x1,…,xn, and average the observations,   .

Above & beyond the Sampling Distribution is the Central Limit Theorem.

The Central Limit Theorem (CLT) says, that if n is large, i.e. n>30, then  

     has an approximately normal distribution with mean             and 

standard deviation               no matter what original distribution the

data x1,…,xn came from.

This is HUGE, meaning we can use our old friend the normal distribution.
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5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=1 with replacement.
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0, 2, 4, 6, 8. 5 possible values
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0,  occurs one time

2,  occurs one time

4,  occurs one time

6,  occurs one time

8,  occurs one time
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S={0, 2, 4, 6, 8}

Prob. of each value = 1/5 = 0.2

The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=1 with replacement.
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Population data values: 

0, 2, 4, 6, 8. 5 possible values

0 2

4 6

8
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0,  occurs one time

2,  occurs one time

4,  occurs one time

6,  occurs one time

8,  occurs one time
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S={0, 2, 4, 6, 8}

Prob. of each value = 1/5 = 0.2

The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=1 with replacement.
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Population data values: 

0, 2, 4, 6, 8.

0 2

4 6

8

( )
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2 1/ 5

4 1/ 5

6 1/ 5

8 1/ 5

x P x

0 2 4 6 8
0

0.04

0.08

0.12

0.16

0.2

5 possible values

P(x)

The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=1 with replacement.
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Population data values: 

0, 2, 4, 6, 8.

0 2
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8
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x P x

5 possible values
The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.
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5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=1 with replacement.
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Population data values: 

0, 2, 4, 6, 8.

0 2
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8
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x P x

5 possible values
The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.
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5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=2 with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.
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25 possible samples

(0,0) (2,0) (4,0) (6,0) (8,0)

(0,2) (2,2) (4,2) (6,2) (8,2)

(0,4) (2,4) (4,4) (6,4) (8,4)

(0,6) (2,6) (4,6) (6,6) (8,6)

(0,8) (2,8) (4,8) (6,8) (8,8)



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=2 with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

(0,0) (2,0) (4,0) (6,0) (8,0)

(0,2) (2,2) (4,2) (6,2) (8,2)

(0,4) (2,4) (4,4) (6,4) (8,4)

(0,6) (2,6) (4,6) (6,6) (8,6)

(0,8) (2,8) (4,8) (6,8) (8,8)

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

There are 25 possible samples.           Each sample has mean    .X

Population data values: 

0, 2, 4, 6, 8.



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=2 with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

0,  occurs one time

1,  occurs two times

2,  occurs three times

3,  occurs four times

4,  occurs five times

5,  occurs four times

6,  occurs three times

7,  occurs two times

8,  occurs one time

x

x

x

x

x

x

x

x

x

=

=

=

=

=

=

=

=

=

There are 25 possible samples.

Population data values: 

0, 2, 4, 6, 8.

Prob. of each samples

mean = 1/25 = 0.04



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=2 with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

There are 25 possible samples.

Population data values: 

0, 2, 4, 6, 8.

Prob. of each samples

mean = 1/25 = 0.04

( 0) 1 / 25

( 1) 2 / 25

( 2) 3 / 25

( 3) 4 / 25

( 4) 5 / 25

( 5) 4 / 25

( 6) 3 / 25

( 7) 2 / 25

( 8) 1 / 25

P x

P x

P x

P x

P x

P x

P x

P x

P x

= =

= =

= =

= =

= =

= =

= =

= =

= =



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, select n=2 with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

Figure from Johnson & Kuby, 2012.

( 0) 1 / 25

( 1) 2 / 25

( 2) 3 / 25

( 3) 4 / 25

( 4) 5 / 25

( 5) 4 / 25

( 6) 3 / 25

( 7) 2 / 25

( 8) 1 / 25

P x

P x

P x

P x

P x

P x

P x

P x

P x

= =

= =

= =

= =

= =

= =

= =

= =

= =

Represent this probability 

distribution with a histogram.



5.6 Probability Models – Sampling Distributions

Example: N=5 balls in bucket, selecting increasing n with replacement.
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The Sampling Distribution says, if we take a 
random sample x1,…,xn, from a population with 
mean µ  and standard deviation σ  and average 
the observations , then the average has a mean 
µ and standard deviation  σ/√n. So by averaging, 
we’ve reduced our standard deviation!

The Central Limit Theorem (CLT) says, that if n is 
large,  i.e. n>30, then  the average has an 
approximately normal distribution with mean µ 
and standard deviation σ/√n no matter what 
original distribution the data x1,…,xn came 
from.

          

X from n=1 distribution

Figure from Johnson & Kuby, 2012.

4, 8
X

 = =P(x)

0 2 4 6 8
0

0.04

0.08

0.12

0.16

0.2

x

X from n=2 distribution

4, 8 2
X X

 = =

x from n=4 distribution

4, 8 4
X X

 = =
X from n=3 distribution

4, 8 3
X X

 = =

Looks like?

n large?

8
X

n =

Looks like?

4
X

 =

P(x)

x



5.6 Probability Models – Normal Distribution 

Now that we know that     has a normal distribution when n is large, 

we can find probabilities (areas) for finding a random mean by

converting to a z and using the tables.
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b
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a b ab

X

X

X
z
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−
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x x x

same

area

same

area

same

area

( )P X a

( )P z c

X
n


 =

X
 =

x1,…,xn

Example:

What  is probability that sample mean     from a random sample 

of n=16 heights is greater than 70” when µ =67 and σ =4?
X



 Questions?
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Homework 5 Part II

 Read Chapter 5.

 

 Problems # 10, 19
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