Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe 1

Chapter 5: The Role of Probability A

Probabilities are numbers that reflect the likelihood that a particular event occurs.

Parameters: Summary measures computed on populations. i.e. *μ*, σ 2 **Statistics:** Numerical summary measures computed on samples. i.e. \bar{X} , s^2

Statistical inference involves making generalizations or inferences about unknown population parameters based on sample statistics.

5.1 Sampling

Sampling Frame: A complete list or enumeration of the population.

Simple Random Sampling: A set of numbers is selected at random to determine the individuals to be included.

Systematic Sampling: Individuals selected at regular interval *N/n*. *N* is population size, *n* is desired sample size. i.e. very third or fifth selected. Might not be representative.

5.1 Sampling

Stratified Sampling: Split the population into nonoverlapping groups or strata then sample within each stratum.

Instead of randomly from entire US population, sample proportionately from each state.

Convenience Sampling: Select individuals by any convenient contact. Select patients as they come in, not from all patients.

5.2 Basic Concepts

Probability is a number that reflects the likelihood that a particular event Will occur. Probabilities range from 0 to 1.

 $(characteristic)$ = *P*(*characteristic*) = $\frac{Number\ of\ persons\ with\ characteristic}$ *Total number of persons in the population N* $=$ $-$

$$
P(boy) = \frac{2560}{5290} = 0.484
$$

Sometimes it is of interest to focus on a particular subset of the population.

What is the probability of selecting a 9-year-old girl from the subpopulation of girls?

16.9% of girls are 9-years old.

$$
P(9 - year - old \mid girls) = \frac{461}{2730} = 0.169
$$

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

$$
P(\text{prostate cancer}) = \frac{28}{120} = 0.233
$$

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

$$
P(\text{prostate cancer}) = \frac{28}{120} = 0.233
$$

P(\text{prostate cancer} | \text{low PSA}) = \frac{3}{64} = 0.047

$$
PSA = \text{prostate-specific antigen}
$$

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

$$
P(\text{prostate cancer}) = \frac{28}{120} = 0.233
$$

\n
$$
P(\text{prostate cancer} | \text{low PSA}) = \frac{3}{64} = 0.047
$$

\n
$$
P(\text{prostate cancer} | \text{slight to moderate PSA}) = \frac{13}{41} = 0.
$$

\n
$$
PSA = \text{prostate-specific antigen}
$$

D.B. Rowe **9**

PSA) = $\frac{13}{41}$ = 0.317

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

(*prostate cancer*) = $\frac{28}{120}$ = 0.233

(*prostate cancer* | *low PSA*) = $\frac{3}{64}$ = 0.047

(*prostate cancer* | *slight to moderate PSA*) = $\frac{13}{41}$ = 0.

(*prostate cancer* | *highly elevated PSA*) = $\frac{12}{15}$ $P(\text{prostate cancer}) = \frac{1}{120} = 0.2$ 3 P *(* prostate cancer | low PSA) = $\frac{6}{64}$ = 0.047 (prostate cancer | slight to moderate PSA) = $\frac{13}{12}$ = 0.317 $P(\text{prostate cancer} | \text{slight to moderate PSA}) = \frac{16}{41} = 0.1$

(prostate cancer | highly elevated $PSA) = \frac{12}{12} = 0.80$ P (prostate cancer | highly elevated PSA) = $\frac{1}{15}$ =

Sensitivity is also called the true positive fraction.

Specificity is also called the true negative fraction.

 $Sensitivity = True Positive Fraction = P(screen positive | disease) = \frac{a}{a}$

 $\frac{d}{dx}$ (screen negative disease free) = $\frac{d}{dx}$ *Specificity* = True Negative Fraction = P(screen negative | disease free) = $\frac{a}{b+d}$ $=$ I rue inegative Fraction $=$ F iscreen negative (atsease \Box ree $=$ $=$ $-$

False Negative Fraction = P (screen negative | disease) = $\frac{c}{\sqrt{C}}$ $a+c$ False Positive Fraction = P(screen positive | disease free) = $\frac{b}{b+d}$ = = $\boldsymbol{+}$

 $a + c$ $+ \, c$ $+ d$

Biostatistical Methods

Consider the *N*=4810 pregnancies with blood screen & amniocentesis for likelihood of Down Syndrome.

9 (screen positive affected fetus) = $\frac{1}{10}$ = 0.900 10 $Sensitivity = P(screen positive | affected \text{ fetus}) = \frac{1}{10} = 0.9$ $Specificity = P(\text{screen negative}|\text{unaffected}|\text{fetus}) = \frac{4449}{1888} = 0.927$ 4800 (screen positive | unaffected fetus) = $\frac{351}{1000}$ = 0.073 $FP Fraction = P(screen positive | unaffected \text{ fetus}) = \frac{1}{4800} = 0.0$ 1 FN Fraction = P (screen negative | affected fetus) = $\frac{1}{10}$ = 0.100

Positive

Negative

Total

Biostatistical Methods

5.4 Independence

Two events are **independent** if the probability of one is not affected by the occurrence or nonoccurrence of the other.

$$
P(A | B) = P(A) \quad \text{or} \quad P(B | A) = P(B)
$$

$$
A=Low Risk
$$

B= Prostate Cancer

$$
P(A | B) = P(A) \text{ or } P(B | A) = P(B)
$$

\n
$$
A = Low Risk
$$

\n
$$
B = Prostate Cancer
$$

\n
$$
P(A | B) = P(low risk | prostate cancer) = \frac{10}{20} = 0.50
$$

\n
$$
P(A) = P(low risk) = \frac{60}{120} = 0.50
$$

\n
$$
A \text{ and } B \text{ are independent}
$$

5.5 Bayes Theorem

Bayes Theorem is a probability rule to compute conditional probabilities. $(A | B) = \frac{P(B | A)P(A)}{P(A)}$ (B) $P(A | B) = \frac{P(B | A)P(A)}{P(A)}$ $P(B)$ $=$ $-$

Example: Patient exhibiting symptoms of rare disease.

Example: Franchise Algentisies Integrals of the Compute Spayers Theorem
 S Bayes Theorem is a probability rule to compute conditional $A | B$) = $\frac{P(B | A)P(A)}{P(B)}$
 cample: Patient exhibiting symptoms of rare disease.
 Example: Fraction Example: Patient exhibitive rule to compute conditional
 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
 Example: Patient exhibiting symptoms of rare disease.
 $P(disease | screen positive) = \frac{P(sGreen positive | disease)P(disease)}{P(sGreen positive)}$
 $P(sGreen positive | disease) = 0.002$
 $P(sGreen positive | disease) = 0.$ $P(disease | screen positive) = \frac{P(screen positive | disease)P(disease)}{P(screen positive)}$ (disease | screen positive) = $\frac{(0.85)(0.002)}{0.0020}$ = 0.021 $P(disease) = 0.002$
 $P(screen positive | disease) = 0.85$ \rightarrow $P(disease | screen positive) = \frac{(0.85)(0.002)}{(0.08)} = 0.002$ *P*(screen positive $discase = 0.85$ \vdash *P*(screen positive) = 0.08

5.6 Probability Models – Binomial Distribution

Let's assume we are flipping a coin twice. *H*=Head on flip, *T*=Tail on flip

The probability of heads on any given flip is $p = P(H)$. The probability of tails (not heads) on any given flip is $q = (1-p)$. Then $P(HT)=P(H)P(T)$ Similarly $P(TH)=P(T)P(H)$ $=p(1-p)$. $= (1-p)p$. Independent events Independent events

Let $x = #$ of heads in two flips of a coin. $P(x=1) = P(HT) + P(TH)$ $= p(1-p)+(1-p)p = 2p(1-p).$ 2 ways to get one *H* and one *T* 2 ways to get *x*=1 heads consider both ways

D.B. Rowe 15

$P(H) + P(T) = 1$

5.6 Probability Models – Binomial Distribution

An experiment with only two outcomes is called a Binomial experiment. Call one outcome *Success* and the other *Failure*.

Each performance of experiment is called a trial and are independent.

$$
P(x \text{ success}) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}
$$

 $n =$ number of trials or times we repeat the experiment. *x* = the number of successes out of *n* trials. $p =$ the probability of success on an individual trial.

$$
\binom{n}{x} = \frac{n!}{x!(n-x)!}
$$

Only for Binomial

$\mu = np$ $\sigma^2 = np(1-p)$

5.6 Probability Models – Binomial Distribution

Example: Medication effectiveness.

P(*medication effective*)=*p*=0.80

What is the probability that it works on *x*=7 out of *n*=10?

!
. $!(n-x)!$ $P(x \text{ successes}) = \frac{n!}{(n-1)!} p^x (1-p)^{n-x}$ x **!**($n - x$)! $=$ $p^(1-p)^{n-x}$ −

D.B. Rowe 17

$$
P(7 \text{ successes}) = \frac{10!}{7!(10-7)!} 0.80^{7} (1-0.80)^{10-7}
$$

10.9.8.71

$$
P(7 \text{ success}) = \frac{10.9.8 \cdot \cancel{7}}{\cancel{7} \cdot 3 \cdot 2 \cdot 1} 0.80^7 0.20^3
$$

 $P(7\;\;successes) = 120(0.2097)(0.008)$
 $P(x\;\:successes) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$
 $p = number of trials or times we repeat the experiment
\n $x = the number of successes out of *n* trials.
\n $p = the probability of success on an individual trial.$$$

P(7 successes) = 0.2013

 $(x \text{ successes}) = \frac{1}{x} p^x (1-p)^{n-x}$

 $x =$ the number of successes out of *n* trials.

n = number of trials or times we repeat the experiment.

Questions?

Homework 5 Part I

Read Chapter 5.

Problems # 1 and *, 4

* What is the standard deviation σ of hyperlipidema?

