Final Review

Dr. Daniel B. Rowe
 Professor of Computational Statistics
 Department of Mathematical and Statistical Sciences
 Marquette University

Hypothesis Testing
We make decisions every day in our lives.
Should I believe A or should I believe $B(\operatorname{not} A)$?
Two Competing Hypotheses. A and B.
Null Hypothesis (\mathbf{H}_{0}): No difference, no association, or no effect.
Alternative Hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)$: Investigators belief.
The Alternative Hypothesis is always set up to be what you want to build up evidence to prove.
7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.
Step 1: Set up the hypotheses and determine the level of significance.

Step 2: Select the appropriate test statistic.

Step 3: Set-up the decision rule.

Step 4: Compute the test statistic.

Step 5: Conclusion.

7.5 Tests with Two Independent Samples, Continuous Outcome

The hypothesis testing process consists of 5 Steps.

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{S_{P} \sqrt{1 / n_{1}+1 / n_{2}}}
$$

Step 3: Set-up the decision rule.

Reject H_{0} if $t \geq t_{\alpha, d f}$
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ vs. $\mathrm{H}_{1}: \mu_{1}<\mu_{2}$

Reject H_{0} if $t \leq t_{a, d f}$ Reject $\mathrm{H}_{0} \leq t_{a / 2, d f}$ or $t \geq t_{\alpha 2, d f}$

7.5 Tests with Two Independent Samples, Continuous

Outcome

OUTCOME | New drug | 15 | 195.9 | 28.7 |
| :--- | :--- | :--- | :--- |
| Placebo | 15 | 227.4 | 30.3 |

Example: Is the mean cholesterol of new drug < mean of placebo? Step 1: Null and Alternative Hypotheses.
$\mathrm{H}_{0}: \mu_{1} \geq \mu_{2}$ vs. $\mathrm{H}_{1}: \mu_{1}<\mu_{2}$
Step 2: Test Statistic.

$$
t=\frac{\left(\bar{x}_{1}-\bar{X}_{2}\right)}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}} \quad d f=n_{1}+n_{2}-2
$$

Step 3: Decision Rule. $\alpha=0.05, d f=15+15-2=28$
Reject H_{0} if $t \leq-1.701$.
Step 4: Compute test statistic.

$$
t=(195.9-227.4) /(29.5 \sqrt{1 / 15+1 / 15})=-2.92
$$

Step 5: Conclusion

$$
\begin{aligned}
\bar{X}_{i} & =\frac{1}{n} \sum X \quad i=1,2 \\
S_{P} & =\sqrt{\frac{(15-1)(28.7)^{2}+(15-1)(30.3)^{2}}{15+15-2}}=29.5
\end{aligned}
$$

Because $-2.92 \leq-1.701$, reject and conclude mean of drug less than placebo.

7.6 Tests with Matched Samples, Continuous Outcome

The hypothesis testing process consists of 5 Steps.

$$
t=\frac{\bar{X}_{d}}{s_{d} / \sqrt{n}}
$$

Step 3: Set-up the decision rule.
$\mathrm{H}_{0}: \mu_{d}=0$ vs. $\mathrm{H}_{1}: \mu_{d}>0$

$$
\mathrm{H}_{0}: \mu_{d}=0 \text { vs. } \mathrm{H}_{1}: \mu_{d}<0
$$

$$
\mathrm{H}_{0}: \mu_{d}=0 \text { vs. } \mathrm{H}_{1}: \mu_{d} \neq 0
$$

Reject H_{0} if $t \geq t_{\alpha, d f}$

Reject H_{0} if $t \leq t_{\alpha, d f}$ Reject $\mathrm{H}_{0} t \leq t_{\alpha / 2, d f}$ or $t \geq t_{\alpha / 2, d f}$

7.6 Tests with Matched Samples, Continuous Outcome

Example: Is there a difference in mean of new drug from baseline? Step 1: Null and Alternative Hypotheses.
$\mathrm{H}_{0}: \mu_{d}=0$ vs. $\mathrm{H}_{1}: \mu_{d} \neq 0$
Step 2: Test Statistic.

$$
t=\frac{\bar{X}_{d}}{s_{d} / \sqrt{n}} \quad d f=n-1
$$

Step 3: Decision Rule. $\alpha=0.05, d f=15-1=14$
Reject H_{0} if $t \leq-2.145$ or $t \geq 2.145$.

Step 4: Compute test statistic.

$$
t=-5.3 /(12.8 / \sqrt{15})=-1.60
$$

Step 5: Conclusion

$$
\begin{aligned}
& \bar{X}_{d}=\frac{1}{n} \sum d \\
& s_{d}^{2}=\frac{1}{n-1}\left[\sum d^{2}-\frac{1}{n}\left(\sum d\right)^{2}\right]
\end{aligned}
$$

Because $-2.145 \leq-1.60$, do not reject H_{0} and conclude no reduction.

7.7 Tests with Two Independent Samples, Dichotomous Outcome

We often have two populations that we are studying.

We may be interested in knowing if the proportion p_{1} of population 1 is different (while accounting for random statistical variation) from the proportion p_{1} of population 2.

When we have independent random sample from each population and the sample sizes are large.

7.7 Tests with Two Independent Samples, Dichotomous Outcome

The hypothesis testing process consists of 5 Steps.
Step 3: Set-up the decision rule. Assume n "Large."
$\mathrm{H}_{0}: p_{1}=p_{2}$ vs. $\mathrm{H}_{1}: p_{1}>p_{2}$
$\mathrm{H}_{0}: p_{1}=p_{2}$ vs. $\mathrm{H}_{1}: p_{1}<p_{2}$
$\mathrm{H}_{0}: p_{1}=p_{2}$ vs. $\mathrm{H}_{1}: p_{1} \neq p_{2}$

Reject H_{0} if $z \geq z_{\alpha}$

Reject H_{0} if $z \leq z_{\alpha}$

Reject $\mathrm{H}_{0} z \leq z_{\alpha / 2}$ or $z \geq z_{\alpha / 2}$

7.8 Tests with More than Two Independent Samples, Continuous Outcome (ANOVA)

The hypothesis testing process consists of 5 Steps.
Step 1: Set up the hypotheses and determine the level of significance α.

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \ldots=\mu_{k} \text { vs. } \mathrm{H}_{1}: \text { at least two } \mu \text { 's different } \\
& \text { reject for "large" disparities or } F=M S B / M S E .
\end{aligned}
$$

We will assume the means are equal and calculate two different variances. If the means are truly equal, the two different variances will be the same. If the means are noy equal, the two different variances will be different.

7.8 Tests with More than Two Independent Samples, Continuous Outcome (ANOVA)

The hypothesis testing process consists of 5 Steps.
Step 3: Set-up the decision rule.
$\mathrm{H}_{0}: \mu_{1}=\mu_{2} \ldots=\mu_{k}$ vs. H_{1} : at least two different

$$
M S B=\frac{\sum n_{j}\left(\bar{X}_{j}-\bar{X}\right)^{2}}{k-1}
$$

$$
\begin{aligned}
& d f_{1}=k-1 \\
& d f_{2}=N-k
\end{aligned}
$$

$$
M S E=\frac{\sum \sum n_{j}\left(X-\bar{X}_{j}\right)^{2}}{N-k}
$$

$$
F=\frac{M S B}{M S E}
$$

Reject H_{0} if $F \geq F_{o, d f, d f f}$.

7.8 Tests with More than Two Independent Samples,

 Continuous Outcome (ANOVA)Example: Find the value of $F_{0.05,3,16}$.
The (critical) value of F that has an area of 0.05 larger than it when we have $d f_{1}=3$ (numerator) and $d f_{2}=16$ (denominator) degrees of freedom is 3.24 .

This is the value we use for a $95 \% \mathrm{HT}$ when $\alpha=0.05, n_{1}=6$, and $n_{2}=11$.
The book only has $\alpha=0.05$, but would have another page for each α value.

7.7 Tests with Two Independent Samples, Dichotomous Outcome

The hypothesis test on risk difference $\mathrm{H}_{0}: p_{1}=p_{2}$ vs. $\mathrm{H}_{1}: p_{1} \neq p_{2}$
$\mathrm{H}_{0}: R D=0$ vs. $\mathrm{H}_{1}: R D \neq 0$

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

Is equivalent to the two hypothesis tests

Risk Ratio $R R$
$\begin{array}{ll}\mathrm{H}_{0}: R R=1 \text { vs. } \mathrm{H}_{1}: R R \neq 1 & R R=\frac{\hat{p}_{1}}{\hat{p}_{2}} \\ \text { and }\end{array}$
Odds Ratio $O R$
$\mathrm{H}_{0}: O R=1$ vs. $\mathrm{H}_{1}: O R \neq 1$

$$
O R=\frac{\hat{p}_{1} /\left(1-\hat{p}_{1}\right)}{\hat{p}_{2} /\left(1-\hat{p}_{2}\right)}
$$

Biostatistical Methods

7.8 Tests with More than Two Independent Samples, Continuous Outcome (ANOVA)

Example: Statistical difference in weight loss among 4 diets?
Step 1: Null and Alternative Hypotheses.
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ vs. H_{1} : at least two different
Step 2: Test Statistic.

$$
F=M S B / M S E \quad d f_{1}=k-1 \quad d f_{2}=N-k
$$

Step 3: Decision Rule. $\alpha=0.05, d f_{1}=4-1=3, d f_{2}=20-4=16$
 Reject H_{0} if $F \geq 3.24$.
Step 4: Compute test statistic.

$$
\begin{gathered}
F \text { to be } \\
\text { calculated }
\end{gathered} \quad M S B=\frac{\sum n_{j}\left(\bar{X}_{j}-\bar{X}\right)^{2}}{k-1}=25.3
$$

$$
n_{1}=n_{2}=n_{3}=n_{4}=5
$$

$F=25.3 / 3.0=8.43$
Step 5: Conclusion

$$
M S E=\frac{\sum \sum n_{j}\left(X-\bar{X}_{j}\right)^{2}}{N-k}=3.0
$$

Because 8.43 > 3.24, reject H_{0} and conclude diets mean weight loss different.

7.10 Summary

TABLE 7-50 \quad Summary of Key Formulas for Tests of Hypothesis

Outcome Variable, Number of Groups: Null Hypothesis
Continuous outcome, two independent samples: $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$

Continuous outcome, two matched samples: $\mathrm{H}_{0}: \mu_{d}=0$

Continuous outcome, more than two independent samples: $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$

Dichotomous outcome, one sample: $\mathrm{H}_{0}: p=p_{0}$

Dichotomous outcome, two independent samples:
$H_{0}: p_{1}=p_{2}, R D=0, R R=1, O R=1$

Categorical or ordinal outcome, one sample:
$H_{0}: p_{1}=p_{10}, p_{2}=p_{20}, \ldots, p_{k}=p_{\kappa 0}$
Categorical or ordinal outcome, two or more independent samples:
H_{0} : Outcome and groups are independent

Test Statistic*

$$
z=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}}
$$

$$
z=\frac{\bar{X}_{d}-\mu_{d}}{s_{d} / \sqrt{n}}
$$

$$
F=\frac{\Sigma n_{i}\left(\bar{X}_{j}-\bar{X}\right)^{2} /(k-1)}{\left.\Sigma \Sigma(X-\bar{X})^{2}\right)^{2} /(N-K)}
$$

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{\rho})\left(1 / n_{1}+1 / n_{2}\right)}}
$$

$$
\chi^{2}=\Sigma \frac{(O-E)^{2}}{E}, d f=k-1
$$

$$
\chi^{2}=\Sigma \frac{(0-E)^{2}}{E}, d f=(r-1)(c-1)
$$

D.B. Rowe

Associations

We often are interested in the association between variables.

We often say correlation, with little thought to an actual definition.

We often say trend or linear relationship without defining how determine this relationship.

We define y to be the response or dependent (on x) variable and x to be the explanatory or independent variable. i.e. y depends on x (or several x 's).

Associations

We often are interested in the association between variables.

We often say correlation, with little thought to an actual definition.

We often say trend or linear relationship without defining how determine this relationship.

We define y to be the response or dependent (on x) variable and x to be the explanatory or independent variable. i.e. y depends on x (or several x 's).

Biostatistical Methods

9.3 Introduction to Correlation and Regression Analysis-Correlation

Correlations r are between -1 and $1,-1 \leq r \leq 1$.

$$
\begin{aligned}
& r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}} \\
& s_{x}^{2}=\frac{1}{n-1} \sum(X-\bar{X})^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
& s_{y}^{2}=\frac{1}{n-1} \sum(Y-\bar{Y})^{2}=\frac{1}{n-1}\left[\sum Y^{2}-\frac{1}{n}\left(\sum Y\right)^{2}\right]
\end{aligned}
$$

$$
\sum x^{2} \sum^{2}
$$

$$
\text { Variance of } X
$$

$$
\sum X Y
$$

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum(Y-\bar{Y})(X-\bar{X})=\frac{1}{n-1}\left[\sum X Y-\frac{1}{n}\left(\sum Y\right)\left(\sum X\right)\right]
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5
	652.1	25173.2	49334.0	150934928.0	1921162.6

5 Sums

$$
\begin{aligned}
& \sum X=652.1 \quad \sum X^{2}=25173.2 \\
& \sum Y=49334.0 \quad \sum Y^{2}=150934928.0 \\
& \sum X Y=1921162.6 \\
& \operatorname{cov}(x, y)=1798.0 \\
& s_{x}^{2}=9.9638 \\
& r=\frac{1798.0}{\sqrt{(10.0)(485478.8)}} \\
& s_{y}^{2}=485478.8 \\
& r=0.82
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Regression

We can estimate the y-intercept and slope from what we have already computed for the correlation.

The slope is estimated as $b_{1}=r \frac{s_{y}}{s_{x}}$ and $b_{0}=\bar{Y}-b_{1} \bar{X}$.

$$
\begin{aligned}
s_{x}^{2} & =9.9638 \\
s_{y}^{2} & =485478.8 \\
r & =0.82
\end{aligned}
$$

Line goes through (\bar{X}, \bar{Y}). Note b_{1} has same sign as r.

And hence we have determined our regression line.
$\hat{y}=b_{0}+b_{1} x$

9.3 Introduction to Correlation and Regression Analysis-Regression

Example: Continuing the small study ... to investigate the association between gestational age and birth weight.

$$
s_{x}^{2}=9.9638
$$

$$
s_{y}^{2}=485478.8
$$

$$
r=0.82
$$

$$
\hat{Y}=-4029.2+180.5 x
$$

$$
\begin{aligned}
& b_{1}=r \frac{s_{y}}{s_{x}} \\
& b_{1}=0.82 \frac{696.8}{3.2} \\
& b_{1}=180.5 \\
& b_{0}=\bar{Y}-b_{1} \bar{X} \\
& b_{0}=2902-(180.5)(38.4) \\
& b_{0}=-4029.2
\end{aligned}
$$

9.4 Multiple Linear Regression Analysis

Example: SBP and BMI, Age, Male Sex, and TFH.

A multiple regression analysis is run and coefficients estimated.

$$
S B P=68.15+0.58 B M I+0.65 A G E+0.94 M L S+6.44 T F H
$$

Independent Variable	Regression Coefficien	n t	p-value	U.
Intercept	$b_{0}=68.15$	$t_{0}=26.33$	${ }^{0.0001}=p_{0}$	The t statistic is for $\mathrm{H}_{0}: \beta_{j}=0, \mathrm{H}_{1}: \beta_{j} \neq 0$.
BMI	$b_{1}=0.58$	$t_{1}=10.30$	${ }^{0.0001}=p_{1}$	The p-value is the probability of getting
Age	$b_{2}=0.65$	$t_{2}=20.22$	$0.0001=p_{2}$	
Male sex	$b_{3}=0.94$	$t_{3}=1.58$	${ }^{0.1133}=p_{3}$	$t_{j}=\frac{b_{j}-0}{}$
Treatment for hypertension	$b_{4}=6.44$	$t_{4}=9.74$	$0.0001=p_{4}$	larger in abs if it were truly $0 .{ }_{d j f=n-p-1}^{j} \sqrt{\operatorname{var}\left(b_{j}\right)}$

Biostatistical Methods

9.5 Multiple Logistic Regression Analysis

Using R,

Hours $(\boldsymbol{x}) \mathbf{A}(\boldsymbol{y})$	
6	0
8	0
10	0
12	0
14	0
16	1
18	0
20	0
22	0
24	0
26	1
28	0
30	0
32	1
34	1
36	1
38	1
40	1

\# grade data

```
xx <- c(6, 8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40)
yy <- c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0,1, 0, 0, 1, 1, 1, 1, 1)
#scatter plot plot(x = xx,y = yy,xlab = "Hours",ylab = "Grade",
xlim = c(0,45),ylim = c(0,1),col = "darkred",
    cex = 1.5, main = "Hours vs. Grade", pch = 16)
logistic_model <- glm(yy }\mp@subsup{}{~}{xx}\mathrm{ , family=binomial(link="logit"))
summary(logistic_model)
b0 <- logistic_model$coefficients[1]
b1 <- logistic_model$coefficients[2]
phat <- round(1/(1+exp(-b0-b1*xx)), digits = 4)
O <- round(phat/(1-phat) , digits = 4)
df <- data.frame(xx,yy,phat,O)
df
#scatter plot with curve
xhat <- (1:4500)/100
yhat <- 1/(1+exp(-b0-b1*xhat))
plot(x = xx,y = yy,xlab = "Hours",ylab = "Grade",
    xlim = c(0,45),ylim = c(0,1),col = "darkred",
    cex = 1.5, main = "Hours vs. Grade", pch = 16)
points(xhat,yhat,cex = .1,col = "blue")
```


9.5 Multiple Logistic Regression Analysis

Once we have $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, insert them back into
$\hat{p}_{i}=\frac{1}{1+e^{-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}}}$ for estimated probabilities
and also for odds $\hat{o}_{i}=\frac{\hat{p}_{i}}{1-\hat{p}_{i}}=e^{\hat{\beta}_{0}+\hat{\beta}_{i_{i}} x_{i}}$
and for odds ratio $\hat{O} R=e^{\hat{\beta}_{0}+\hat{\beta}_{x_{b}} x_{b}} / e^{\hat{\beta}_{0}+\hat{\beta}_{1} x_{a}}=e^{\hat{\beta}_{1} \swarrow}, \Delta=x_{b}-x_{a}$.

$$
\begin{aligned}
& \hat{\beta}_{0}=-5.66 \\
& \hat{\beta}_{1}=0.21
\end{aligned}
$$

$$
\hat{O} R=e^{(0.21)(2)}=1.5220
$$

Hours (\boldsymbol{x})	$\mathbf{A}(\boldsymbol{y})$	$\hat{\boldsymbol{p}}$	$\hat{\boldsymbol{o}}$
6	0	0.0120	0.0122
8	0	0.0181	0.0184
10	0	0.0272	0.0279
12	0	0.0406	0.0423
14	0	0.0603	0.0641
16	1	0.0886	0.0972
18	0	0.1284	0.1473
20	0	0.1824	0.2232
22	0	0.2527	0.3381
24	0	0.3388	0.5124
26	1	0.4371	0.7764
28	0	0.5405	1.1764
30	0	0.6406	1.7824
32	1	0.7298	2.7008
34	1	0.8036	4.0923
36	1	0.8611	6.2008
38	1	0.9038	9.3957
40	1	0.9344	14.2365

Study 2 more hours and $O R$ increases by 1.5 .

9.6 Summary

Correlation

$$
\begin{aligned}
& \operatorname{cov}(x, y)=\frac{1}{n-1}\left[\sum X Y-\frac{1}{n}\left(\sum Y\right)\left(\sum X\right)\right] \\
& s_{x}^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
& s_{y}^{2}=\frac{1}{n-1}\left[\sum Y^{2}-\frac{1}{n}\left(\sum Y\right)^{2}\right] \\
& r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}}
\end{aligned}
$$

Linear Regression

$$
\begin{array}{ll}
b_{1}=r \frac{s_{y}}{s_{x}} \\
b_{0}=\bar{Y}-b_{1} \bar{X} & \hat{y}=b_{0}+b_{1} x
\end{array}
$$

Logistic Regression

$$
\begin{aligned}
& \hat{p}=\frac{1}{1+e^{-b_{0}-b_{1} x_{1} \ldots . . b_{p} x_{p}}} \\
& \ln \left(\frac{\hat{p}}{1-\hat{p}}\right)=b_{0}+b_{1} x_{1}+\ldots+b_{p} x_{p} \\
& \hat{O} R=e^{\hat{\beta}_{1} \Delta_{1}+\ldots+\hat{\beta}_{p} \Delta_{p}} \quad \text { logsitic pobababily }
\end{aligned}
$$

10.1 Introduction to Nonparametric Testing - Sign Test

Example: Mark is training for 10K. $n=20$ daily runs. Step 1: $\mathrm{H}_{0}: M D=4$ vs. $\mathrm{H}_{1}: M D>4, \alpha=0.05$ Step 2: Test Statistic. $x=$ the number of + 's.

Binomial Distribution, $n=20, p=0.5$

$X_{0.05}=15 \quad$ (or $n-5=15$)

\mathbf{x}	$\mathbf{P}(\mathbf{X}=\mathbf{x})$	CumSum	CumSumR
0	0.000	0.000	1.000
1	0.000	0.000	1.000
2	0.000	0.000	1.000
3	0.001	0.001	1.000
4	0.005	0.006	0.999
5	0.015	0.021	0.994
6	0.037	0.058	0.979
7	0.074	0.132	0.942
8	0.120	0.252	0.868
9	0.160	0.412	0.748
10	0.176	0.588	0.588
11	0.160	0.748	0.412
12	0.120	0.868	0.252
13	0.074	0.942	0.132
14	0.037	0.979	0.058
15	0.015	0.994	0.021
16	0.005	0.999	0.006
17	0.001	1.000	0.001
18	0.000	1.000	0.000
19	0.000	1.000	0.000
20	0.000	1.000	0.000

Two-Sided Test α	. 10	. 05	. 02	. 01	ata
One-Sided Test α	. 05	. 025	. 01	. 005	5
n					3
1					5
2					
3					3
4					4
5	0				
6	0	0			4
7	0	0	0		6
8	1	0	0	0	6
9	1	1	0	0	
10	1	1	0	0	6
11	2	1	1	0	4
12	2	2	1	1	
13	3	2	1	1	6
14	3	2	2	1	5
15	3	3	2	2	5
16	4	3	2	2	5
17	4	4	3	2	5
18	5	4	3	3	4
19	5	4	4	3	
$\longrightarrow 20$	5	5	4	3	5
21	6	5	4	4	5
22	6	5	5	4	
23	7	6	5	4	5
24	7	6	5	5	5
25	7	7	6	5	6

10.1 Introduction to Nonparametric Testing - Sign Test

The hypothesis testing process consists of 5 Steps.
Step 3: Set-up the decision rule.

7.1 Introduction to Hypothesis Testing

으른ㄴ
The hypothesis testing process consists of 5 Steps.
Step 3: Set-up the decision rule.

Reject H_{0} if $z \geq z_{\alpha}$

$$
\mathrm{H}_{0}: \mu=\mu_{0} \text { vs. } \mathrm{H}_{1}: \mu<\mu_{0}
$$

Reject H_{0} if $z \leq z_{\alpha}$

$$
\mathrm{H}_{0}: \mu=\mu_{0} \text { vs. } \mathrm{H}_{1}: \mu \neq \mu_{0}
$$

Reject $\mathrm{H}_{0} z \leq z_{\alpha / 2}$ or $z \geq z_{\alpha / 2}$

10.1 Introduction to Nonparametric Testing - Sign Test

Step 4: Compute the test statistic.

$$
\begin{aligned}
& x=14 \\
& x=\left(\text { the number of observations }>M D_{0}=4\right)
\end{aligned}
$$

Step 5: Because $x=14<x_{\alpha}=15$, do not reject H_{0}.

X	$P(X=x)$	CumSum	CumSumR	Two-Sided Test $\boldsymbol{\alpha}$. 10	. 05	. 02	. 01
5	0.015	0.021	0.994	One-Sided Test $\boldsymbol{\alpha}$. 05	. 025	. 01	. 005
6	0.037	0.058	0.979	19	5	4	4	3
14	0.037	0.979	0.058	20	5	(5)	4	3
15	0.015	0.994	0.021	21	6	5	4	4
See also Table 6				Table 6				

Note: See also Table 6

If we used normal, we would reject $\mathrm{H}_{0}, t=4.07>t_{0.05,19}=2.093$.

$$
t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} \quad d f=n-1 \quad \bar{X}=4.8500 \quad s=0.9333
$$

data	sorted	sign
5	3	-1
3	3	-1
5	4	0
3	4	0
4	4	0
4	4	0
6	5	+1
6	5	+1
6	5	+1
4	5	+1
6	5	+1
5	5	+1
5	5	+1
5	5	+1
4	5	+1
5	6	+1
5	6	+1
5	6	+1
5	6	+1
6	6	+1

10.2 Tests with Two Independent Samples - Mann-Whitney U Test

Example: Phase II clinical trial, $n=10$ children. Difference in episodes?
Step 1: Set up the hypotheses and determine α.

$$
\mathrm{H}_{0}: M D_{1}=M D_{2} \text { vs. } \mathrm{H}_{1}: M D_{1} \neq M D_{2}, \quad \alpha=0.05
$$

Group 1 Group 2

Placebo	NewDrug
7	3
5	6
6	4
4	2
12	10
$n_{1}=5$	$n_{2}=5$

Step 2: Select the appropriate test statistic.
Pool data and assign ranks. Test statistic based on ranks

Placebo	New Drug	Placebo	New Drug	Placebo	New Drug	Ranks		
						Placebo	New Drug	
7	3		1		1		1	
5	6		2		2		2	
6	4		3		3		3	
4	2	4	4	4.5	4.5	4.5	4.5	7
12	1	5		6		6		
		6	6	7.5	7.5	7.5	7.5	
		7		9		9		$R_{2}=18$
		12		10		10		

10.2 Tests with Two Independent Samples - Mann-Whitney U Test

Step 2: Select the appropriate test statistic.
The test statistic is a single (decision) number summarizing information.

$$
\begin{aligned}
& U_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}=(5)(5)+\frac{5(5+1)}{2}-37=3 \\
& U_{2}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}=(5)(5)+\frac{5(5+1)}{2}-18=22 \\
& U=\min \left(U_{1}, U_{2}\right)=\min (3,22)=3
\end{aligned}
$$

Rankings	
Group 1 Group 2	Group 1 Group
${ }^{1}$	1
2 3	23
4	4
- 5	5
6	6
7	
8	8
10	10
$U=0$	$U=25$

complete
Reject H_{0} for small U.

10.2 Tests with Two Independent Samples - Mann-Whitney U Test

Step 3: Set-up the decision rule.
$n_{1}=5, n_{2}=5$
If we did Two Sided Test
Reject H_{0} if $U \leq U_{0.05, n_{1}, n_{2}}$.
Step 4: Compute test statistic.
Already done, $U=3$.

Step 5: Conclusion.
Do not reject H_{0} because
$U=3>U_{0.05,5,5}=2$. Interpret.

Two-Sided Test $\alpha=0.05$						n_{1}														
					\downarrow															
n_{2}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2								0	0	0	0	1	1	1	1	1	2	2	2	2
3					0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
4				0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	13
5			0	1	(2)	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6			1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
7			1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
8		0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
9		0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
10		0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11		0	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
12		1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
13		1	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
14		1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
15		1	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
17		2	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
19		2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

10.3 Tests with Matched Samples - Wilcoxon Signed Rank Test

An alternative for the Sign Test for matched samples median difference is the Wilcoxon Signed Rank test.

Step 1:

$\mathrm{H}_{0}: \delta \leq 0$ vs. $\mathrm{H}_{1}: \delta>0$
H_{0} : The median difference is zero $\left(\mathrm{H}_{0}: \delta=0\right)$
H_{1} : The median difference is positive $\left(\mathrm{H}_{1}: \delta>0\right)$
We will calculate a test statistic W the smaller of W+ and W-.
$W+=$ sum of positive ranks
$W_{-}=$sum of negative ranks
$\longrightarrow \quad W=\min \left(W+, W_{-}\right)$
If the median difference of the matched pairs is zero, then the sum of the positive ranks should be the same as the sum of the negative ranks.

10.3 Tests with Matched Samples - Wilcoxon Signed Rank Test

An alternative for the Sign Test for matched samples median difference is the Wilcoxon Signed Rank test.

Step 1:
$\mathrm{H}_{0}: \delta \leq 0$ vs. $\mathrm{H}_{1}: \delta>0$
δ is population version of d.
Step 2: Select the test statistic.
$W_{+}=$sum of positive ranks $=32$
$W_{-}=$sum of negative ranks $=4$
$W=\min \left(W_{1}, W_{2}\right)=\min (4,32)=4$
Reject H_{0} for small W.

\mathbf{b}	\mathbf{a}	d	sorted sign rankS SgnRnk			
85	75	10	-10	-1	3	-3
70	50	20	-5	-1	1	-1
40	50	-10	10	+1	3	3
65	40	25	10	+1	3	3
80	20	60	15	+1	5	5
75	65	10	20	+1	6	6
55	40	15	25	+1	7	7
20	25	-5	60	+1	8	8

IF Signed Ranks

SgnRnk	SgnRnk	SgnRnk	SgnRnk
1	-4	-7	-8
2	-3	-5	-7
3	-2	-3	-6
4	-1	-1	-5
5	5	2	2
6	6	4	4
7	7	6	6
8	8	8	8

Possible Examples
10.3 Tests with Matched Samples - Wilcoxon Signed Rank Test

Step 3: Set-up the decision rule.
$n=8, \alpha=0.05$
If we did One Sided Test
Reject H_{0} if $W \leq W_{\alpha, n}$.
Step 4: Compute test statistic.
Already done, $W=4$.

Step 5: Conclusion.
Reject H_{0} because
$W=4 \leq W_{0.05,8}=6$. Interpret.
10.4 Tests with More than Two Independent Samples - Kruskal-Wallis Test

The hypothesis testing process consists of 5 Steps.
Step 1: Set up the hypotheses and determine the level of significance α.
$\mathrm{H}_{0}: M D_{1}=M D_{2} \ldots=M D_{k}$ vs. H_{1} : at least two $M D$'s different reject for "large" disparities H.

We will assume the medians are equal and see how different from equal.
7.8 Tests with More than Two Independent Samples, Continuous Outcome (ANOVA)

The hypothesis testing process consists of 5 Steps.
Step 1: Set up the hypotheses and determine the level of significance α.

$$
\begin{array}{ll}
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \ldots=\mu_{k} \quad \text { vs. } \mathrm{H}_{1}: \text { at least two } \mu \text { 's different } \\
\text { reject for "large" disparities } F=M S B / M S E .
\end{array}
$$

We will assume the means are equal and calculate two different variances. If the means are truly equal, the two different variances will be the same. If the means are noy equal, the two different variances will be different.

10.4 Tests with More than Two Independent Samples - Kruskal-Wallis

Example: Statistical difference in albumin for 3 diets?
Step 1: Null and Alternative Hypotheses.
$\mathrm{H}_{0}: M D_{1}=M D_{2}=M D_{3}$ vs. H_{1} : at least two different

$$
H=\left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}\right)-3(N+1)
$$

Step 2: Test Statistic.

$$
H=\left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}\right)-3(N+1)
$$

Step 3: Decision Rule. $\alpha=0.05, n_{1}=3, n_{2}=5, n_{3}=4$
Reject H_{0} if $H \geq 5.656$.
Step 4: Compute test statistic.

Table 8

Three groups					
n_{1}	n_{2}	n_{3}		$\alpha=.05$	$\alpha=.01$
5	4	3		5.656	7.445

Sample size order doesn't matter.

$$
H=7.52
$$

Step 5: Conclusion
Reject H_{0} because $7.52>5.656$, and conclude difference in median albumin.
10.5 Summary

Sign Test (one sample)
$x=$ number of observations $>M D_{0}$

Mann-Whitney U Test

$U_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}$
$U_{2}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}$
$U=\min \left(U_{1}, U_{2}\right)$
Sign Test (two sample)
$x=$ number of observations >0

Wilcoxon Signed Rank Test

$W=\min (W+, W-)$
$W+=$ sum of positive ranks
$W-=$ sum of negative ranks

Kruskal-Wallis Test

$$
H=\left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}\right)-3(N+1)
$$

11.1 Introduction to Survival Data

Survival analysis measures two pieces of information

1) Whether the event occurred, $1=y e s, 0=$ no
2) Last follow-up time, from enrollment.

The survival function is the probability a person survives past a time t.

$t=0.0$: survival probability=1.00
$t=2.0$: survival probability= 0.83
$t=8.5$: survival probability=0.50 (Median)
$t=10.0$: survival probability $=0.47$

11.2 Estimating the Survival Function

There are several parametric and nonparametric ways to estimate survival Let's examine nonparametric step survival curves. Time on x axis and survival (percentage) at risk on y axis.

$$
\begin{aligned}
& t=0.0 \text { : survival probability }=1.00 \\
& t=2.0 \text { : survival probability }=0.90 \\
& t=9.0 \text { : survival probability }=0.50 \text { (Median) } \\
& t=10.0 \text { : survival probability }=0.45
\end{aligned}
$$

11.6 Summary

The survival function is the probability a person survives past a time t.

Actuarial Life Table

$N_{t}=\underset{\text { \# event free }}{\text { (Numberat risk) }}$ during interyal t
$D_{t}=\#$ who die in interval t
$C_{t}=$ \# censored in interval t
$N_{t^{*}}=$ avg. \#at risk in intervał $t, N_{t^{*}}=N_{t}-C_{t} / 2$
$q_{t}=$ prop. die in interval $t, q_{t}=D_{t} / T$
$p_{t}=$ prop. survive in interval $t, p_{t}=1-q_{t}$
$S_{t}=$ prop. survive past interval t Can plot S_{t} vs. t.

Kaplan-Meier Life Table
$S_{t+1}=S, \begin{aligned} & \frac{N_{t}-D_{t}}{N_{t}} \\ & S E\left(S_{t}\right)=S_{t} \sqrt{\frac{D_{t}}{N_{t}\left(N_{t}-D_{t}\right)}}\end{aligned}$

Chi-Square Test

Cox Proportional Hazards Model

$$
h(t)=h_{0}(t) \exp \left(b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{p} x_{p}\right)
$$

Questions?

Bring pencil/eraser, calculator, caffeinated beverage. Will hand out exam and formula sheet/tables.

