Chapter 11: Survival Analysis

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Time to Event
Survival analysis is the statistical analysis of time-to-event variables.
The event could be a heart attack, cancer remission, or death.

What is the probability that a participant survives 5 years?

Are there differences in survival between groups?

How do certain characteristics affect participants chances of survival?

Time to Event
Not all participants enroll when a study begins, so when a study ends, not all participants were enrolled for the same amount of time.

True survival time (failure time) is not known because the study ended before the event or participants dropped out.

The last observed follow-up is called the censored or censoring time.

Right censoring is when a participant does not have the event of interest during the study, last observed follow-up is less than the time to event.

Time to Event

Patients experiences with Myocardial Infarction over 10 years

Some join up to 2 years after start, all are followed for 10 years from start.
3 Myocardial Infarction
1 death
2 drop out
4 completions

All enrolled at the same time, all are followed for 10 years from start.
3 Myocardial Infarction
1 death
2 drop out
4 completions

All enrolled at the same time, all are followed for 10 years from start.
3 Myocardial Infarction
1 death
2 drop out
4 completions

Survival Analysis analyzes not only the number of MI events, but also times.

11.1 Introduction to Survival Data

Survival analysis measures two pieces of information

1) Whether the event occurred, $1=y e s, 0=$ no
2) Last follow-up time, from enrollment.

The survival function is the probability a person survives past a time t.

$$
\begin{aligned}
& t=0.0: \text { survival probability }=1.00 \\
& t=2.0 \text { : survival probability }=0.83 \\
& t=8.5: \text { survival probability }=0.50 \text { (Median) } \\
& t=10.0: \text { survival probability }=0.47
\end{aligned}
$$

11.2 Estimating the Survival Function

There are several parametric and nonparametric ways to estimate survival Let's examine nonparametric step survival curves. Time on x axis and survival (percentage) at risk on y axis.

$$
\begin{aligned}
& t=0.0: \text { survival probability }=1.00 \\
& t=2.0 \text { : survival probability }=0.90 \\
& t=9.0 \text { : survival probability }=0.50 \text { (Median) } \\
& t=10.0 \text { : survival probability }=0.45
\end{aligned}
$$

11.2 Estimating the Survival Function

Example of 24 year study with 20 participants. Some die, many drop out, few finish.

11.2 Estimating the Survival Function - Actuarial

We can organize the data into a simple table.
Divide the 24 year study into 5 year intervals.
$0-4$ years
5-9 years
10-14 years
15-19 years
20-24 years.

4
14

11.2 Estimating the Survival Function - Actuarial

11.2 Estimating the Survival Function - Actuarial

	Participant	Year of Death	Last Contact
$0-4$ years	14	1	
	8		2
	2	3	
5-9 years	18	5	
	17		6
	19		9
10-14 years	15		10
	3		11
	13		12
	6		13
	7	14	
15-19 years	10		17
	20	17	
	9		18
	4		19
20-24 years	12		21
	16	23	
	1		24
	5		24
	11		24
Time Data			

11.2 Estimating the Survival Function - Actuarial

We can organize the data into a simple table. Divide the 24 year study into 5 year intervals.

Count Alive at beginning of each interval. Count how many Deaths during interval. Number censored (dropped out) in each interval.

Number Interval in Years	Number Beginning of Interval	of Deaths During Interval	Number Censored
$0-4$	20	2	1
$5-9$	17	1	2
$10-14$	14	1	4
$15-19$	9	1	3
$20-24$	5	1	4

	Participant	Year of Death	Last Contact
	14	1	
$0-4$ years	8		2
	2	3	
5-9 years	18	5	
	17		6
	19		9
	15		10
	3		11
10-14 years	13		12
	6		13
	7	14	
	10		17
	20	17	
15-19 years	9		18
	4		19
	12		21
	16	23	
20-24 years	1		24
	5		24
	11		24
Time Data			

Life Tables (actuarial tables)

$N_{t}=$ number event free during interval t (Number at risk)
$D_{t}=$ number who die during interval t
$C_{t}=$ number censored during interval t
$N_{t^{*}}=$ average number at risk during interval t

Deaths assumed to occur at end of the interval.
 $N_{t^{*}}=N_{t}-C_{t} / 2$

Life Tables (actuarial tables)

$N_{t}=$ number event free during interval t (Number at risk)
$D_{t}=$ number who die during interval t
$C_{t}=$ number censored during interval t
$N_{t^{*}}=$ average number at risk during interval t $N_{t^{*}}=N_{t}-C_{t} / 2$
$q_{t}=$ prop. die in interval $t, q_{t}=D_{t} / N_{t^{*}}$

Time Data
$p_{t}=$ prop. survive in interval $t, p_{t}=1-q_{t}$
$S_{t}=$ prop. survive past interval $t, S_{t+1}=p_{t+1} S_{t}$
11.2 Estimating the Survival Function - Actuarial

11.2 Estimating the Survival Function - Actuarial

Interval in Years	Number at Risk During Interval, N_{t}	Average Number at Risk During Interval, $\boldsymbol{N}_{\mathrm{t}}$.	Number of Deaths During Interval, D_{t}
0-4	$20 \quad 20-(1 / 2)=19.5$		2
5-9	17 17-[2/2)=16.0		1
	$N_{t^{*}}=N_{t}-C_{t} / 2$		
Interval in Years	Number Alive at Beginning of Interva	Number of Deaths During Interval	Number Censored
0-4	20	2	1
5-9	17	1	2
10-14	14	1	4
15-19	9	1	3
20-24	5	1	4

11.2 Estimating the Survival Function - Actuarial

Interval in Years	Number at Risk During Interval, N_{t}	Average Number at Risk During Interval, N_{t}.	Number of Deaths During Interval, D_{t}	$\begin{aligned} & \text { Lost to } \\ & \text { Follow-Up, } \\ & C_{t} \end{aligned}$	Proportion Dying During Interval, $q_{\text {t }}$			$0-4$ years	14	1			
								8		2			
						Among Those at Risk, Proportion Surviving Interval, p_{t}	Survival Probability, S_{t}		5-9 years	2	3		
								18		5			
								17			6		
								15			10		
0-4	20	19.5	2	1	0.103	0.897	0.897	10-14 years	15		10		
5-9	17	16.0	1	2	0.063	0.937	0.840		13		12		
10-14	14	12.0	1	4	0.083	0.917	0.770		6		13		
15-19	9	7.5	1	3	0.133	0.867	0.688		7	14			
20-24	5	3.0	1	4	0.333	0.667	0.446	15-19 years	10		17		
	$N_{t^{*}}=N_{t}-C_{t} / 2$			$q_{t}=D_{t} / N_{t^{*}}$		$p_{t}=1-q_{t}$	$S_{t+1}=p_{t+1}$		20	17	18		
				4					19				
	Number	Number	Number Censored			$N_{t}=\#$ event free during interval t (Number at risk)				20-24 years	12		21
	Alive at Beginning	of Deaths During		16	23								
$\begin{aligned} & \text { Interval } \\ & \text { in Years } \end{aligned}$	Beginning of Interval	During Interval		16 1	23					24			
0-4	20	2	1	$D_{t}=\#$ who die during interval t					5			24	
$5-9$ $10-14$	17	1	2						11			24	
$10-14$ $15-19$	14 9	1	3	$C_{t}=\#$ censored during interval t					Time Data				
20-24	5	1	4				rvalt						
				$N_{t^{*}}=$ avg. \# at risk during interval $t, N_{t^{*}}=N_{t}-C_{t} / 2$									
				$q_{t}=$ prop. die in interval $t, q_{t}=D_{t} / N_{t^{*}}$									
				$p_{t}=$ prop. survive in interval $t, p_{t}=1-q_{t}$									
				$S_{t}=$ prop. survive past interval $t, S_{t+1}=p_{t+1} S_{t}$									

11.2 Estimating the Survival Function - Actuarial

Participant Year of Death Last Contact

11.2 Estimating the Survival Function - Kaplan-Meier

Kaplan-Meier Survival Curve approach re-estimates the probability each time an event occurs. Re-estimates every death or censoring.

Assumes censoring is independent of the likelihood of developing the event of interest. You don't drop out because you don't think you will ever get the event or because you know you will get it. You drop out because you are too busy or move.

Survival probabilities are comparable in participants who are recruited earlier as well as later. How participants are recruited doesn't change.
11.2 Estimating the Survival Function - Kaplan-Meier

Participant Year of Death Last Contact

Participant	Year of Death	Last Contact
14	1	
8		2
2	3	
18	5	
17		6
19		9
15		10
3		11
13		12
6		13
7	14	
10		17
20	17	
9		18
4		19
12		21
16	23	
1		24
5		24
11		24
Time Data		
$S=S N_{t}-D_{t}$		

11.2 Estimating the Survival Function - Kaplan-Meier

Time, years	Survival Probability, $S_{t+1}=S_{t} \times\left[\left(N_{t+1}-D_{t+1}\right] / N_{t+1}\right]$
0	1^{+}
1	$1 \times[(20-1) / 20]=0.950$
2	$0.950 \times[[19-0] / 19]=0.950$
3	$0.950 \times[(18-1] / 18]=0.897$
5	$0.897 \times[[17-1] / 17]=0.844$
6	0.844
9	0.844
10	0.844
11	0.844
12	0.844
13	0.844
14	0.760
17	0.676
18	0.676
19	0.676
21	0.676
23	0.507
24	0.507

Participant Year of Death Last Contact

Biostatistical Methods

11.2 Estimating the Survival Function - Kaplan-Meier

Survival
Participant Year of Death Last Contact

11.2 Estimating the Survival Function - Kaplan-Meier Survival

Participant Year of Death Last Contact

Participant	Year of Death	Last Contact
14	1	
8		2
2	3	
18	5	
17		6
19		9
15		10
3		11
13		12
6		13
7	14	
10		17
20	17	
9		18
4		19
12		21
16	23	
1		24
5		24
11		24
Time Data		
$S_{t+1}=S_{t} \frac{\mid \mathbf{V}_{t}-\boldsymbol{D}_{t}}{\boldsymbol{N} t}$		

11.2 Estimating the Survival Function - Kaplan-Meier

Time, Probability, Failure Probability,

Participant Year of Death Last Contact

11.3 Comparing Survival Curves

There are methods for comparing equivalence of survival curves.
An example is one survival curve for a group receiving a medication and another survival curve for another group receiving a placebo.

We might be comparing survival curves for men vs. women or between two demographic groups.

Here present version of log-rank test statistic linked to χ^{2} test. Compares observed events to expected events at each time point.

11.3 Comparing Survival Curves

Example: Small clinical trial to compare chemo Before vs. After surgery.
Chemotherapy Before Surgery

Month of Death	Month of Last Contact		Month of Death
	8	33	Month of Last Contact
8	32	28	48
26	20	41	48
14	40		25
21		37	
27		48	
		25	

We can perform a hypothesis test to see if the two treatments result in equivalent outcomes.

11.3 Comparing Survival Curves

Example: We can perform a hypothesis test for equivalence.
Chemo Before Surgery

| Time,
 months | Number at
 Risk, N_{t} | Number of
 Deaths, D_{t} | Number
 Censored, C_{t} | Survival Probability,
 $\left.S_{t+1}=S_{t} \times\\| \\|_{t+1}-D_{t+1} / N_{t+1}\right]$ | Time,
 months | Number at
 Risk, N_{t} | Number of
 Deaths, D_{t} | Number
 Censored, C_{t} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Survival Probability, |
| :---: |
| $S_{t+1}=S_{t} \times \\| N_{t+1} \times D_{t+1} / 1 / N_{t+1} \mid$ |

Plot the survival curves.

11.3 Comparing Survival Curves

Example: We can perform a hypothesis test for equivalence.
Step 1: Hypotheses and significance. $\alpha=0.05 \quad \sum_{t=1}^{T} O_{i j}=$ Observed Deaths in Group j H_{0} : The two survival curves are identical. H_{1} : The two survival curves are not identical.
$\sum_{t=1}^{T} E_{i j}=$ Expected Deaths in Group j
Step 2: Test Statistic (log-rank test)

$$
\chi^{2}=\sum_{j=1}^{2}\left(\sum_{t=1}^{T} O_{i j}-\sum_{t=1}^{T} E_{i j}\right)^{2} / \sum_{t=1}^{T} E_{i j}
$$

$$
d f=k-1
$$

Step 3: Decision Rule Reject if $\chi^{2}>\chi^{2}{ }_{\alpha, \text { df }}=3.84$.
Step 4: Compute Test Statistic Next slide.

11.3 Comparing Survival Curves

Step 4: Compute Test Statistic

					tatis		Expected	Expected
Death Time, months	Number at Risk in Group 1, $N_{1 t}$	Number at Risk in Group 2, $N_{2 t}$	Total Number at Risk, N_{t}	Number of Events in Group 1, $0_{1 t}$	Number of Events in Group 2, $\mathrm{O}_{2 t}$	Total Number of Events, 0 t	Events in Group 1, E_{1} $=N_{1 t} \times\left[0 / N_{t}\right]$	$\begin{gathered} \text { Events in } \\ \text { Group 2, } \\ =E_{2 t}=\left[N_{2 t} \times\left(N_{t}\right)\right. \end{gathered}$
8	10	10	20	1	0	1	0.500	0.500
12	8	10	18	1	0	1	0.444	0.556
14	7	10	17	1	0	1	0.412	0.588
21	5	10	15	1	0	1	0.333	0.667
26	4	8	12	1	0	1	0.333	0.667
27	3	8	11	1	0	1	0.273	0.727
28	2	8	10	0	1	1	0.200	0.800
33	1	7	8	0	1	1	0.125	0.875
41	0	5	5	0	1	1	0.000	1.000
$\begin{aligned} & \chi^{2}=\sum_{j=1}^{2} \frac{\left(\sum_{t=1}^{T} O_{i j}-\sum_{t=1}^{T} E_{i j}\right)^{2}}{\sum_{t=1}^{T} E_{i j}}=\frac{(6-2.620)^{2}}{2.620}+\frac{(3-6.380)^{2}}{6.380} \\ & \chi^{2}=4.360+1.791=6.151 \end{aligned}$								

Expected Expected Number of Number of Events in Events in Group 2, $E_{2 t}$
$\left(0, / N_{t}\right)$ $\sum_{t=1}^{T} O_{i j}=$ Observed Deaths in Group j $\sum_{t=1}^{T} E_{i j}=$ Expected Deaths in Group j

- Chemo before surgery
-*- Chemo after surgery

11.3 Comparing Survival Curves

Example: We can perform a hypothesis test for equivalence.
Step 1: Hypotheses and significance. $\alpha=0.05 \quad \sum_{t=1}^{T} O_{j i}=$ Observed Deaths in Group j H_{0} : The two survival curves are identical. H_{1} : The two survival curves are not identical.
$\sum_{t=1}^{T} E_{i j}=$ Expected Deaths in Group j
Step 2: Test Statistic (log-rank test)

$$
\chi^{2}=\sum_{j=1}^{2}\left(\sum_{t=1}^{T} O_{i j}-\sum_{t=1}^{T} E_{i j}\right)^{2} / \sum_{t=1}^{T} E_{i j}
$$

$$
d f=k-1
$$

Step 3: Decision Rule Reject if $\chi^{2}>\chi^{2}{ }_{\alpha, d f}=3.84$.
Step 4: Compute Test Statistic
$\chi^{2}=6.15$
Step 5: Conclusion

Reject H_{0} because 6.16>3.84.
\rightarrow Chemo before surgery

- - - Chemo after surgery

The survival function is the probability a person survives past a time t.

Actuarial Life Table

$N_{t}=\underset{\text { (Number at risk) }}{\text { \# event }}$ during interval t
$D_{t}=\#$ who die in interval t
$C_{t}=$ \# censored in interval t
$N_{t^{*}}=$ avg. \# at risk in interval $t, N_{t^{*}}=N_{t}-C_{t} / 2$
$q_{t}=$ prop. die in interval $t, q_{t}=D_{t} / N_{t^{*}}$
$p_{t}=$ prop. survive in interval $t, p_{t}=1-q_{t}$
$S_{t}=$ prop. survive past interval t
Can plot S_{t} vs. t.

Kaplan-Meier Life Table

$$
S_{t+1}=S_{t} \frac{N_{t}-D_{t}}{N_{t}}
$$

$$
S E\left(S_{t}\right)=S_{t} \sqrt{\sum \frac{D_{t}}{N_{t}\left(N_{t}-D_{t}\right)}}
$$

Chi-Square Test

$$
\chi^{2}=\sum_{j=1}^{2} \frac{\left(\sum_{t=1}^{T} O_{i j}-\sum_{t=1}^{T} E_{i j}\right)^{2}}{\sum_{t=1}^{T} E_{i j}} d f=k-1
$$

Cox Proportional Hazards Model $h(t)=h_{0}(t) \exp \left(b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{p} x_{p}\right)$

Questions?

Homework 11

Read Chapter 11.

Problems 12, 14. (Both interpreting graphs.)

