Chapter 10: Nonparametric Tests II Supplement

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

10.3 Tests with Matched Samples – Sign Test

We learned the parametric matched difference hypothesis test,

 $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$ (prove greater than), $\mu_d = \mu_1 - \mu_2$

We know for the parametric test, we reject for "large" average differences

$$\overline{X}_d = \frac{1}{n} \sum_{i=1}^n d_i$$
 or $z = \frac{\overline{X}_d}{s / \sqrt{n}}$, (assuming *n* large).

D.B. Rowe

Biostatistical Methods

10.3 Tests with Matched Samples – Sign Test

 $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$ (prove greater than), $\mu_d = \mu_1 - \mu_2$

D.B. Rowe

10.3 Tests with Matched Samples – Sign Test

The same thing occurs in nonparametric testing with the sign test.

 $H_0: \delta = 0 \text{ vs. } H_1: \delta > 0 \text{ (prove greater than), } \delta = MD_1 - MD_2$

For the nonparametric sign test, we reject for a "large" number of differences greater than 0.

x = (the number of differences > 0).

Biostatistical Methods

10.3 Tests with Matched Samples – Sign Test

 $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$ (prove greater than), $\delta = MD_1 - MD_2$

When we calculate x = # d's > 0, we see where it lies

Х	P(X=x)	CumSum	CumSumR
0	0.004	0.004	1.000
1	0.031	0.035	0.996
2	0.109	0.145	0.965
3	0.219	0.363	0.856
4	0.273	0.637	0.637
5	0.219	0.856	0.363
6	0.109	0.965	0.145
7	0.031	0.996	0.035
8	0.004	1.000	0.004

10.5 Summary

Sign Test (one sample) x = number of observations > MD_0

<

<

Mann-Whitney U Test

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1}$$
$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2}$$

 $U = \min(U_1, U_2)$

Sign Test (two sample) x = number of differences > 0

Wilcoxon Signed Rank Test (two sample)

 $W = \min(W+,W-)$ W+ = sum of positive ranks W = sum of negative ranks

Kruskal-Wallis Test

$$H = \left(\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right)$$

 R_i = sum of ranks for sample *j*.

D.B. Rowe

(three or more samples) -3(N+1)

Questions?

Homework 10

Read Chapter 10.

Problems # 6 (Sign Test), 7 (Wilcoxon Signed Rank Test), 8 (Kruskal-Wallis Test) the $n_1 = n_2 = n_3 = n_4 = 5$ critical value is 7.377.

