Chapter 9: Multivariable Methods

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Associations

We often are interested in the association between variables.

We often say correlation, with little thought to an actual definition.

We often say trend or linear relationship without defining how determine this relationship.

We define y to be the response or dependent (on x) variable and x to be the explanatory or independent variable. i.e. y depends on x (or several x 's).

9.3 Introduction to Correlation and Regression Analysis

Formally, correlation is a measure of "linear" association between two continuous variables x and y. Sample value r and population value ρ.

Correlations are between -1 and $1 .-1 \leq r \leq 1 \quad$ (will calculate soon)

Values close to +1 or -1 mean a stronger association.
Values close to 0 mean a weak association.

Positive values mean a positive relationship, as x increases so does y. Negative values mean a negative relationship, x increases y decreases.

9.3 Introduction to Correlation and Regression Analysis

A scatter diagram is a plot of the independent variable (x) and the dependent variable (y). From it we can glean if there is an association.

9.3 Introduction to Correlation and Regression Analysis

Example: A small study ... to investigate the association between gestational age and birth weight. A scatter diagram is constructed.

9.3 Introduction to Correlation and Regression Analysis-Correlation

Correlations r are between -1 and $1,-1 \leq r \leq 1$.

$$
\begin{aligned}
& r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}} \\
& s_{x}^{2}=\frac{1}{n-1} \sum(X-\bar{X})^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
& s_{y}^{2}=\frac{1}{n-1} \sum(Y-\bar{Y})^{2}=\frac{1}{n-1}\left[\sum Y^{2}-\frac{1}{n}\left(\sum Y\right)^{2}\right] \\
& \operatorname{cov}(x, y)=\frac{1}{n-1} \sum(Y-\bar{Y})(X-\bar{X})=\frac{1}{n-1}\left[\sum X Y-\frac{1}{n}\left(\sum Y\right)\left(\sum X\right)\right]
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7		1895		XY
2	36.0		2030		
3	29.3		1440		
4	40.1		2835		
5	35.7		3090		
6	42.4		3827		
7	40.3		3260		
8	37.3		2690		
9	40.9		3285		
10	38.3		2920		
11	38.5		3430		
12	41.4		3657		
13	39.7		3685		
14	39.7		3345		
15	41.1		3260		
16	38.0		2680		
17	38.7		2005		

$\sum X=$	\sum Sums
$\sum Y=$	$\sum X^{2}=$
	$\sum X Y=$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5

5 Sums

$\sum X=$	$\sum X^{2}=$
$\sum Y=$	$\sum Y^{2}=$
	$\sum X Y=$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5
	652.1	25173.2	49334.0	150934928.0	1921162.6

5 Sums

$$
\begin{array}{cl}
\sum X=652.1 & \sum X^{2}=25173.2 \\
\sum Y=49334.0 & \sum Y^{2}=150934928.0 \\
\sum X Y=1921162.6 \\
\hline
\end{array}
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y		Y^{2}
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5
	652.1	25173.2	49334.0	150934928.0	1921162.6

5 Sums

$$
\begin{aligned}
& \sum X=652.1 \quad \sum X^{2}=25173.2 \\
& \sum Y=49334.0 \quad \sum Y^{2}=150934928.0 \\
& \sum X Y=1921162.6 \\
& \operatorname{cov}(x, y)=\frac{1}{n-1}\left[\sum X Y-\frac{1}{n}\left(\sum Y\right)\left(\sum X\right)\right] \\
& s_{x}^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \quad r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}} \\
& s_{y}^{2}=\frac{1}{n-1}\left[\sum Y^{2}-\frac{1}{n}\left(\sum Y\right)^{2}\right]
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5
	652.1	25173.2	49334.0	150934928.0	1921162.6

5 Sums

$$
\begin{aligned}
& \sum X=652.1 \quad \sum X^{2}=25173.2 \\
& \sum Y=49334.0 \quad \sum Y^{2}=150934928.0 \\
& \sum X Y=1921162.6 \\
& \operatorname{cov}(x, y)=\frac{1}{17-1}\left[1921162.6-\frac{1}{17}(49334.0)(652.1)\right] \\
& s_{x}^{2}=\frac{1}{17-1}\left[25173.2-\frac{1}{17}(652.1)^{2}\right] \quad r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}} \\
& s_{y}^{2}=\frac{1}{17-1}\left[150934928.0-\frac{1}{17}(49334.0)^{2}\right]
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

We are going to calculate the correlation in column format with sums.

n	X	X^{2}	Y	Y	Y
1	34.7	1204.1	1895	3591025.0	65756.5
2	36.0	1296.0	2030	4120900.0	73080.0
3	29.3	858.5	1440	2073600.0	42192.0
4	40.1	1608.0	2835	8037225.0	113683.5
5	35.7	1274.5	3090	9548100.0	110313.0
6	42.4	1797.8	3827	14645929.0	162264.8
7	40.3	1624.1	3260	10627600.0	131378.0
8	37.3	1391.3	2690	7236100.0	100337.0
9	40.9	1672.8	3285	10791225.0	134356.5
10	38.3	1466.9	2920	8526400.0	111836.0
11	38.5	1482.3	3430	11764900.0	132055.0
12	41.4	1714.0	3657	13373649.0	151399.8
13	39.7	1576.1	3685	13579225.0	146294.5
14	39.7	1576.1	3345	11189025.0	132796.5
15	41.1	1689.2	3260	10627600.0	133986.0
16	38.0	1444.0	2680	7182400.0	101840.0
17	38.7	1497.7	2005	4020025.0	77593.5
	652.1	25173.2	49334.0	150934928.0	1921162.6

5 Sums

$$
\begin{aligned}
& \sum X=652.1 \quad \sum X^{2}=25173.2 \\
& \sum Y=49334.0 \quad \sum Y^{2}=150934928.0 \\
& \sum X Y=1921162.6 \\
& \operatorname{cov}(x, y)=1798.0 \\
& s_{x}^{2}=9.9638 \\
& r=\frac{1798.0}{\sqrt{(10.0)(485478.8)}} \\
& s_{y}^{2}=485478.8 \\
& r=0.82
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

It is important to know how the correlation is calculated, critical thinker. However, in practice we use a software package such as \boldsymbol{R}.

```
# Gestational Data
xx <- c(34.7,36.0,29.3,40.1,35.7,42.4,40.3,37.3,40.9,38.3,38.5,41.4,39.7,39.7,41.1,38.0,38.7)
yy <- c(1895,2030,1440,2835,3090,3827,3260,2690,3285,2920,3430,3657,3685,3345,3260,2680,2005)
\(\operatorname{plot}(x=x x, y=y y, x l a b=\) "Age", ylab = "Weight", , main = "Age vs. Weight", \(x \lim =c(25,45), y \lim =c(1000,4000), c o l=" d a r k r e d ", c e x=1.5 p c h=16)\)
sx2 <- var(xx)
sy2 <- var(yy)
sxy <- cov(xx,yy)
\(r<-\operatorname{cor}(x x, y y)\)
```

Age vs. Weight

Can also form test statistic $z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)$ to test $\mathrm{H}_{0}: \rho=0$ vs. $\mathrm{H}_{1}: \rho \neq 0$.

9.3 Introduction to Correlation and Regression Analysis-Regression

We often want to estimate the linear association between the independent variable (x) and the dependent variable (y).
From it we can more quantitively describe an $x-y$ association

$$
y=\beta_{0}+\beta_{1} x .
$$

From data, we are going to estimate β_{0} by b_{0} and β_{1} by b_{1} and denote the estimated relationship by
$\hat{y}=b_{0}+b_{1} x$. This is simple linear regression.

Of note x does not have to be continuous in regression but y does.
9.3 Introduction to Correlation and Regression Analysis-Regression

We can estimate the y-intercept and slope from what we have already computed for the correlation.

$$
\begin{aligned}
s_{x}^{2} & =9.9638 \\
s_{y}^{2} & =485478.8 \\
r & =0.82
\end{aligned}
$$

The slope is estimated as $b_{1}=r \frac{s_{y}}{s_{x}}$ and $b_{0}=\bar{Y}-b_{1} \bar{X}$.
Line goes through (\bar{X}, \bar{Y}). Note b_{1} has same sign as r.

And hence we have determined our regression line.
$\hat{y}=b_{0}+b_{1} x$

9.3 Introduction to Correlation and Regression Analysis-Regression

Example: Continuing the small study ... to investigate the association between gestational age and birth weight.

9.3 Introduction to Correlation and Regression Analysis-Regression

Example: Continuing the small study ... to investigate the association between gestational age and birth weight.

$$
s_{x}^{2}=9.9638
$$

$$
s_{y}^{2}=485478.8
$$

$$
r=0.82
$$

$$
\hat{Y}=-4029.2+180.5 x
$$

$$
\begin{aligned}
& b_{1}=r \frac{s_{y}}{s_{x}} \\
& b_{1}=0.82 \frac{696.8}{3.2} \\
& b_{1}=180.5 \\
& b_{0}=\bar{Y}-b_{1} \bar{X} \\
& b_{0}=2902-(180.5)(38.4) \\
& b_{0}=-4029.2
\end{aligned}
$$

9.3 Introduction to Correlation and Regression Analysis-Regression

Example: Continuing the small study ... to investigate the association between gestational age and birth weight.

A one-week increase in gestational age on average results in a 180.5 gram increase in weight.

$$
\hat{Y}=-4029.2+180.5 x
$$

9.3 Introduction to Correlation and Regression Analysis-Correlation

It is important to know how the regression line is calculated, critical thinker. However, in practice we use a software package such as \boldsymbol{R}.
\# Gestational Data
$x x<-c(34.7,36.0,29.3,40.1,35.7,42.4,40.3,37.3,40.9,38.3,38.5,41.4,39.7,39.7,41.1,38.0,38.7)$
yy <- c(1895,2030,1440,2835,3090,3827,3260,2690,3285,2920,3430,3657,3685,3345,3260,2680,2005)
\#scatter plot with line
plot $(x=x x, y=y y, x$ lab $=$ "Age",ylab $=$ "Weight", xlim $=c(25,45), y \lim =c(1000,4000)$, col = "darkred", cex = 1.5, main = "Age vs. Weight", pch = 16) reg<-Im $\left(y^{\prime} \sim_{x x}\right)$
abline(reg, col = "blue")
coeff = coefficients(reg)
$\hat{Y}=-4029.2+180.5 x$

9.4 Multiple Linear Regression Analysis

Our variable y might depend on more than one $x, x_{1}, x_{2}, \ldots, x_{p}$.
So we want to be able to estimate a relationship such as
$\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{p} x_{p}$
However, the estimation of the regression coefficients, the b 's is now much more complicated.

We would need to use a software package such as \boldsymbol{R}.

9.4 Multiple Linear Regression Analysis

Example: Suppose we want to know the relationship between systolic blood pressure (SBP) and the variables BMI, AGE, Male Sex (MLS), and Treatment for Hypertension (TFH).

We have measured SBP, BMI, AGE, MLS, and TFH on $n=3959$ study participants. Male Sex and Treatment are 0/1 variables.

A multiple regression analysis is run and coefficients estimated.

9.4 Multiple Linear Regression Analysis

Example: SBP and BMI, Age, Male Sex, and TFH.

A multiple regression analysis is run and coefficients estimated.

$$
S B P=68.15+0.58 B M I+0.65 A G E+0.94 M L S+6.44 T F H
$$

Independent Variable	Regression Coefficien	n t	p-value	output.
Intercept	$b_{0}=68.15$	$t_{0}=26.33$	${ }^{0.0001}=p_{0}$	The t statistic is for $\mathrm{H}_{0}: \beta_{j}=0, \mathrm{H}_{1}: \beta_{j} \neq 0$.
BMI	$b_{1}=0.58$	$t_{1}=10.30$	${ }^{0.0001}=p_{1}$	The p-value is the probability of getting
Age	$b_{2}=0.65$	$t_{2}=20.22$	$0.0001=p_{2}$	
Male sex	$b_{3}=0.94$	$t_{3}=1.58$	${ }^{0.1133}=p_{3}$	$t_{j}=\frac{b_{j}-0}{}$
Treatment for hypertension	$b_{4}=6.44$	$t_{4}=9.74$	$0.0001=p_{4}$	larger in abs if it were truly $0 .{ }_{d j f=n-p-1}^{j} \sqrt{\operatorname{var}\left(b_{j}\right)}$

9.5 Multiple Logistic Regression Analysis

The probability p of an event E can depend on an independent variable x, such as the probability p of getting an A on the final depends on the number of hours that you study x.

If you study $x=10$ hours then your probability $p(x)$ of getting an A might be $p(10)=0.25$, but if you study $x=30$ hours then your probability $p(x)$ of getting an A might be $p(30)=0.75$.

Hours (\boldsymbol{x})	
$\mathbf{A}(\boldsymbol{y})$	
6	0
8	0
10	0
12	0
14	0
16	1
18	0
20	0
22	0
24	0
26	1
28	0
30	0
32	1
34	1
36	1
38	1
40	1

i.e. as x increases so does p..

9.5 Multiple Logistic Regression Analysis

This dependency of a probability $p(x), 0 \leq p(x) \leq 1$, on an independent variable $x,-\infty<x<\infty$, is generally described through the logistic mapping function

$$
p=p(x)=\frac{1}{1+e^{-\beta_{0}-\beta_{1} x}}=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}} .
$$

If the event E occurs, then we say $y=1$ and if not $y=0$.
 $P(y=1)=p$ and $P(y=0)=1-p$. \ldots

This is a Binomial trial with $n=1$ and whose probability of success depends on x.

9.5 Multiple Logistic Regression Analysis

Sometimes the logistic regression is written as log odds

$$
\ln \left(\frac{\hat{p}}{1-\hat{p}}\right)=b_{0}+b_{1} x_{1}+\ldots+b_{p} x_{p}
$$

and it looks like we can then use Linear Regression to estimate the coefficients. It turns out that we need to find the coefficient values that maximize

$$
\frac{1}{p(x)}
$$

$$
L L=\sum_{i=1}^{n} y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)-\sum_{i=1}^{n} \ln \left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)
$$

We need to use a software package such as \boldsymbol{R}.

Biostatistical Methods

9.5 Multiple Logistic Regression Analysis

Using R,

Hours $(\boldsymbol{x}) \mathbf{A}(\boldsymbol{y})$	
6	0
8	0
10	0
12	0
14	0
16	1
18	0
20	0
22	0
24	0
26	1
28	0
30	0
32	1
34	1
36	1
38	1
40	1

\# grade data

```
xx <- c(6, 8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40)
yy <- c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0,1, 0, 0, 1, 1, 1, 1, 1)
#scatter plot plot(x = xx,y = yy,xlab = "Hours",ylab = "Grade",
xlim = c(0,45),ylim = c(0,1),col = "darkred",
    cex = 1.5, main = "Hours vs. Grade", pch = 16)
logistic_model <- glm(yy xx, family=binomial(link="logit"))
summary(logistic_model)
b0 <- logistic_model$coefficients[1]
b1 <- logistic_model$coefficients[2]
phat <- round(1/(1+exp(-b0-b1*xx)), digits = 4)
O <- round(phat/(1-phat) , digits = 4)
df <- data.frame(xx,yy,phat,O)
df
#scatter plot with curve
xhat <- (1:4500)/100
yhat <- 1/(1+exp(-b0-b1*xhat))
plot(x = xx,y = yy,xlab = "Hours",ylab = "Grade",
    xlim = c(0,45),ylim = c(0,1),col = "darkred",
    cex = 1.5, main = "Hours vs. Grade", pch = 16)
points(xhat,yhat,cex = .1,col = "blue")
```


9.5 Multiple Logistic Regression Analysis

Once we have $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, insert them back into
$\hat{p}_{i}=\frac{1}{1+e^{-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}}}$ for estimated probabilities
and also for odds $\hat{o}_{i}=\frac{\hat{p}_{i}}{1-\hat{p}_{i}}=e^{\hat{\beta}_{0}+\hat{\beta}_{i_{i}} x_{i}}$
and for odds ratio $\hat{O} R=e^{\hat{\beta}_{0}+\hat{\beta}_{x_{b}}} / e^{\hat{\beta}_{0}+\hat{\beta}_{1} x_{a}}=e^{\hat{\beta}_{1} \Delta}, \Delta=x_{b}-x_{a}$.

$$
\begin{aligned}
& \hat{\beta}_{0}=-5.66 \\
& \hat{\beta}_{1}=0.21
\end{aligned}
$$

$$
\hat{O} R=e^{(0.21)(2)}=1.5220
$$

Hours (\boldsymbol{x})	$\mathbf{A}(\boldsymbol{y})$	$\hat{\boldsymbol{p}}$	$\hat{\boldsymbol{o}}$
6	0	0.0120	0.0122
8	0	0.0181	0.0184
10	0	0.0272	0.0279
12	0	0.0406	0.0423
14	0	0.0603	0.0641
16	1	0.0886	0.0972
18	0	0.1284	0.1473
20	0	0.1824	0.2232
22	0	0.2527	0.3381
24	0	0.3388	0.5124
26	1	0.4371	0.7764
28	0	0.5405	1.1764
30	0	0.6406	1.7824
32	1	0.7298	2.7008
34	1	0.8036	4.0923
36	1	0.8611	6.2008
38	1	0.9038	9.3957
40	1	0.9344	14.2365

Study 2 more hours and $O R$ increases by 1.5 .

9.6 Summary

Correlation

$$
\begin{aligned}
& \operatorname{cov}(x, y)=\frac{1}{n-1}\left[\sum X Y-\frac{1}{n}\left(\sum Y\right)\left(\sum X\right)\right] \\
& s_{x}^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
& s_{y}^{2}=\frac{1}{n-1}\left[\sum Y^{2}-\frac{1}{n}\left(\sum Y\right)^{2}\right] \\
& r=\frac{\operatorname{cov}(x, y)}{\sqrt{s_{x}^{2} s_{y}^{2}}}
\end{aligned}
$$

Linear Regression

$$
\begin{array}{ll}
b_{1}=r \frac{s_{y}}{s_{x}} \\
b_{0}=\bar{Y}-b_{1} \bar{X} & \hat{y}=b_{0}+b_{1} x
\end{array}
$$

Logistic Regression

$$
\begin{aligned}
& \hat{p}=\frac{1}{1+e^{-b_{0}-b_{1} x_{1}-\ldots-b_{p} x_{p}}} \\
& \ln \left(\frac{\hat{p}}{1-\hat{p}}\right)=b_{0}+b_{1} x_{1}+\ldots+b_{p} x_{p} \\
& \hat{O} R=e^{\hat{\beta}_{1} \Delta_{1}+\ldots+\hat{\beta}_{p} \Delta_{p}} \quad \text { logsitip poobabilily }
\end{aligned}
$$

Questions?

Homework 9

Read Chapter 9.

Problems *, 6, 13
*Given (x, y) points $(1,1),(3,2),(2,3),(4,4)$,
a) Plot the points
b) Find r, b_{0} and b_{1} by hand with sums.
c) Draw the fitted regression line on the same graph as points.
d) What do b_{0} and b_{1} mean?

$$
\hat{y}=b_{0}+b_{1} x
$$

$$
\ln \left(\frac{\hat{p}}{1-\hat{p}}\right)=b_{0}+b_{1} x_{1}+\ldots+b_{p} x_{p}
$$

