Chapter 7: Hypothesis Testing Procedures II

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Hypothesis Testing

We make decisions every day in our lives.

- Should I believe A or should I believe B (not A)?
- Two Competing Hypotheses. A and B.
- Null Hypothesis (H_{n}): No difference, no association, or no effect.
- Alternative Hypothesis (H_1) : Investigators belief.

The Alternative Hypothesis is always set up to be what you want to build up evidence to prove.

7.1 Introduction to Hypothesis Testing

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

Step 2: Select the appropriate test statistic.

Step 3: Set-up the decision rule.

Step 4: Compute the test statistic.

Step 5: Conclusion.

We often have two populations that we are studying.

We may be interested in knowing if the mean μ_1 of population 1 is different (while accounting for random statistical variation) from the mean μ_1 of population 2.

When we have independent random sample from each population

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 > \mu_2$ (prove greater than) reject for "large" $\overline{X}_1 - \overline{X}_2$ or z's <

 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 < \mu_2$ (prove less than) reject for "small" $\overline{X}_1 - \overline{X}_2$ or z's

 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$ (prove not equal to) reject for "large" or "small" $\overline{X}_1 - \overline{X}_2$ **Or** *z*'**s**

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number.

n large $z = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad t = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad df = n_1 + n_2 - 2$

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a,df}$) that depends on significance level α to make decision. $a = \alpha$ or $\alpha/2$

We will test hypotheses on various parameters with various test statistics.

 $S_{P} = \sqrt{\frac{(n_{1} - 1)(s_{1})^{2} + (n_{2} - 1)(s_{2})^{2}}{n_{1} + n_{2} - 2}}$

7.5 Tests with Two Independent Samples, Continuous Outcome

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic. Use sample data n_1 from population 1 and n_2 from population 2 to compute z (or t).

Compare test statistic z (or t) to critical value(s) $z_{a/2}$ (or $t_{a/2,df}$) with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 .

Interpret the results.

7.3 Tests with One Sample, Dichotomous Outcome

Ne Pla

Example: Is the mean cholesterol of new drug < mean of placebo?

Step 1: Null and Alternative Hypotheses.

$$H_0: \mu_1 \ge \mu_2$$
 VS. $H_1: \mu_1 < \mu_2$

Step 2: Test Statistic. $t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sigma \sqrt{1 + 1 + 1}} \qquad df = n_1 + n_2 - 2$

Step 3: Decision Rule.
$$\alpha$$
=0.05 , df =15+15-2=28

Reject H_0 if $t \leq -1.701$.

Step 4: Compute test statistic.

$$t = (195.9 - 227.4) / (29.5\sqrt{1/15 + 1/15}) = -2.92$$

Step 5: Conclusion

Because $-2.92 \le -1.701$, reject and conclude mean of drug less than placebo.

$S_P = \sqrt{\frac{(15-1)(28.7)^2 + (15-1)(30.3)^2}{15+15-2}} = 29.5$

	Sample Size	Mean	Standard Deviation
w drug	15	195.9	28.7
acebo	15	227.4	30.3

We often encounter two samples where there are matched pairs. This is often the case for before vs. after, twins, couples, etc. We subtract x_1 from sample 1 and x_2 from sample 2 for each pair.

The differences are labeled generically $d=x_1-x_2$ and so the sample of differences is d_1, \ldots, d_n . X_{d}

Once we have these differences we treat them exactly the same as we did in Section 7.2 Tests with One Sample, Continuous Outcome.

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d > 0$ (prove greater than) reject for "large" \overline{X}_{a} or z's <

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$ (prove less than) reject for "small" \overline{X}_{d} or z's

 $H_0: \mu_d = 0$ vs. $H_1: \mu_d \neq 0$ (prove not equal to) reject for "large" or "small" \bar{X}_{d}

Or *z*'**s**

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic. The test statistic is a single (decision) number.

n large *n* small

$$z = \frac{\overline{X}_d - 0}{s_d / \sqrt{n}} \qquad t = \frac{\overline{X}_d - 0}{s_d / \sqrt{n}}$$

df=*n*-1

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a,df}$) that depends on significance level α to make decision. $a = \alpha$ or $\alpha/2$

We will test hypotheses on various parameters with various test statistics.

7.6 Tests with Matched Samples, Continuous Outcome

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule. $H_0: \mu_d = 0$ VS. $H_1: \mu_d > 0$ $H_0: \mu_d = 0$ VS. $H_1: \mu_d < 0$ $H_0: \mu_d = 0$ VS. $H_1: \mu_d \neq 0$ 0.4 o.35 rejection rejection rejection 0.35 0.35 region region region 0.3 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 $_{0.15} \alpha/2$ level α level α level 0.15 0.15 (0.05) (0.05) (0.025)0.1 0.1 0.1 0.05 0.05 0.05 0 -4 0 └--4 З -2 -1 0 1 2 -3 -2 -1 0 1 2 З 4 -3 $Z_{\alpha/2}$ (1.645)(-1.645)(-1.960)

Reject H₀ if $z \ge z_{\alpha}$ (or $t \ge t_{\alpha,df}$) Reject H₀ if $z \le z_{\alpha}$ (or $t \le t_{\alpha,df}$) Reject H₀ $z \le z_{\alpha/2}$ or $z \ge z_{\alpha/2}$

(or $t \leq t_{\alpha/2,df}$ or $t \geq t_{\alpha/2,df}$)

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic. Use sample data n_1 from population 1 and n_2 from population 2

to compute z (or t).

Compare test statistic z (or t) to critical value(s) $z_{\alpha/2}$ (or $t_{\alpha/2,df}$) with rule.

Step 5: Conclusion. Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

$$t = \frac{\dot{y}}{s}$$

with rulo

Example: Is there a difference in mean of new drug from baseline? **Step 1:** Null and Alternative Hypotheses. rejection 0.35 $H_0: \mu_d = 0$ vs. $H_1: \mu_d \neq 0$ region 0.25 Step 2: Test Statistic. $\alpha/2$ level 0.15 $t = \frac{X_d}{S_d \sqrt{n}} \qquad df = n-1$ (0.025)0.1

Step 3: Decision Rule. α =0.05 , df=15-1=14

Reject H₀ if $t \le -2.145$ or $t \ge 2.145$.

Step 4: Compute test statistic.

$$t = -5.3 / (12.8 / \sqrt{15}) = -1.60$$

Step 5: Conclusion

Because $-2.145 \le -1.60$, do not reject H₀ and conclude no reduction.

0.05

 $s_{d}^{2} = \frac{1}{n-1} \left[\sum d^{2} - \frac{1}{n} \left(\sum d \right)^{2} \right]$

 $\overline{X}_d = \frac{1}{n} \sum d$

-3

 $t^{2}_{\alpha,df/2}$

Number	Baseline	6 Weeks	Difference
1	215	205	10
2	190	156	34
3	230	190	40
4	220	180	40
5	214	201	13
6	240	227	13
7	210	197	13
8	193	173	20
9	210	204	6
10	230	217	13
11	180	142	38
12	260	262	-2
13	210	207	3
14	190	184	6
15	200	193	7
		$\overline{X}_d = \cdot$	-5.30

We often have two populations that we are studying.

We may be interested in knowing if the proportion p_1 of population 1 is different (while accounting for random statistical variation) from the proportion p_1 of population 2.

When we have independent random sample from each population and the sample sizes are large.

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α . There are three possible pairs.

risk difference RD $H_0: p_1 = p_2$ vs. $H_1: p_1 > p_2$ (prove greater than) reject for "large" $\hat{p}_1 - \hat{p}_2$ or *z*'s

 $H_0: p_1 = p_2 vs. H_1: p_1 < p_2$ (prove less than) rove less than) figure rescale RDreject for "small" $\hat{p}_1 - \hat{p}_2$ or z's

risk difference RD $H_0: p_1 = p_2$ vs. $H_1: p_1 \neq p_2$ (prove not equal to) reject for "large" or "small" $\hat{p}_1 - \hat{p}_2$

Or *z*'**s**

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad \hat{p}_1 = \frac{x_1}{n_1} \qquad \hat{p}_2 = \frac{x_2}{n_2} \qquad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Use the test statistic that depends on data and null hypothesis with a critical value z_{α} that depends on significance level α to make decision. $a = \alpha \text{ or } \alpha/2$

We will test hypotheses on various parameters with various test statistics.

7.7 Tests with Two Independent Samples, Dichotomous Outcome

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule. $H_0: p_1 = p_2 \text{ VS. } H_1: p_1 > p_2 \qquad H_0: p_1 = p_2 \text{ VS. } H_1: p_1 < p_2$ 0.4 rejection rejection rejection 0.35 0.35 0.35 region region region 0.3 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 $_{0.15}$ $\alpha/2$ level α level α level 0.15 0.15 (0.05) (0.05)(0.025)0.1 0.1 0.1 0.05 0.05 0.05 0 └--4 -3 -2 -1 0 1 2 З _4 -3 -2 -1 0 1 2 З 4 -3 Z_{α} -*Z*α $Z_{\alpha/2}$ (1.645)(-1.645)(-1.960)

Reject H_0 if $z \ge z_\alpha$ Reject H_0 if $z \le z_\alpha$

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic. Use sample data n_1 from population 1 and n_2 from population 2 to compute z.

Compare test statistic z to critical value(s) $z_{\alpha/2}$ with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 . Interpret the results.

The hypothesis test on risk difference $H_0: p_1=p_2$ vs. $H_1: p_1\neq p_2$ $H_0: RD=0$ vs. $H_1: RD\neq 0$

Is equivalent to the two hypothesis tests

```
Risk Ratio RR
H<sub>0</sub>: RR=1 vs. H<sub>1</sub>: RR \neq 1
and
Odds Ratio OR
H<sub>0</sub>: OR=1 vs. H<sub>1</sub>: OR \neq 1
```

D.B. Rowe

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

We often have more than two populations that we are studying.

We may be interested in knowing if the mean μ_1 of population 1 is different (while accounting for random statistical variation) from the mean μ_1 of population 2, and the mean μ_k of population k.

When we have independent random sample from each population

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance α .

 $H_0: \mu_1 = \mu_2 \dots = \mu_k$ vs. $H_1:$ at least two μ 's different reject for "large" disparities or F=MSB/MSE.

We will assume the means are equal and calculate two different variances. If the means are truly equal, the two different variances will be the same. If the means are noy equal, the two different variances will be different.

7.8 Tests with More than Two Independent Samples, Continuous **Outcome (ANOVA)**

The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$F = \frac{MSB}{MSE} \qquad MSB = \frac{\sum n_j (\bar{X}_j - \bar{X})^2}{k - 1} \qquad MSE = \frac{\sum \sum n_j (X - \bar{X}_j)^2}{N - k}$$

Use the test statistic that depends on data and null hypothesis with a critical value F_{α,df_1,df_2}) that depends on significance level α to make decision. Table 4 in book

We will test a single hypotheses on means with the test statistic.

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

 $H_0: \mu_1 = \mu_2 \dots = \mu_k vs. H_1:$ at least two different

Reject H_0 if $F \ge F_{\alpha, df_1, df_2}$.

Table 4 in book

wrong graph

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data n_1 from population 1 and n_2 from population 2 to compute test statistic F.

Compare test statistic F to critical value(s) F_{α,df_1,df_2} with rule.

Table 4 in book

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 .

Interpret the results.

D.B. Rowe

$F = \frac{MSB}{MSB}$ MSE

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

Example: Find the value of $F_{0.05,3,16}$. $\alpha \qquad \uparrow \qquad f_1 = n_1 - 1 \qquad df_2 = n_2 - 1$

The (critical) value of F that has an area of 0.05 larger than it when we have $df_1=3$ (numerator) and $df_2 = 16$ (denominator) degrees of freedom is 3.24.

	$P(F_{dr_1, dr_2} > F) = 0.05,$ e.g., $P(F_{3,20} > 3.10) = 0.05$													
	df,													
df ₂	1	2	3	4	5	6	7	8	9	10	20	30	40	50
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	248.0	250.1	251.1	251.8
2	2 18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.46	19.47	19.48
3	3 10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.62	8.59	8.58
4	4 7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.75	5.72	5.70
Ę	5 6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.56	4.50	4.46	4.44
ė	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.87	3.81	3.77	3.75
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.44	3.38	3.34	3.32
8	3 5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.15	3.08	3.04	3.02
9	9 5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	2.94	2.86	2.83	2.80
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.77	2.70	2.66	2.64
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.65	2.57	2.53	2.51
12	2 4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.54	2.47	2.43	2.40
1:	3 4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.46	2.38	2.34	2.31
14	4 4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.39	2.31	2.27	2.24
15	5 4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.33	2.25	2.20	2.18
			\frown											
→ 10	6 4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.28	2.19	2.15	2.12
13	7 4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.23	2.15	2.10	2.08
18	3 4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.19	2.11	2.06	2.04
19	9 4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.16	2.07	2.03	2.00
20	0 4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.12	2.04	1.99	1.97

This is the value we use for a 95% HT when α =0.05, n_1 =6, and n_2 =11.

The book only has $\alpha = 0.05$, but would have another page for each α value.

7.8 Tests with More than Two Independent Samples, **Continuous Outcome (ANOVA)**

Example: Statistical difference in weight loss among 4 diets? **Step 1:** Null and Alternative Hypotheses. 0.7 0.6 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ vs. $H_1:$ at least two different 0.5 0.4 **Step 2:** Test Statistic. 0.3 0.2 F = MSB / MSE $df_1 = k-1$ $df_2 = N-k$ $\hat{F}_{\alpha,df_1,df_2}$ (3.24) **Step 3:** Decision Rule. α =0.05, df_1 =4-1=3, df_2 =20-4=16 $n_1 = n_2 = n_3 = n_4 = 5$ Reject H₀ if $F \ge 3.24$. to be calculated **Step 4:** Compute test statistic. F = 25.3 / 3.0 = 8.43**Step 5:** Conclusion Because 8.43 > 3.24, reject H₀ and conclude diets mean weight loss different.

7.9 Tests for Two or More Independent Samples, Categorical and Ordinal Outcomes

Hypothesis test follows similar to Section 7.4 one sample.

7.10 Summary

ABLE 7-50	Summary of Key Formulas for Tests of Hypothesis	
Ou	tcome Variable, Number of Groups: Null Hypothesis	Test Statistic*
Co	ntinuous outcome, two independent samples: $H_0: \mu_1 = \mu_2$	$Z = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{p}\sqrt{1/n_{1} + 1/n_{2}}}$
Co	ntinuous outcome, two matched samples: H_0 : $\mu_d = 0$	$z = \frac{\overline{\chi}_d - \mu_d}{s_d / \sqrt{n}}$
Co H	ntinuous outcome, more than two independent samples: $\mu_0: \mu_1 = \mu_2 = \dots = \mu_k$	$F = \frac{\sum n_i (\overline{X}_i - \overline{X})^2 / (k-1)}{\sum (X - \overline{X}_i)^2 / (N - K)}$
Die	chotomous outcome, one sample: $H_0: p = p_0$	$Z = \frac{\hat{\rho} - \rho_0}{\sqrt{\frac{\rho_0 (1 - \rho_0)}{n}}}$
Die H	chotomous outcome, two independent samples: $I_0: p_1 = p_2$, RD = 0, RR = 1, OR = 1	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(1/n_1 + 1/n_2)}}$
Ca H	tegorical or ordinal outcome, one sample: $P_0: p_1 = p_{10}, p_2 = p_{20}, \dots, p_k = p_{k0}$	$\chi^2 = \Sigma \frac{\left(O - E\right)^2}{E}, df = k - 1$
Ca H	tegorical or ordinal outcome, two or more independent samples: I _o : Outcome and groups are independent	$\chi^2 = \Sigma \frac{(0-E)^2}{E}, df = (r-1)(c-1)$

D.B. Rowe

Questions?

Homework 7 Part II

Read Chapter 7.

Problems # 12, 18, 10, 19, 11

